International Journal of Mathematics And its Applications
Volume 3, Issue 3—A (2015), 23-30.
ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

The Number of Homomorphisms From Quaternion Group
into Some Finite Groups

Research Article

R.Rajkumar'*, M.Gayathri ! and T.Anitha !

1 Department of Mathematics, The Gandhigram Rural Institute-Deemed University, Gandhigram, Tamil Nadu, India.

Abstract: We derive general formulae for counting the number of homomorphisms from quaternion group into each of quaternion
group, dihedral group, quasi-dihedral group and modular group by using only elementary group theory.

MSC: 20K30.

Keywords: Finite groups, homomorphisms.
© JS Publication.

1. Introduction

Finding the number of homomorphisms between two groups is a basic problem in abstract algebra. In [2] Gallian and
Buskirk give the enumeration of homomorphisms between two specified cyclic groups by using only elementary group
theory. Also using the elementary techniques, in [3] Gallian and Jungreis provided a method for counting homomorphisms

from Z,,[i] into Zy[i] and Z.,[p] into Z,[p], where i> +1 =0 and p® + p+ 1 = 0.

But in general counting homomorphisms between groups needs advanced tools of algebra; see, for instance [1, 5]. So in [4]
Jeremiah Johnson, described a method of enumerating homomorphisms from a dihedral group D,, into another dihedral
group D, by using only elementary methods. Motivated by these, in [6] authors give the enumeration of homomorphisms,
monomorphisms and epimorphisms from a dihedral group into some finite groups, namely quaternion, quasi-dihedral and
modular groups by using elementary techniques. In this paper, we consider the problem of enumerating the homomorphisms,
monomorphisms and epimorphisms from a quaternion group into each of dihedral, quaternion, quasi-dihedral and modular

groups by using elementary methods.

In this paper we use the following notations: for a positive integer n > 1, D,, denotes the dihedral group generated by two

generators x,, and y, subject to the relations % = e = y2 and Tnyn = ynx,; and for a positive integer m > 1, Q,, denotes

the quaternion group generated by two generators d., and by, subject to the relations a2 = e = b2, and ambm = bmay;

and for a positive integer a > 3, QD2 denotes the quasi-dihedral group generated by two generators s, and t, subject

to the relations s?:kl =e=1t2 and tasq = 8(2;“271%; and for a positive integer 8 > 2, M,s denotes the modular group

. . B—1 B2
generated by two generators rg and fg subject to the relations rg =e= fé’ and fgrg = rg !t fs-
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2. The Number of Group Homomorphisms from @, into @),

Theorem 2.1. Let m and n be positive odd integers. Then the number of group homomorphisms from Q,, into Q. is

24 2n(1 4+ ¢(2m)), if m divides n; 2+ 2n , if m does not divide n.

Proof.  Suppose that p : Qm — Qn is a group homomorphism, where m and n are positive odd integers. We consider all
of the places that p could send the generators a,, and b, of Q. which yield group homomorphisms. Since |p(b,,)| divides
|brm| = 4, p(bm) is one of e, a” or ab,, 0 < B < 2n. As m is odd, it must be the case that p(am) = a2, where a® is an
element of Q,, whose order divides both 2m and 2n. Since p(al,bm)* = p(am), |p(ak,bwm)| divides 2, for every I, 0 <1 < 2m
iff |p(am)| divides m.

If p(bm) = e and p(am) = a%, where |p(a™)| divides both m and 2n, then p(afb,) = ak® and |ak®| divides |a¥ by, | only
when a = 0. Therefore, if p(b,,) = e, then p(an) must be e. Thus we have trivial homomorphism in this case.

If p(by) = a? and p(an) = af, where |p(a)| divides both m and 2n then p(ak,bm) = ak*™ and |a%*™"| divides |aF,b.,|
only when a = 0. Therefore, if p(by) = ay,, then p(am) must be e. Thus we have one homomorphism in this case.

