International Journal of Mathematics And its Applications

The Number of Homomorphisms From Quaternion Group into Some Finite Groups

Research Article

R.Rajkumar ${ }^{1 *}$, M.Gayathri ${ }^{1}$ and T.Anitha ${ }^{1}$

1 Department of Mathematics, The Gandhigram Rural Institute-Deemed University, Gandhigram, Tamil Nadu, India.

[^0]Keywords: Finite groups, homomorphisms.
(C) JS Publication.

1. Introduction

Finding the number of homomorphisms between two groups is a basic problem in abstract algebra. In [2] Gallian and Buskirk give the enumeration of homomorphisms between two specified cyclic groups by using only elementary group theory. Also using the elementary techniques, in [3] Gallian and Jungreis provided a method for counting homomorphisms from $\mathbb{Z}_{m}[i]$ into $\mathbb{Z}_{n}[i]$ and $\mathbb{Z}_{m}[\rho]$ into $\mathbb{Z}_{n}[\rho]$, where $i^{2}+1=0$ and $\rho^{2}+\rho+1=0$.

But in general counting homomorphisms between groups needs advanced tools of algebra; see, for instance [1, 5]. So in [4] Jeremiah Johnson, described a method of enumerating homomorphisms from a dihedral group D_{n} into another dihedral group D_{m} by using only elementary methods. Motivated by these, in [6] authors give the enumeration of homomorphisms, monomorphisms and epimorphisms from a dihedral group into some finite groups, namely quaternion, quasi-dihedral and modular groups by using elementary techniques. In this paper, we consider the problem of enumerating the homomorphisms, monomorphisms and epimorphisms from a quaternion group into each of dihedral, quaternion, quasi-dihedral and modular groups by using elementary methods.

In this paper we use the following notations: for a positive integer $n>1, D_{n}$ denotes the dihedral group generated by two generators x_{n} and y_{n} subject to the relations $x_{n}^{n}=e=y_{n}^{2}$ and $x_{n} y_{n}=y_{n} x_{n}^{-1}$; and for a positive integer $m>1, Q_{m}$ denotes the quaternion group generated by two generators a_{m} and b_{m} subject to the relations $a_{m}^{2 m}=e=b_{m}^{4}$ and $a_{m} b_{m}=b_{m} a_{m}^{-1}$; and for a positive integer $\alpha>3, Q D_{2^{\alpha}}$ denotes the quasi-dihedral group generated by two generators s_{α} and t_{α} subject to the relations $s_{\alpha}^{\alpha^{\alpha-1}}=e=t_{\alpha}^{2}$ and $t_{\alpha} s_{\alpha}=s_{\alpha}^{2^{\alpha-2}-1} t_{\alpha}$; and for a positive integer $\beta>2, M_{p^{\beta}}$ denotes the modular group generated by two generators r_{β} and f_{β} subject to the relations $r_{\beta}^{p^{\beta-1}}=e=f_{\beta}^{p}$ and $f_{\beta} r_{\beta}=r_{\beta}^{p^{\beta-2}+1} f_{\beta}$.

[^1]
2. The Number of Group Homomorphisms from Q_{m} into Q_{n}

Theorem 2.1. Let m and n be positive odd integers. Then the number of group homomorphisms from Q_{m} into Q_{n} is $2+2 n(1+\phi(2 m))$, if m divides $n ; 2+2 n$, if m does not divide n.

Proof. Suppose that $\rho: Q_{m} \rightarrow Q_{n}$ is a group homomorphism, where m and n are positive odd integers. We consider all of the places that ρ could send the generators a_{m} and b_{m} of Q_{m} which yield group homomorphisms. Since $\left|\rho\left(b_{m}\right)\right|$ divides $\left|b_{m}\right|=4, \rho\left(b_{m}\right)$ is one of e, a_{n}^{n} or $a_{n}^{\beta} b_{n}, 0 \leq \beta<2 n$. As m is odd, it must be the case that $\rho\left(a_{m}\right)=a_{n}^{\alpha}$, where a_{n}^{α} is an element of Q_{n} whose order divides both $2 m$ and $2 n$. Since $\rho\left(a_{m}^{l} b_{m}\right)^{2}=\rho\left(a_{m}^{m}\right),\left|\rho\left(a_{m}^{l} b_{m}\right)\right|$ divides 2 , for every $l, 0 \leq l<2 m$ iff $\left|\rho\left(a_{m}\right)\right|$ divides m.

If $\rho\left(b_{m}\right)=e$ and $\rho\left(a_{m}\right)=a_{n}^{\alpha}$, where $\left|\rho\left(a_{m}^{m}\right)\right|$ divides both m and $2 n$, then $\rho\left(a_{m}^{k} b_{m}\right)=a_{n}^{k \alpha}$ and $\left|a_{n}^{k \alpha}\right|$ divides $\left|a_{m}^{k} b_{m}\right|$ only when $\alpha=0$. Therefore, if $\rho\left(b_{m}\right)=e$, then $\rho\left(a_{m}\right)$ must be e. Thus we have trivial homomorphism in this case. If $\rho\left(b_{m}\right)=a_{n}^{n}$ and $\rho\left(a_{m}\right)=a_{n}^{\alpha}$, where $\left|\rho\left(a_{m}^{m}\right)\right|$ divides both m and $2 n$ then $\rho\left(a_{m}^{k} b_{m}\right)=a_{n}^{k \alpha+n}$ and $\left|a_{n}^{k \alpha+n}\right|$ divides $\left|a_{m}^{k} b_{m}\right|$ only when $\alpha=0$. Therefore, if $\rho\left(b_{m}\right)=a_{n}^{n}$, then $\rho\left(a_{m}\right)$ must be e. Thus we have one homomorphism in this case.