Suppose p(by) = afb,,0 < B < 2n and p(am) = a&, where |a%| divides both 2m and 2n and does not divide m, then

p(ak, b)) = abe™B (med 20y and |ake P (med 2y 1 — 4 divides |a¥,bm| = 4. So, |p(am)| = 2 or 2m. Therefore, we have

2n(1 + ¢(2m)) homomorphisms, if m divides n; 2n homomorphisms, if m does not divide n. Hence we get the result. O

Theorem 2.2. Let m be a positive odd integer and n a positive even integer. Then the number of group homomorphisms

from Qum into Qn is 4+ 2n(1 4+ ¢(2m)) , if m divides n; 4 + 2n, if m does not divide n.

Proof. Suppose that p: Q. — Qn is a group homomorphism, where m is a positive odd integer and n is an even integer.
Then |p(am)| divides |am| = 2m and |p(by)| divides |bm| = 4. Therefore, p(am) must be of the form a3, where |ajy,| divides
both 2m and 2n, and p(by,) must be one of e, a?, ay, a? or alb,, 0 < B < 2n. Also |p(al,bm)| divides 2, for every
I, 0 <1< 2miff |p(an)| divides m.

As in the proof of the Theorem 2.1, if p(am) = a;, where |ap,| divides both 2m and 2n and does not divide m, and
p(bm) = aPb,, 0 < B < 2n is a homomorphism. Thus we have 2n(1 + ¢(2m)) homomorphisms, if m divides n; 2n
homomorphisms, if m does not divide n.

Suppose p(bm) = a¥, where k is either 0 or n and p(am) = a&, where |aS,| divides both m and 2n. Then as in the proof of

the Theorem 2.1, p is a homomorphism only when o = 0. Thus we have two such homomorphisms. Suppose p(bn) = ak,

where k is either 2 or 2 and p(am) = ai, where |ay,| divides both 2m and 2n and does not divide m. Then p(an,) must

be equal to a;,. Thus we have 2 homomorphisms in this case. Hence the result. O

Theorem 2.3. Let m be a positive even integer and n a positive odd integer. Then the number of group homomorphisms

from Q. into Q, is 4.

Proof. Suppose that p: Q. — @Qn is a group homomorphism, where m is a positive even integer and n is an odd integer.
When m is even, p(an,) is either a2, where |a%| divides both 2m and 2n or a2b,, 0 < 8 < 2n; and p(by,) is one of e, all or
anbn,0 <y < 2n.

otk The pis a

Suppose p(am) = a%, where |a2| divides both m and 2n, and p(bn) = a%, k = 0 or n, then p(ambm) = a
homomorphism when o = 0 or n. Thus we have 4 such homomorphisms.
Next, suppose p(bm) = a}bn,0 < v < 2n and p(am) = a;, then p is well defined only when |a;| divides both 2m and 2n

and does not divide m. But since m is even and n is odd, m does not divide n. Thus we have no such homomorphisms.
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Next, suppose p(am) = a2b,,0 < 8 < 2n and p(b,) = e . But this is not well defined since p(b2,) # p(@mbm)?. Suppose
p(am) = afb,,0 < B < 2n and p(bm) = alb,,0 < v < 2n, then p is well defined only when m = 2 (mod 4). Then
p(@mbm) = a277. Suppose p is a homomorphism, |a?~7| divides |@mbm| = 4 but does not divide 2. But since n is odd, there

is no such element in Q,. Hence we get the result. O

Theorem 2.4. Let m and n be positive even integers. Then the number of group homomorphisms from Qm, into Qn is

4+ 8n+2n > (k) |, if m=2 (mod 4); 4+ 2n > (k) |, if m=0 (mod 4).

k| ged(2m,2n), ktm k| ged(2m,2n), ktm
Proof. Let us assume that p : Qn — Q. be a group homomorphism, where m and n are positive even integers. As in
the proof of Theorem 2.3, when m is even, the possible choices for p(a.,) are ay, where |an| divides both 2m and 2n and
apbn,0 < B < 2n.
Next, let us consider the choices for p(bn,). Since |p(bm)| divides |byn| = 4, the value of |p(by,)| must be one of 1,2 or 4.
Therefore, p(bm) is one of e, ay, a§ , a? or albn,0 < v < 2n. Next, we check the homomorphism condition for all possible
combinations of p(am) and p(b.,).

Suppose p(am) = ay, where |ag| divides both 2m and 2n and does not divide m, p(bm) = anbn,0 < v < 2n, then p is a

homomorphism. Thus in this case we have 2n Z ¢(k) | homomorphisms.

k| ged(2m,2n), kim
= alotk,

Suppose p(bm) = a¥, where k either 0 or n, and p(am) = a, where |aZ| divides both m and 2n. Then p(al,bm)
Then p is well defined only when |p(al,bm)| divides 2. Therefore, o has 2 choices that are 0 or n. Thus in this case we have
4 homomorphisms.

Suppose p(bm) = ak, where k = 2 or 2, and p(am) = a3, where |a%| divides both 2m and 2n and does not divide m. Then

o has 2 choices that are 2 and 2* when m = 2 (mod 4); no choices when m = 0 (mod 4). But since p(ambm) = aa ™", |a|
divides m also. Thus there is no homomorphisms in both cases.

Suppose p(am) = a2b,,0 < B < 2n and p(bn) = e or a. As in the proof of Theorem 2.3, this p is not well defined.
Suppose p(am) = a3b,,0 < § < 2n and p(by,) = a? or af?n, then p is well defined only when m = 2 (mod 4) and p is a
homomorphism. Thus we have 4n such homomorphisms, if m = 2 (mod 4).

Now, suppose p(am) = alb,, 0 < 8 < 2n and p(bm) = a)bn, 0 < v < 2n is a homomorphism. Then p(ambm) = a2~ and p

is a well defined only when m = 2 (mod 4). If p is a homomorphism, then |a2~"| divides |ambm| = 4 and does not divide 2.

Therefore, 3 — v must be either 7 or 37” Therefore, for each 5, 0 < 8 < 2n, there are 2 choices for 7. So in this case, we
have 4n homomorphisms, if m = 2 (mod 4). Hence we get the result. ]

Corollary 2.1. Let m and n be any two positive integers. Then the number of monomorphisms from Qp, into Qn is
2n ¢(2m), if m # 2 divides n; 12n, if m = 2 divides n; 0, otherwise. Also the number of automorphisms on Qn is 2n ¢(2n),

ifn#2; 24, if n=2.

Proof. Suppose m does not divide n, then there is no element in @, having order 2m. Thus there is no monomorphism
from Q,, into Q,. So, assume that m divides n and m # 2. First we consider the case that both m and n are odd. Then
by the Theorem 2.1, p(am) = a5, where |an| = 2m and p(bm) = a}bn, 0 < < 2n is a homomorphism which preserves the
order of a.,, and b,,. Then p(afnbm) = aﬁ"“”’bn. Therefore, this p is a monomorphism. And we can verify that the additional
homomorphisms obtained in other cases are not monomorphisms. Thus we have 2n ¢(2m) monomorphisms, if m # 2.

Suppose m = 2 and m divides n. Suppose p : Q2 — Qn is a monomorphism. If p(a2) is either a,? or a? and p(b2) =
albn, 0 <+ < 2n, then we have 4n such monomorphisms. Similarly if, p(az) = a2b,, 0 < 8 < 2n and p(b2) is either a? or

3n
an’ , then we have another 4n monomorphisms.
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Suppose p(az) = albn, 0 < B < 2n and p(b2) = a}bn, 0 < < 2n, then p(a,’ibn) is one of albn, a®~7, a?* b, or a? A,
Then |p(albn)| = 4 only when 8 —~ = 2 or 22. Thus for each 3, we have 2 choices for . Thus we have 4n monomorphisms

in this case. Hence totally we have 12n monomorphisms in this case. Hence the result. (I

Corollary 2.2. Let m and n be any two positive integers. Then the number of epimorphisms from Qm onto Qn is 2n ¢(2n),

if n # 2 divides m; 24, if n =2 and m =2 (mod 4); 8, if n =2 and m =0 (mod 4); 0, otherwise.