Suppose $\rho\left(b_{m}\right)=a_{n}^{\beta} b_{n}, 0 \leq \beta<2 n$ and $\rho\left(a_{m}\right)=a_{n}^{\alpha}$, where $\left|a_{n}^{\alpha}\right|$ divides both $2 m$ and $2 n$ and does not divide m, then $\rho\left(a_{m}^{k} b_{m}\right)=a_{n}^{k \alpha+\beta}(\bmod 2 n) b_{n}$ and $\left|a_{n}^{k \alpha+\beta(\bmod 2 n)} b_{n}\right|=4$ divides $\left|a_{m}^{k} b_{m}\right|=4$. So, $\left|\rho\left(a_{m}\right)\right|=2$ or $2 m$. Therefore, we have $2 n(1+\phi(2 m))$ homomorphisms, if m divides $n ; 2 n$ homomorphisms, if m does not divide n. Hence we get the result.

Theorem 2.2. Let m be a positive odd integer and n a positive even integer. Then the number of group homomorphisms from Q_{m} into Q_{n} is $4+2 n(1+\phi(2 m))$, if m divides $n ; 4+2 n$, if m does not divide n.

Proof. Suppose that $\rho: Q_{m} \rightarrow Q_{n}$ is a group homomorphism, where m is a positive odd integer and n is an even integer. Then $\left|\rho\left(a_{m}\right)\right|$ divides $\left|a_{m}\right|=2 m$ and $\left|\rho\left(b_{m}\right)\right|$ divides $\left|b_{m}\right|=4$. Therefore, $\rho\left(a_{m}\right)$ must be of the form a_{n}^{α}, where $\left|a_{m}^{\alpha}\right|$ divides both $2 m$ and $2 n$, and $\rho\left(b_{m}\right)$ must be one of $e, a_{n}^{\frac{n}{2}}, a_{n}^{n}, a_{n}^{\frac{3 n}{2}}$ or $a_{n}^{\beta} b_{n}, 0 \leq \beta<2 n$. Also $\left|\rho\left(a_{m}^{l} b_{m}\right)\right|$ divides 2 , for every $l, 0 \leq l<2 m$ iff $\left|\rho\left(a_{m}\right)\right|$ divides m.

As in the proof of the Theorem 2.1, if $\rho\left(a_{m}\right)=a_{n}^{\alpha}$, where $\left|a_{m}^{\alpha}\right|$ divides both $2 m$ and $2 n$ and does not divide m, and $\rho\left(b_{m}\right)=a_{n}^{\beta} b_{n}, 0 \leq \beta<2 n$ is a homomorphism. Thus we have $2 n(1+\phi(2 m))$ homomorphisms, if m divides $n ; 2 n$ homomorphisms, if m does not divide n.

Suppose $\rho\left(b_{m}\right)=a_{n}^{k}$, where k is either 0 or n and $\rho\left(a_{m}\right)=a_{n}^{\alpha}$, where $\left|a_{m}^{\alpha}\right|$ divides both m and $2 n$. Then as in the proof of the Theorem 2.1, ρ is a homomorphism only when $\alpha=0$. Thus we have two such homomorphisms. Suppose $\rho\left(b_{m}\right)=a_{n}^{k}$, where k is either $\frac{n}{2}$ or $\frac{3 n}{2}$ and $\rho\left(a_{m}\right)=a_{n}^{\alpha}$, where $\left|a_{m}^{\alpha}\right|$ divides both $2 m$ and $2 n$ and does not divide m. Then $\rho\left(a_{m}\right)$ must be equal to a_{n}^{n}. Thus we have 2 homomorphisms in this case. Hence the result.

Theorem 2.3. Let m be a positive even integer and n a positive odd integer. Then the number of group homomorphisms from Q_{m} into Q_{n} is 4 .

Proof. Suppose that $\rho: Q_{m} \rightarrow Q_{n}$ is a group homomorphism, where m is a positive even integer and n is an odd integer. When m is even, $\rho\left(a_{m}\right)$ is either a_{n}^{α}, where $\left|a_{n}^{\alpha}\right|$ divides both $2 m$ and $2 n$ or $a_{n}^{\beta} b_{n}, 0 \leq \beta<2 n$; and $\rho\left(b_{m}\right)$ is one of e, a_{n}^{n} or $a_{n}^{\gamma} b_{n}, 0 \leq \gamma<2 n$.

Suppose $\rho\left(a_{m}\right)=a_{n}^{\alpha}$, where $\left|a_{n}^{\alpha}\right|$ divides both m and $2 n$, and $\rho\left(b_{m}\right)=a_{n}^{k}, k=0$ or n, then $\rho\left(a_{m} b_{m}\right)=a_{n}^{\alpha+k}$. The ρ is a homomorphism when $\alpha=0$ or n. Thus we have 4 such homomorphisms.
Next, suppose $\rho\left(b_{m}\right)=a_{n}^{\gamma} b_{n}, 0 \leq \gamma<2 n$ and $\rho\left(a_{m}\right)=a_{n}^{\alpha}$, then ρ is well defined only when $\left|a_{n}^{\alpha}\right|$ divides both $2 m$ and $2 n$ and does not divide m. But since m is even and n is odd, m does not divide n. Thus we have no such homomorphisms.

Next, suppose $\rho\left(a_{m}\right)=a_{n}^{\beta} b_{n}, 0 \leq \beta<2 n$ and $\rho\left(b_{m}\right)=e$. But this is not well defined since $\rho\left(b_{m}^{2}\right) \neq \rho\left(a_{m} b_{m}\right)^{2}$. Suppose $\rho\left(a_{m}\right)=a_{n}^{\beta} b_{n}, 0 \leq \beta<2 n$ and $\rho\left(b_{m}\right)=a_{n}^{\gamma} b_{n}, 0 \leq \gamma<2 n$, then ρ is well defined only when $m \equiv 2$ (mod 4). Then $\rho\left(a_{m} b_{m}\right)=a_{n}^{\beta-\gamma}$. Suppose ρ is a homomorphism, $\left|a_{n}^{\beta-\gamma}\right|$ divides $\left|a_{m} b_{m}\right|=4$ but does not divide 2 . But since n is odd, there is no such element in Q_{n}. Hence we get the result.