Proof.  Suppose p : Qm — Qn is a homomorphism, then |p(z)| divides |z|, for every x € Q.. Suppose n does not divide
n, then a, has no pre image in @Q,,. So, assume that n # 2 divides m. First consider the the case that both m and n
are odd. Then by the Theorem 2.1, p(am) = a5, where |an| = 2n and p(bm) = abn, 0 < v < 2n is a homomorphism in
which p(am) and p(bm) generate the group D,. Therefore, this p is a epimorphism. And we can verify that the additional
homomorphisms obtained in other cases are not epimorphisms. Thus we have 2n ¢(2n) monomorphisms, if n # 2.

Suppose n = 2 divides m. Suppose p : @m — Q2 is a homomorphism. Then consider the homomorphisms p(a,) is one of
as, a3 or agbz, 0 < B <4 and p(bn) is one of as, a3 or ajba, 0 <~ < 4 obtained in the Theorem 2.4.

Suppose p(am) is either az or a3 and p(bm) = ajbs, 0 < v < 4, then this homomorphism is a epimorphism since p(am)
and p(b,) generate the group Qa. Similarly, if p(am) = a5bs, 0 < B < 4 and p(by,) is either as or a3 is a epimorphism
but this is well defined only when m = 2 (mod 4). Thus we have 16 epimorphisms, if m = 2 (mod 4); 8 epimorphisms, if
m =0 (mod 4).

Suppose p(am) = aba, 0 < B < 4 and p(bm) = albs, 0 < v < 4, then p(an) and p(b,) generate the group Q2 only if
B—~y=73or 37" but this is well defined only when m = 2 (mod 4). Thus for each 8, we have 2 choices for v. Thus we have

8 monomorphisms, if m = 2 (mod 4). O

3. The Number of Homomorphisms from (), into D,

Theorem 3.1. Let m be a positive integer and n a positive odd integer. Then the number of group homomorphisms from

Qm into Dy, is 1 +2n+n Z o(k) |, if m is even; 1 +n Z o(k) |, if m is odd.

k| ged(m,n) k| god(m,n)
Proof. Suppose that p : Q. — D, is a group homomorphism, where n is odd positive integer and m is any positive
integer. Then |p(b,,)| must divide |by,| = 4. Then p(bn) must be either e or z}y,, 0 < v < n. Since p(al,bm)? = p(al),
|p(al,bm)| divides 2 iff |p(am)| divides m, for some I, 0 <1 < 2m. Thus p(a,) must be either z%y,, 0 < a < n or 7 whose
order divides both m and n.
If p(bm) = e, then p(ambm) = p(am) and |p(am )| divides |ambm| = 4 and m. Thus p(an) must be either e or 25 yn, 0 < o < n,
if m is even; p(am) = e if m is odd. Thus we have n + 1 homomorphisms, if m is even; only trivial homomorphism, if m is
odd.

Suppose p(bm) = 2yn, 0 < v < n and p(am) = 22, where |z?| divides both m and n, then p(a,b,) = z2° 17 (med n)y, and

e (mod ")yn| divides |a¥,by,|. Therefore, for each 8 such that |z2| divides both n and m, and for each 7, 0 < v < n,

p(am) = 28 and p(bm) = 2} yn is a homomorphism. Thus we have n Z ¢(k) | homomorphisms.

k| gcd(m,n)
Suppose p(am) = Zpyn, 0 < a < n and p(bm) = z}yn, 0 < v < n, then p is well defined only when m is even and p is
a homomorphism only when o« = . For, if k is even, p(aﬁ@bm) = z}yn and |z} yn| divides |a,knbm|; and if k is odd, then
p(ak,bm) = 2377, Then |22~ must divide |a¥,b,,| = 4. As n is odd, this condition is satisfied only when |z2~7| is 1. That

is a must be equal to v. Thus we have n such homomorphisms, if m is even. Hence we obtain the result. O
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Theorem 3.2. Let m be a positive integer and n a positive even integer such that n = 2 (mod 4). Then the number of

group homomorphisms from Qm, into D, is 3+3n+n Z o(k) |, if m is even; 2+n Z o(k) |, if m is odd.

k| ged(m,n) K ged(m,n)
Proof. Suppose that p : Q. — D, is a group homomorphism, where n = 2 (mod 4) and m is any positive integer.
When n = 2 (mod 4), there is no change for the choices for p(a.,). But we have additional choice for p(b,) which is
p(bm) = x§ Suppose p(bm) = x% and p(am) = 7 whose order divides both m and n is a homomorphism. Then

(Bt3) (medm) 4 \mgﬂf) (mod n)\ must divide 2 since p(b7,) = e. This is possible when either 8 =0 or 8 = 2,

plambm) = x
if m is even; B = 0 if m is odd. Thus we have 2 additional homomorphisms, if m is even; 1 homomorphism, if m is odd.
If p(bm) = m,? and p(am) = %Yn, 0 < a < n, then p is well defined only when m is even. Then p(a¥,by) = x%y, or z2+ " y,.

Thus p is a homomorphism, if m is even. Thus we have n such homomorphisms, if m is even.

Suppose p(bm) = e, then as in the Theorem 3.1, there are n + 1 such homomorphisms, if m is even; 1 homomorphisms, if m

is odd. Suppose p(am) = 25, |22| divides both m and n, and p(bm) = £} yn, 0 < v < n, then there are n Z o(k)
k| ged(m,n)
such homomorphisms. But if p(am) = z5yn, 0 < a < n and p(bm) = 27 yn, 0 < v < n, then p is well defined only when m is

even and p is a homomorphism when either &« = 8. Thus we have n such homomorphisms, if m is even. Hence we get the

result. O

Theorem 3.3. Let m be a positive integer and n a positive even integer such that n = 0 (mod 4). Then the number of

group homomorphisms from Q, into D, is 1 +n Z o(k) |, if m is odd; and 2+ 4n+n Z o(k) |, if m is

k| ged(m,n) k| ged(m,n)
even.

Proof. Suppose that p : Q,, — D, is a group homomorphism, where n = 0 (mod 4) and m is any positive integer. Then

p(arm) must be either 28y,, 0 < a < n or 22 whose order divides both 2m and n, and p(bm,) must be one of e, wﬁ, x?, %an

or T yn, 0 < v < n.

If p(bm) = e or x}?, and p(a.,) = =2, where |2 | divides both m and n. If m is odd, 8 must be 0; and if m is even, 3 is either

e or 3. Thus we have 2 homomorphisms, when m is even; 1 homomorphism, when m is odd; 4 homomorphisms, when m
n 3n

is even. Suppose p(bm) = z,i or z,t , p(am) = 2, where |zZ| divides both 2m and n and does not divide m, then p is not

well defined since p(ambm)? = e, for some I, but p(bZ,) = e.

If p(bm) = 2}yn, 0 < v < n and p(am) = z8, where |zf| divides both n and m, then there are n Z o(k)
k| ged(m,n)

homomorphisms. If p(b) = e or x%, and p(am) = yyn, 0 < a < n, then p is well defined only when m is even and p is a

homomorphism. Thus we have 2n homomorphisms, if m is even. And if p(bm) = m? or :czTn, and p(am) = zoyn, 0 < a < n,

then p is not well defined since p(b2,) # p(ambm)>.