Theorem 2.4. Let m and n be positive even integers. Then the number of group homomorphisms from Q_{m} into Q_{n} is $4+8 n+2 n\left(\sum_{k \mid \operatorname{gcd}(2 m, 2 n), k \nmid m} \phi(k)\right)$, if $m \equiv 2(\bmod 4) ; 4+2 n\left(\sum_{k \mid \operatorname{gcd}(2 m, 2 n), k \nmid m} \phi(k)\right)$, if $m \equiv 0(\bmod 4)$.

Proof. Let us assume that $\rho: Q_{m} \rightarrow Q_{n}$ be a group homomorphism, where m and n are positive even integers. As in the proof of Theorem 2.3, when m is even, the possible choices for $\rho\left(a_{m}\right)$ are a_{n}^{α}, where $\left|a_{n}^{\alpha}\right|$ divides both $2 m$ and $2 n$ and $a_{n}^{\beta} b_{n}, 0 \leq \beta<2 n$.

Next, let us consider the choices for $\rho\left(b_{m}\right)$. Since $\left|\rho\left(b_{m}\right)\right|$ divides $\left|b_{m}\right|=4$, the value of $\left|\rho\left(b_{m}\right)\right|$ must be one of 1,2 or 4 . Therefore, $\rho\left(b_{m}\right)$ is one of $e, a_{n}^{n}, a_{n}^{\frac{n}{2}}, a_{n}^{\frac{3 n}{2}}$ or $a_{n}^{\gamma} b_{n}, 0 \leq \gamma<2 n$. Next, we check the homomorphism condition for all possible combinations of $\rho\left(a_{m}\right)$ and $\rho\left(b_{m}\right)$.

Suppose $\rho\left(a_{m}\right)=a_{n}^{\alpha}$, where $\left|a_{n}^{\alpha}\right|$ divides both $2 m$ and $2 n$ and does not divide $m, \rho\left(b_{m}\right)=a_{n}^{\gamma} b_{n}, 0 \leq \gamma<2 n$, then ρ is a homomorphism. Thus in this case we have $2 n\left(\sum_{k \mid \operatorname{gcd}(2 m, 2 n), k \nmid m} \phi(k)\right)$ homomorphisms.
Suppose $\rho\left(b_{m}\right)=a_{n}^{k}$, where k either 0 or n, and $\rho\left(a_{m}\right)=a_{n}^{\alpha}$, where $\left|a_{n}^{\alpha}\right|$ divides both m and $2 n$. Then $\rho\left(a_{m}^{l} b_{m}\right)=a_{n}^{l \alpha+k}$. Then ρ is well defined only when $\left|\rho\left(a_{m}^{l} b_{m}\right)\right|$ divides 2 . Therefore, α has 2 choices that are 0 or n. Thus in this case we have 4 homomorphisms.

Suppose $\rho\left(b_{m}\right)=a_{n}^{k}$, where $k=\frac{n}{2}$ or $\frac{3 n}{2}$, and $\rho\left(a_{m}\right)=a_{n}^{\alpha}$, where $\left|a_{n}^{\alpha}\right|$ divides both $2 m$ and $2 n$ and does not divide m. Then α has 2 choices that are $\frac{n}{2}$ and $\frac{3 n}{2}$ when $m \equiv 2(\bmod 4) ;$ no choices when $m \equiv 0(\bmod 4)$. But since $\rho\left(a_{m} b_{m}\right)=a_{n}^{\alpha+k},\left|a_{n}^{\alpha}\right|$ divides m also. Thus there is no homomorphisms in both cases.

Suppose $\rho\left(a_{m}\right)=a_{n}^{\beta} b_{n}, 0 \leq \beta<2 n$ and $\rho\left(b_{m}\right)=e$ or a_{n}^{n}. As in the proof of Theorem 2.3, this ρ is not well defined. Suppose $\rho\left(a_{m}\right)=a_{n}^{\beta} b_{n}, 0 \leq \beta<2 n$ and $\rho\left(b_{m}\right)=a_{n}^{\frac{n}{2}}$ or $a_{n}^{\frac{3 n}{2}}$, then ρ is well defined only when $m \equiv 2(\bmod 4)$ and ρ is a homomorphism. Thus we have $4 n$ such homomorphisms, if $m \equiv 2(\bmod 4)$.
Now, suppose $\rho\left(a_{m}\right)=a_{n}^{\beta} b_{n}, 0 \leq \beta<2 n$ and $\rho\left(b_{m}\right)=a_{n}^{\gamma} b_{n}, 0 \leq \gamma<2 n$ is a homomorphism. Then $\rho\left(a_{m} b_{m}\right)=a_{n}^{\beta-\gamma}$ and ρ is a well defined only when $m \equiv 2(\bmod 4)$. If ρ is a homomorphism, then $\left|a_{n}^{\beta-\gamma}\right|$ divides $\left|a_{m} b_{m}\right|=4$ and does not divide 2 . Therefore, $\beta-\gamma$ must be either $\frac{n}{2}$ or $\frac{3 n}{2}$. Therefore, for each $\beta, 0 \leq \beta<2 n$, there are 2 choices for γ. So in this case, we have $4 n$ homomorphisms, if $m \equiv 2(\bmod 4)$. Hence we get the result.

Corollary 2.1. Let m and n be any two positive integers. Then the number of monomorphisms from Q_{m} into Q_{n} is $2 n \phi(2 m)$, if $m \neq 2$ divides $n ; 12 n$, if $m=2$ divides n; 0 , otherwise. Also the number of automorphisms on Q_{n} is $2 n \phi(2 n)$, if $n \neq 2 ; 24$, if $n=2$.