As in the proof of the Theorem 3.2, p(am) = Tpyn, 0 < a < n and p(bm) = }3yn, 0 < v < n, then p is well defined only
n

when m is even and p is a homomorphism when o — v is one of 0 or 5. Thus we have 2n such homomorphisms. Hence we

get the result. 0

Corollary 3.1. Let m and n be any two positive integers. Then there is no monomorphism from Q. into D,; and the

number of epimorphism from Qm onto Dy is n ¢(n), if n divides m; 0, otherwise.

Proof. The group Q. contains m + 2 elements having order 4, but the group D,, contains atmost 2 elements having order
4. Thus there is no monomorphism from Q. into D,,.
The homomorphism p(am) = =2, where |z8| = n and p(bm) = z)yn, 0 < v < n are epimorphisms from Q,, onto D,, since

p(am) and p(b,) generate the group D,. But this is possible only when n divides m. Hence we get the result. O
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4. The Number of Homomorphisms from (),, into () D2«

Theorem 4.1. Suppose m is an odd positive integer and o > 3 is any integer. Then the number of homomorphisms from

Qm into QDaa is 4+ 2271,

Proof.  Suppose that p : Qm — QDae is a group homomorphism, then |p(an)| divides |am| = 2m and |p(bw)| divides
|bm| = 4. Therefore, p(am) is one of e, 5277 or s1t,, 0 < k1 < 2% and ki is even; and p(by) = st,, where |s,| divides 4
or p(bm) = s¥2t,, 0 < k2 < 2271, Also, |p(al,bm)| divides 2, for some I, 0 < I < 2m iff |p(a.m)| divides m.

Suppose p(bm) = st,, where t = 273 or 3 2°73 and p(am) = s&, then p is well defined only when k is 2272, Then
p(al,bm) = s+t Then |s¥7t| divides |al,bim| = 4. Therefore, p is a homomorphism. Thus we have 2 homomorphisms.
Suppose p(bm) = sk, where t = 0 or 272, and p(am) = s&, then k must be 0 since |p(an)| must divide m which is odd.
Thus we have 2 homomorphisms in this case.

Suppose p(bm) = sP2¢5, 0 < ky < 2971 and ks is odd, and plam) = s, then p is well defined only when k = is 272, Then
p(al,bm) = stFT*2t,. Therefore, |p(al,bm)| divides |al,bm| = 4, for every 0 < I < 2m. Thus we have 2%~2 homomorphisms
in this case. Suppose p(bm) = s52ta, 0 < ko < 2°7! and ko is even and p(am) = s&, then k must be equal to 0 since |p(am)|
must divide m which is odd. Thus we have 2%~ 2 homomorphisms in this case.

Suppose p(bm) = st,, where |s%,| divides 4, and p(am) = s51ta, 0 < k1 < 2°7! and k; is even. But p(aZ,bm)? = s2¢ # p(al).
Therefore, this p is not well defined. Suppose p(bn,) = sP2tq, 0 < ky < 2% and plam) = sPte, 0 < k1 < 29! and ki is

even. Then p(ambm)? = s2k1=hka) 4 p(am). Therefore, this p is not well defined. Hence we get the result. O

Theorem 4.2. Suppose m is an even positive integer and o > 3 is any integer. Then the number of homomorphisms from

Qum into QDan is k+4+2°72 > (k) | 4272 > (k) |, where k is 3 2%, if m = 2 (mod 4); 2972,
k| ged(m,20—1) k| ged(2m,22—2)
if m =0 (mod 4).

Proof. Suppose that p : Qm — QDaa is a group homomorphism. Then p(am) = s%, where |s%| divides both 2m and 2°~!
or plam) = s81ta, 0 < ki < 2°7 Y and p(bn) = st,, where |s,| divides 4 or p(bm) = sF2ta, 0 < k2 < 2%71. Also, |p(al,bm)|
divides 2, for some I, 0 <1 < 2m iff |p(am, )| divides m.