Proof. Suppose m does not divide n, then there is no element in Q_{n} having order $2 m$. Thus there is no monomorphism from Q_{m} into Q_{n}. So, assume that m divides n and $m \neq 2$. First we consider the case that both m and n are odd. Then by the Theorem 2.1, $\rho\left(a_{m}\right)=a_{n}^{\alpha}$, where $\left|a_{n}^{\alpha}\right|=2 m$ and $\rho\left(b_{m}\right)=a_{n}^{\gamma} b_{n}, 0 \leq \gamma<2 n$ is a homomorphism which preserves the order of a_{m} and b_{m}. Then $\rho\left(a_{m}^{k} b_{m}\right)=a_{n}^{k \alpha+\gamma} b_{n}$. Therefore, this ρ is a monomorphism. And we can verify that the additional homomorphisms obtained in other cases are not monomorphisms. Thus we have $2 n \phi(2 m)$ monomorphisms, if $m \neq 2$.
Suppose $m=2$ and m divides n. Suppose $\rho: Q_{2} \rightarrow Q_{n}$ is a monomorphism. If $\rho\left(a_{2}\right)$ is either $a_{n}^{\frac{n}{2}}$ or $a_{n}^{\frac{3 n}{2}}$ and $\rho\left(b_{2}\right)=$ $a_{n}^{\gamma} b_{n}, 0 \leq \gamma<2 n$, then we have $4 n$ such monomorphisms. Similarly if, $\rho\left(a_{2}\right)=a_{n}^{\beta} b_{n}, 0 \leq \beta<2 n$ and $\rho\left(b_{2}\right)$ is either $a_{n}^{\frac{n}{2}}$ or $a_{n}^{\frac{3 n}{2}}$, then we have another $4 n$ monomorphisms.

Suppose $\rho\left(a_{2}\right)=a_{n}^{\beta} b_{n}, 0 \leq \beta<2 n$ and $\rho\left(b_{2}\right)=a_{n}^{\gamma} b_{n}, 0 \leq \gamma<2 n$, then $\rho\left(a_{n}^{k} b_{n}\right)$ is one of $a_{n}^{\gamma} b_{n}, a_{n}^{\beta-\gamma}, a_{n}^{n+\gamma} b_{n}$ or $a_{n}^{n+\beta-\gamma}$. Then $\left|\rho\left(a_{n}^{k} b_{n}\right)\right|=4$ only when $\beta-\gamma=\frac{n}{2}$ or $\frac{3 n}{2}$. Thus for each β, we have 2 choices for γ. Thus we have $4 n$ monomorphisms in this case. Hence totally we have $12 n$ monomorphisms in this case. Hence the result.

Corollary 2.2. Let m and n be any two positive integers. Then the number of epimorphisms from Q_{m} onto Q_{n} is $2 n \phi(2 n)$, if $n \neq 2$ divides $m ; 24$, if $n=2$ and $m \equiv 2(\bmod 4) ; 8$, if $n=2$ and $m \equiv 0(\bmod 4) ; 0$, otherwise.

Proof. Suppose $\rho: Q_{m} \rightarrow Q_{n}$ is a homomorphism, then $|\rho(x)|$ divides $|x|$, for every $x \in Q_{n}$. Suppose n does not divide n, then a_{n} has no pre image in Q_{m}. So, assume that $n \neq 2$ divides m. First consider the the case that both m and n are odd. Then by the Theorem 2.1, $\rho\left(a_{m}\right)=a_{n}^{\alpha}$, where $\left|a_{n}^{\alpha}\right|=2 n$ and $\rho\left(b_{m}\right)=a_{n}^{\gamma} b_{n}, 0 \leq \gamma<2 n$ is a homomorphism in which $\rho\left(a_{m}\right)$ and $\rho\left(b_{m}\right)$ generate the group D_{n}. Therefore, this ρ is a epimorphism. And we can verify that the additional homomorphisms obtained in other cases are not epimorphisms. Thus we have $2 n \phi(2 n)$ monomorphisms, if $n \neq 2$.

Suppose $n=2$ divides m. Suppose $\rho: Q_{m} \rightarrow Q_{2}$ is a homomorphism. Then consider the homomorphisms $\rho\left(a_{m}\right)$ is one of a_{2}, a_{2}^{3} or $a_{2}^{\beta} b_{2}, 0 \leq \beta<4$ and $\rho\left(b_{m}\right)$ is one of a_{2}, a_{2}^{3} or $a_{2}^{\gamma} b_{2}, 0 \leq \gamma<4$ obtained in the Theorem 2.4.

Suppose $\rho\left(a_{m}\right)$ is either a_{2} or a_{2}^{3} and $\rho\left(b_{m}\right)=a_{2}^{\gamma} b_{2}, 0 \leq \gamma<4$, then this homomorphism is a epimorphism since $\rho\left(a_{m}\right)$ and $\rho\left(b_{m}\right)$ generate the group Q_{2}. Similarly, if $\rho\left(a_{m}\right)=a_{2}^{\beta} b_{2}, 0 \leq \beta<4$ and $\rho\left(b_{m}\right)$ is either a_{2} or a_{2}^{3} is a epimorphism but this is well defined only when $m \equiv 2(\bmod 4)$. Thus we have 16 epimorphisms, if $m \equiv 2(\bmod 4) ; 8$ epimorphisms, if $m \equiv 0(\bmod 4)$.

Suppose $\rho\left(a_{m}\right)=a_{2}^{\beta} b_{2}, 0 \leq \beta<4$ and $\rho\left(b_{m}\right)=a_{2}^{\gamma} b_{2}, 0 \leq \gamma<4$, then $\rho\left(a_{m}\right)$ and $\rho\left(b_{m}\right)$ generate the group Q_{2} only if $\beta-\gamma=\frac{n}{2}$ or $\frac{3 n}{2}$ but this is well defined only when $m \equiv 2(\bmod 4)$. Thus for each β, we have 2 choices for γ. Thus we have 8 monomorphisms, if $m \equiv 2(\bmod 4)$.

3. The Number of Homomorphisms from Q_{m} into D_{n}

Theorem 3.1. Let m be a positive integer and n a positive odd integer. Then the number of group homomorphisms from Q_{m} into D_{n} is $1+2 n+n\left(\sum_{k \mid \operatorname{gcd}(m, n)} \phi(k)\right)$, if m is even; $1+n\left(\sum_{k \mid \operatorname{gcd}(m, n)} \phi(k)\right)$, if m is odd.

Proof. Suppose that $\rho: Q_{m} \rightarrow D_{n}$ is a group homomorphism, where n is odd positive integer and m is any positive integer. Then $\left|\rho\left(b_{m}\right)\right|$ must divide $\left|b_{m}\right|=4$. Then $\rho\left(b_{m}\right)$ must be either e or $x_{n}^{\gamma} y_{n}, 0 \leq \gamma<n$. Since $\rho\left(a_{m}^{l} b_{m}\right)^{2}=\rho\left(a_{m}^{m}\right)$, $\left|\rho\left(a_{m}^{l} b_{m}\right)\right|$ divides 2 iff $\left|\rho\left(a_{m}\right)\right|$ divides m, for some $l, 0 \leq l<2 m$. Thus $\rho\left(a_{m}\right)$ must be either $x_{n}^{\alpha} y_{n}, 0 \leq \alpha<n$ or x_{n}^{β} whose order divides both m and n.

If $\rho\left(b_{m}\right)=e$, then $\rho\left(a_{m} b_{m}\right)=\rho\left(a_{m}\right)$ and $\left|\rho\left(a_{m}\right)\right|$ divides $\left|a_{m} b_{m}\right|=4$ and m. Thus $\rho\left(a_{m}\right)$ must be either e or $x_{n}^{\alpha} y_{n}, 0 \leq \alpha<n$, if m is even; $\rho\left(a_{m}\right)=e$ if m is odd. Thus we have $n+1$ homomorphisms, if m is even; only trivial homomorphism, if m is odd.

Suppose $\rho\left(b_{m}\right)=x_{n}^{\gamma} y_{n}, 0 \leq \gamma<n$ and $\rho\left(a_{m}\right)=x_{n}^{\beta}$, where $\left|x_{n}^{\beta}\right|$ divides both m and n, then $\rho\left(a_{m}^{k} b_{m}\right)=x_{n}^{k \beta+\gamma(\bmod n)} y_{n}$ and $\left|x_{n}^{k \beta+\gamma}(\bmod n) y_{n}\right|$ divides $\left|a_{m}^{k} b_{m}\right|$. Therefore, for each β such that $\left|x_{n}^{\beta}\right|$ divides both n and m, and for each $\gamma, 0 \leq \gamma<n$, $\rho\left(a_{m}\right)=x_{n}^{\beta}$ and $\rho\left(b_{m}\right)=x_{n}^{\gamma} y_{n}$ is a homomorphism. Thus we have $n\left(\sum_{k \mid \operatorname{gcd}(m, n)} \phi(k)\right)$ homomorphisms.
Suppose $\rho\left(a_{m}\right)=x_{n}^{\alpha} y_{n}, 0 \leq \alpha<n$ and $\rho\left(b_{m}\right)=x_{n}^{\gamma} y_{n}, 0 \leq \gamma<n$, then ρ is well defined only when m is even and ρ is a homomorphism only when $\alpha=\gamma$. For, if k is even, $\rho\left(a_{m}^{k} b_{m}\right)=x_{n}^{\gamma} y_{n}$ and $\left|x_{n}^{\gamma} y_{n}\right|$ divides $\left|a_{m}^{k} b_{m}\right|$; and if k is odd, then $\rho\left(a_{m}^{k} b_{m}\right)=x_{n}^{\alpha-\gamma}$. Then $\left|x_{n}^{\alpha-\gamma}\right|$ must divide $\left|a_{m}^{k} b_{m}\right|=4$. As n is odd, this condition is satisfied only when $\left|x_{n}^{\alpha-\gamma}\right|$ is 1 . That is α must be equal to γ. Thus we have n such homomorphisms, if m is even. Hence we obtain the result.

Theorem 3.2. Let m be a positive integer and n a positive even integer such that $n \equiv 2(\bmod 4)$. Then the number of group homomorphisms from Q_{m} into D_{n} is $3+3 n+n\left(\sum_{k \mid \operatorname{gcd}(m, n)} \phi(k)\right)$, if m is even; $2+n\left(\sum_{k \mid \operatorname{gcd}(m, n)} \phi(k)\right)$, if m is odd. Proof. Suppose that $\rho: Q_{m} \rightarrow D_{n}$ is a group homomorphism, where $n \equiv 2(\bmod 4)$ and m is any positive integer. When $n \equiv 2(\bmod 4)$, there is no change for the choices for $\rho\left(a_{m}\right)$. But we have additional choice for $\rho\left(b_{m}\right)$ which is $\rho\left(b_{m}\right)=x_{n}^{\frac{n}{2}}$. Suppose $\rho\left(b_{m}\right)=x_{n}^{\frac{n}{2}}$ and $\rho\left(a_{m}\right)=x_{n}^{\beta}$ whose order divides both m and n is a homomorphism. Then $\rho\left(a_{m} b_{m}\right)=x_{n}^{\left(\beta+\frac{n}{2}\right)(\bmod n)}$ and $\left|x_{n}^{\left(\beta+\frac{n}{2}\right)(\bmod n)}\right|$ must divide 2 since $\rho\left(b_{m}^{2}\right)=e$. This is possible when either $\beta=0$ or $\beta=\frac{n}{2}$, if m is even; $\beta=0$ if m is odd. Thus we have 2 additional homomorphisms, if m is even; 1 homomorphism, if m is odd. If $\rho\left(b_{m}\right)=x_{n}^{\frac{n}{2}}$ and $\rho\left(a_{m}\right)=x_{n}^{\alpha} y_{n}, 0 \leq \alpha<n$, then ρ is well defined only when m is even. Then $\rho\left(a_{m}^{k} b_{m}\right)=x_{n}^{\alpha} y_{n}$ or $x_{n}^{\alpha+n} y_{n}$. Thus ρ is a homomorphism, if m is even. Thus we have n such homomorphisms, if m is even.