Suppose p(bm) = sk, where t = 0 or 2°72, and p(am) = s7, where |s"| divides both m and 2*~'. Then p(al,bm) = s,
Since p is a homomorphism, |SZL“\ must divide 2. This is possible when n is one of 0, 272, Thus we have 4 such
homomorphisms. Suppose p(b,) = sk, where t = 273 or 3 2°7% and p(am) = s=, where |sZ| divides both 2m and 2*~*
= glntt

. Since p is a homomorphism, |s!"*¢| must divide 4 but not 2, which is not

but does not divide m. Then p(al,bm)
possible.

Suppose p(am) = s, where |s”| divides both 2m and 2*~* but does not divide m, and p(bm) = s52to, 0 < ko < 2°7! and ks
is odd. Then p(al,bm) = si"t*2t,. Therefore, |p(al,bm)| divides |al,bm| = 4, for every 0 < I < 2m. Then p is well defined
only when n is even. Therefore, |s”| must divide 272 also. Thus we have 2072 Z ¢(k) | homomorphisms.

k| gcd(2m,22—2)
Suppose p(bm) = 582, 0 < ka2 < 27! and ks is even and p(an) = s%, where |s7| divides both m and 2*~*. Thus we have

2072 Z ¢(k) | homomorphisms.
k| ged(m,22—1)
Suppose p(am) = s%ty, 0 < k1 < 2°7% and p(by,) = s, where |sh|= 4. Then p(al,bn) is one of s%, sk1 7', leQaiQH

or sk12°7*Fk1=ty = Then k; must be odd when m = 2 (mod 4). Thus we have 2 x 22 = 2°~! homomorphisms when
m =2 (mod 4); 2* homomorphisms when m = 0 (mod 4).

Suppose p(bm) = sk, where |s'|= 1 or 2 and p(am) = sElta, 0 < ki < 2%7% then ki must be even when m = 2 (mod 4).

Thus we have 2 x 272 = 2*~! homomorphisms when m = 2 (mod 4); 2* homomorphisms when m = 0 (mod 4).
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Suppose p(am) = sif}ta7 0 < ki < 2! and p(bm) = sffta, 0 < ko < 2°7'. Then p(afﬂbm) is one of s®2¢,, s(’il*kQ,

a—2 a—2 . . . — — —
sk12%  Fkay or sR127 " Fki—=k2  Then p is a homomorphism only when k1 — ks is one of 0, 2272, 272 or 3 2273, Thus we

have 4 x 27! = 2" homomorphisms. Hence we get the result. O

Corollary 4.1. Let o > 3 and m be any two positive integers. Then the number of monomorphisms from Qp, into QDa«

is 2°72p(2m), if 2m divides 2°72 and m # 2; 3 27 if m = 2; and 0, otherwise.

Proof.  Suppose 2m does not divide 2*~!, then there is no monomorphism from Q. into QDaa since there is no element in
QDsa having order 2m. So, assume that 2m divides 2%~2 and m # 2. Then p(am) = so, where |si| = 2m and p(b,,) = sk2tg,

0 < k2 < 27! and ks is odd are homomorphisms that preserve the order of a, and b,. Then p(al,b.,) = s+*2t,. Then

lp(al,brm)| = |al,bm| only when n is even. Therefore, 2m cannot equal to 27!, Thus we have 2*~2¢(2m) monomorphisms

from Q.. into QDsa, if 2m divides 2*72 and m # 2.
Suppose that p : Q2 — QDS is a monomorphism. Then p(a) is one of $2770 32777 or skt 0 < ky < 2070 and Ky s

odd; and p(b.,) is one of siais, s> 2277 o sMth, 0 < ko < 2% and ks is odd.