Suppose $\rho\left(b_{m}\right)=e$, then as in the Theorem 3.1, there are $n+1$ such homomorphisms, if m is even; 1 homomorphisms, if m is odd. Suppose $\rho\left(a_{m}\right)=x_{n}^{\beta},\left|x_{n}^{\beta}\right|$ divides both m and n, and $\rho\left(b_{m}\right)=x_{n}^{\gamma} y_{n}, 0 \leq \gamma<n$, then there are $n\left(\sum_{k \mid \operatorname{gcd}(m, n)} \phi(k)\right)$ such homomorphisms. But if $\rho\left(a_{m}\right)=x_{n}^{\alpha} y_{n}, 0 \leq \alpha<n$ and $\rho\left(b_{m}\right)=x_{n}^{\gamma} y_{n}, 0 \leq \gamma<n$, then ρ is well defined only when m is even and ρ is a homomorphism when either $\alpha=\beta$. Thus we have n such homomorphisms, if m is even. Hence we get the result.

Theorem 3.3. Let m be a positive integer and n a positive even integer such that $n \equiv 0(\bmod 4)$. Then the number of group homomorphisms from Q_{m} into D_{n} is $1+n\left(\sum_{k \mid \operatorname{gcd}(m, n)} \phi(k)\right)$, if m is odd; and $2+4 n+n\left(\sum_{k \mid \operatorname{gcd}(m, n)} \phi(k)\right)$, if m is even.

Proof. Suppose that $\rho: Q_{m} \rightarrow D_{n}$ is a group homomorphism, where $n \equiv 0(\bmod 4)$ and m is any positive integer. Then $\rho\left(a_{m}\right)$ must be either $x_{n}^{\alpha} y_{n}, 0 \leq \alpha<n$ or x_{n}^{β} whose order divides both $2 m$ and n, and $\rho\left(b_{m}\right)$ must be one of $e, x_{n}^{\frac{n}{4}}, x_{n}^{\frac{n}{2}}, x_{n}^{\frac{3 n}{4}}$ or $x_{n}^{\gamma} y_{n}, 0 \leq \gamma<n$.
If $\rho\left(b_{m}\right)=e$ or $x_{n}^{\frac{n}{2}}$, and $\rho\left(a_{m}\right)=x_{n}^{\beta}$, where $\left|x_{n}^{\beta}\right|$ divides both m and n. If m is odd, β must be 0 ; and if m is even, β is either e or $\frac{n}{2}$. Thus we have 2 homomorphisms, when m is even; 1 homomorphism, when m is odd; 4 homomorphisms, when m is even. Suppose $\rho\left(b_{m}\right)=x_{n}^{\frac{n}{4}}$ or $x_{n}^{\frac{3 n}{4}}, \rho\left(a_{m}\right)=x_{n}^{\beta}$, where $\left|x_{n}^{\beta}\right|$ divides both $2 m$ and n and does not divide m, then ρ is not well defined since $\rho\left(a_{m} b_{m}\right)^{2}=e$, for some l, but $\rho\left(b_{m}^{2}\right)=e$.
If $\rho\left(b_{m}\right)=x_{n}^{\gamma} y_{n}, 0 \leq \gamma<n$ and $\rho\left(a_{m}\right)=x_{n}^{\beta}$, where $\left|x_{n}^{\beta}\right|$ divides both n and m, then there are $n\left(\sum_{k \mid \operatorname{gcd}(m, n)} \phi(k)\right)$ homomorphisms. If $\rho\left(b_{m}\right)=e$ or $x_{n}^{\frac{n}{2}}$, and $\rho\left(a_{m}\right)=x_{n}^{\alpha} y_{n}, 0 \leq \alpha<n$, then ρ is well defined only when m is even and ρ is a homomorphism. Thus we have $2 n$ homomorphisms, if m is even. And if $\rho\left(b_{m}\right)=x_{n}^{\frac{n}{4}}$ or $x_{n}^{\frac{3 n}{4}}$, and $\rho\left(a_{m}\right)=x_{n}^{\alpha} y_{n}, 0 \leq \alpha<n$, then ρ is not well defined since $\rho\left(b_{m}^{2}\right) \neq \rho\left(a_{m} b_{m}\right)^{2}$.
As in the proof of the Theorem 3.2, $\rho\left(a_{m}\right)=x_{n}^{\alpha} y_{n}, 0 \leq \alpha<n$ and $\rho\left(b_{m}\right)=x_{n}^{\gamma} y_{n}, 0 \leq \gamma<n$, then ρ is well defined only when m is even and ρ is a homomorphism when $\alpha-\gamma$ is one of 0 or $\frac{n}{2}$. Thus we have $2 n$ such homomorphisms. Hence we get the result.

Corollary 3.1. Let m and n be any two positive integers. Then there is no monomorphism from Q_{m} into D_{n}; and the number of epimorphism from Q_{m} onto D_{n} is $n \phi(n)$, if n divides m; 0 , otherwise.

Proof. The group Q_{m} contains $m+2$ elements having order 4, but the group D_{n} contains atmost 2 elements having order 4. Thus there is no monomorphism from Q_{m} into D_{n}.

The homomorphism $\rho\left(a_{m}\right)=x_{n}^{\beta}$, where $\left|x_{n}^{\beta}\right|=n$ and $\rho\left(b_{m}\right)=x_{n}^{\gamma} y_{n}, 0 \leq \gamma<n$ are epimorphisms from Q_{m} onto D_{n} since $\rho\left(a_{m}\right)$ and $\rho\left(b_{m}\right)$ generate the group D_{n}. But this is possible only when n divides m. Hence we get the result.

4. The Number of Homomorphisms from Q_{m} into $Q D_{2^{\alpha}}$

Theorem 4.1. Suppose m is an odd positive integer and $\alpha>3$ is any integer. Then the number of homomorphisms from Q_{m} into $Q D_{2^{\alpha}}$ is $4+2^{\alpha-1}$.