Suppose p(am) = sgfk3 or so 2°7% and p(bm) = s%t,, 0 < ko < 27! and ko is odd is a monomorphism. Thus we have
go—1 monomorphisms. Similarly if p(am) = s’j}ta, 0 <k < 2! and k is odd, and p(by,) = sia_3 or si 2078 is a

monomorphism. Thus we have another 2*~! monomorphisms.
Suppose p(am) = $¥te, 0 < k1 < 297! and k; is odd and p(bm) = s*2t, 0 < ks < 297! and ks is odd. Then p(almbm)
is one of sf,}ta, 5§1+k22a_27k2, s§120_2+k2ta or s{f}za_Q*kl*kz. Then \p(almbm)| = 4 only when ki — k2 is either 2973 or

3 273, Thus we have 2! monomorphisms. Hence we get the result. O

Corollary 4.2. Let a > 3 and m be any two positive integers. Then the number of epimorphisms from Qum onto QDae is

22073 if 2971 divides m; 0, if 2°~% does not divide m.

Proof. If 2*7! does not divide m, none of the homomorphisms obtained in the Theorem 4.2, is onto. But if 2%~ divides
k

m, the homomorphisms p(a.) = s!, where k1 is odd, and p(by,) = s%2t,, 0 < ks < 27! is onto since p(a.,) and p(bm)

generate the group QDao. Thus we have 2°71¢(2%71) = 22*73 epimorphisms, if 2*~' does not divide m. O

5. The Number of Homomorphisms from (), into M.

Theorem 5.1. Let p # 2 be a prime, m be a positive integer and o > 2. Then there is only the trivial homomorphism from

Qm into Mpo.

Proof.  Suppose p : Qmn — Mpye is a group homomorphism, where p # 2 . Then |p(an,)| divides |am| = 2m and |p(bm )|
divides |b,,| = 4 . Then p(by,) must be e and p(an) = %, where |r¥| divides both 2m and p~! . Then p(al,bm) = riF .

Then |rf¥| must divide |al,by| = 4. This is possible only when k = 0. Thus we have only the trivial homomorphism. O

Theorem 5.2. Let m be a positive integer and a > 3. If m is odd, then the number of homomorphisms from Qm to Ma«

is 4 homomorphisms, if m is odd; 32 homomorphisms, if m is even.

Proof. Suppose p : Qm — Maa is a group homomorphism. Then |p(a.,)| divides |am| = 2m and |p(b,,)| divides |b,| = 4.
Then p(am) = rf f1 ) where |rf1| divides both 2m and 2°~! and m; = 0,1 and p(by) = 752 f7'2, where |r52| divides 4
and mo = 0,1. Then p(ambm) = r§1+k2+m1k22a72f;”1+m2. Then p is a homomorphism only when |r%17%2| divides 4. Then
k1 + k2 is one of 0, 272,273 or 3 273, If ks = 0 or 2%72, then p(b2,) = e. Then |p(am)| must divide m. Thus p(a.m,) must
be e, if m is odd; k; is either 0 or 272 | if m = 2 (mod 4); k1 is one of 0 or 2°72,2%73 or 3 2°7% if m = 2 (mod 4). Therefore,

we have 2 homomorphisms, if m is odd; 16 homomorphisms, if m = 2 (mod 4); 32 homomorphisms, if m = 0 (mod 4).
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If ko = 2°73 or 273, then p(b2,) = ria_2. Then |p(am )| must not divide m. Thus, p(am) is ria_27 if m is odd; ki either 2%73
or 3 2°73 if m = 2 (mod 4); there is no such choice, if m = 0 (mod 4). Therefore in this case, we have 2 homomorphisms,

if m is odd; 16 homomorphisms, if m = 2 (mod 4); 0 homomorphisms, if m = 0 (mod 4). O

Corollary 5.1. Suppose a > 3 and B > 2 are two positive integers. Then there is no monomorphism from QDaze into Mys;

no epimorphisms from Qm onto Mys.

Proof. The group @Dz« contains 14 2%~ 2 elements having order 2. But Mo have only two elements of order 2. Therefore
there is monomorphism from @ Dze into Ma«. Also we can verify that none of the homomorphisms obtained in the Theorem

5.2 are epimorphism. O
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