Proof. Suppose that $\rho: Q_{m} \rightarrow Q D_{2^{\alpha}}$ is a group homomorphism, then $\left|\rho\left(a_{m}\right)\right|$ divides $\left|a_{m}\right|=2 m$ and $\left|\rho\left(b_{m}\right)\right|$ divides $\left|b_{m}\right|=4$. Therefore, $\rho\left(a_{m}\right)$ is one of $e, s_{\alpha}^{2^{\alpha-2}}$ or $s_{\alpha}^{k_{1}} t_{\alpha}, 0 \leq k_{1}<2^{\alpha-1}$ and k_{1} is even; and $\rho\left(b_{m}\right)=s_{\alpha}^{t}$, where $\left|s_{\alpha}^{t}\right|$ divides 4 or $\rho\left(b_{m}\right)=s_{\alpha}^{k_{2}} t_{\alpha}, 0 \leq k_{2}<2^{\alpha-1}$. Also, $\left|\rho\left(a_{m}^{l} b_{m}\right)\right|$ divides 2 , for some $l, 0 \leq l<2 m$ iff $\left|\rho\left(a_{m}\right)\right|$ divides m.

Suppose $\rho\left(b_{m}\right)=s_{\alpha}^{t}$, where $t=2^{\alpha-3}$ or $32^{\alpha-3}$ and $\rho\left(a_{m}\right)=s_{\alpha}^{k}$, then ρ is well defined only when k is $2^{\alpha-2}$. Then $\rho\left(a_{m}^{l} b_{m}\right)=s_{\alpha}^{l k+t}$. Then $\left|s_{\alpha}^{l k+t}\right|$ divides $\left|a_{m}^{l} b_{m}\right|=4$. Therefore, ρ is a homomorphism. Thus we have 2 homomorphisms. Suppose $\rho\left(b_{m}\right)=s_{\alpha}^{t}$, where $t=0$ or $2^{\alpha-2}$, and $\rho\left(a_{m}\right)=s_{\alpha}^{k}$, then k must be 0 since $\left|\rho\left(a_{m}\right)\right|$ must divide m which is odd. Thus we have 2 homomorphisms in this case.

Suppose $\rho\left(b_{m}\right)=s_{\alpha}^{k_{2}} t_{\alpha}, 0 \leq k_{2}<2^{\alpha-1}$ and k_{2} is odd, and $\rho\left(a_{m}\right)=s_{\alpha}^{k}$, then ρ is well defined only when $k=$ is $2^{\alpha-2}$. Then $\rho\left(a_{m}^{l} b_{m}\right)=s_{\alpha}^{l k+k_{2}} t_{\alpha}$. Therefore, $\left|\rho\left(a_{m}^{l} b_{m}\right)\right|$ divides $\left|a_{m}^{l} b_{m}\right|=4$, for every $0 \leq l<2 m$. Thus we have $2^{\alpha-2}$ homomorphisms in this case. Suppose $\rho\left(b_{m}\right)=s_{\alpha}^{k_{2}} t_{\alpha}, 0 \leq k_{2}<2^{\alpha-1}$ and k_{2} is even and $\rho\left(a_{m}\right)=s_{\alpha}^{k}$, then k must be equal to 0 since $\left|\rho\left(a_{m}\right)\right|$ must divide m which is odd. Thus we have $2^{\alpha-2}$ homomorphisms in this case.

Suppose $\rho\left(b_{m}\right)=s_{\alpha}^{t}$, where $\left|s_{\alpha}^{t}\right|$ divides 4 , and $\rho\left(a_{m}\right)=s_{\alpha}^{k_{1}} t_{\alpha}, 0 \leq k_{1}<2^{\alpha-1}$ and k_{1} is even. But $\rho\left(a_{m}^{2} b_{m}\right)^{2}=s_{\alpha}^{2 t} \neq \rho\left(a_{m}^{m}\right)$. Therefore, this ρ is not well defined. Suppose $\rho\left(b_{m}\right)=s_{\alpha}^{k_{2}} t_{\alpha}, 0 \leq k_{2}<2^{\alpha-1}$ and $\rho\left(a_{m}\right)=s_{\alpha}^{k_{1}} t_{\alpha}, 0 \leq k_{1}<2^{\alpha-1}$ and k_{1} is even. Then $\rho\left(a_{m} b_{m}\right)^{2}=s_{\alpha}^{2\left(k_{1}-k_{2}\right)} \neq \rho\left(a_{m}^{m}\right)$. Therefore, this ρ is not well defined. Hence we get the result.

Theorem 4.2. Suppose m is an even positive integer and $\alpha>3$ is any integer. Then the number of homomorphisms from Q_{m} into $Q D_{2^{\alpha}}$ is $k+4+2^{\alpha-2}\left(\sum_{k \mid \operatorname{gcd}\left(m, 2^{\alpha-1}\right)} \phi(k)\right)+2^{\alpha-2}\left(\sum_{k \mid \operatorname{gcd}\left(2 m, 2^{\alpha-2}\right)} \phi(k)\right)$, where k is 32^{α}, if $m \equiv 2(\bmod 4) ; 2^{\alpha+2}$, if $m \equiv 0(\bmod 4)$.

Proof. Suppose that $\rho: Q_{m} \rightarrow Q D_{2^{\alpha}}$ is a group homomorphism. Then $\rho\left(a_{m}\right)=s_{\alpha}^{n}$, where $\left|s_{\alpha}^{n}\right|$ divides both $2 m$ and $2^{\alpha-1}$ or $\rho\left(a_{m}\right)=s_{\alpha}^{k_{1}} t_{\alpha}, 0 \leq k_{1}<2^{\alpha-1}$; and $\rho\left(b_{m}\right)=s_{\alpha}^{t}$, where $\left|s_{\alpha}^{t}\right|$ divides 4 or $\rho\left(b_{m}\right)=s_{\alpha}^{k_{2}} t_{\alpha}, 0 \leq k_{2}<2^{\alpha-1}$. Also, $\left|\rho\left(a_{m}^{l} b_{m}\right)\right|$ divides 2 , for some $l, 0 \leq l<2 m$ iff $\left|\rho\left(a_{m}\right)\right|$ divides m.
Suppose $\rho\left(b_{m}\right)=s_{\alpha}^{t}$, where $t=0$ or $2^{\alpha-2}$, and $\rho\left(a_{m}\right)=s_{\alpha}^{n}$, where $\left|s_{\alpha}^{n}\right|$ divides both m and $2^{\alpha-1}$. Then $\rho\left(a_{m}^{l} b_{m}\right)=s_{\alpha}^{l n+t}$. Since ρ is a homomorphism, $\left|s_{\alpha}^{l n+t}\right|$ must divide 2. This is possible when n is one of $0,2^{\alpha-2}$. Thus we have 4 such homomorphisms. Suppose $\rho\left(b_{m}\right)=s_{\alpha}^{t}$, where $t=2^{\alpha-3}$ or $32^{\alpha-3}$, and $\rho\left(a_{m}\right)=s_{\alpha}^{n}$, where $\left|s_{\alpha}^{n}\right|$ divides both $2 m$ and $2^{\alpha-1}$ but does not divide m. Then $\rho\left(a_{m}^{l} b_{m}\right)=s_{\alpha}^{l n+t}$. Since ρ is a homomorphism, $\left|s_{\alpha}^{l n+t}\right|$ must divide 4 but not 2 , which is not possible.

Suppose $\rho\left(a_{m}\right)=s_{\alpha}^{n}$, where $\left|s_{\alpha}^{n}\right|$ divides both $2 m$ and $2^{\alpha-1}$ but does not divide m, and $\rho\left(b_{m}\right)=s_{\alpha}^{k_{2}} t_{\alpha}, 0 \leq k_{2}<2^{\alpha-1}$ and k_{2} is odd. Then $\rho\left(a_{m}^{l} b_{m}\right)=s_{\alpha}^{l n+k_{2}} t_{\alpha}$. Therefore, $\left|\rho\left(a_{m}^{l} b_{m}\right)\right|$ divides $\left|a_{m}^{l} b_{m}\right|=4$, for every $0 \leq l<2 m$. Then ρ is well defined only when n is even. Therefore, $\left|s_{\alpha}^{n}\right|$ must divide $2^{\alpha-2}$ also. Thus we have $2^{\alpha-2}\left(\sum_{k \mid \operatorname{gcd}\left(2 m, 2^{\alpha-2}\right)} \phi(k)\right)$ homomorphisms. Suppose $\rho\left(b_{m}\right)=s_{\alpha}^{k_{2}} t_{\alpha}, 0 \leq k_{2}<2^{\alpha-1}$ and k_{2} is even and $\rho\left(a_{m}\right)=s_{\alpha}^{n}$, where $\left|s_{\alpha}^{n}\right|$ divides both m and $2^{\alpha-1}$. Thus we have $2^{\alpha-2}\left(\sum_{k \mid \operatorname{gcd}\left(m, 2^{\alpha-1}\right)} \phi(k)\right)$ homomorphisms.
Suppose $\rho\left(a_{m}\right)=s_{\alpha}^{k_{1}} t_{\alpha}, 0 \leq k_{1}<2^{\alpha-1}$ and $\rho\left(b_{m}\right)=s_{\alpha}^{t}$, where $\left|s_{\alpha}^{t}\right|=4$. Then $\rho\left(a_{m}^{l} b_{m}\right)$ is one of $s_{\alpha}^{t}, s_{\alpha}^{k_{1}-t} t_{\alpha}, s_{\alpha}^{k_{1} 2^{\alpha-2}+t}$ or $s_{\alpha}^{k_{1} 2^{\alpha-2}+k_{1}-t} t_{\alpha}$. Then k_{1} must be odd when $m \equiv 2(\bmod 4)$. Thus we have $2 \times 2^{\alpha-2}=2^{\alpha-1}$ homomorphisms when $m \equiv 2(\bmod 4) ; 2^{\alpha}$ homomorphisms when $m \equiv 0(\bmod 4)$.

Suppose $\rho\left(b_{m}\right)=s_{\alpha}^{t}$, where $\left|s_{\alpha}^{t}\right|=1$ or 2 and $\rho\left(a_{m}\right)=s_{\alpha}^{k_{1}} t_{\alpha}, 0 \leq k_{1}<2^{\alpha-1}$, then k_{1} must be even when $m \equiv 2(\bmod 4)$. Thus we have $2 \times 2^{\alpha-2}=2^{\alpha-1}$ homomorphisms when $m \equiv 2(\bmod 4) ; 2^{\alpha}$ homomorphisms when $m \equiv 0(\bmod 4)$.

Suppose $\rho\left(a_{m}\right)=s_{\alpha}^{k_{1}} t_{\alpha}, 0 \leq k_{1}<2^{\alpha-1}$ and $\rho\left(b_{m}\right)=s_{\alpha}^{k_{2}} t_{\alpha}, 0 \leq k_{2}<2^{\alpha-1}$. Then $\rho\left(a_{m}^{l} b_{m}\right)$ is one of $s_{\alpha}^{k_{2}} t_{\alpha}, s_{\alpha}^{k_{1}-k_{2}}$, $s_{\alpha}^{k_{1} 2^{\alpha-2}+k_{2}} t_{\alpha}$ or $s_{\alpha}^{k_{1} 2^{\alpha-2}+k_{1}-k_{2}}$. Then ρ is a homomorphism only when $k_{1}-k_{2}$ is one of $0,2^{\alpha-2}, 2^{\alpha-3}$ or $32^{\alpha-3}$. Thus we have $4 \times 2^{\alpha-1}=2^{\alpha+1}$ homomorphisms. Hence we get the result.

Corollary 4.1. Let $\alpha>3$ and m be any two positive integers. Then the number of monomorphisms from Q_{m} into $Q D_{2^{\alpha}}$ is $2^{\alpha-2} \phi(2 m)$, if $2 m$ divides $2^{\alpha-2}$ and $m \neq 2 ; 32^{\alpha-1}$, if $m=2$; and 0 , otherwise.

Proof. Suppose $2 m$ does not divide $2^{\alpha-1}$, then there is no monomorphism from Q_{m} into $Q D_{2^{\alpha}}$ since there is no element in $Q D_{2^{\alpha}}$ having order $2 m$. So, assume that $2 m$ divides $2^{\alpha-2}$ and $m \neq 2$. Then $\rho\left(a_{m}\right)=s_{\alpha}^{n}$, where $\left|s_{\alpha}^{n}\right|=2 m$ and $\rho\left(b_{m}\right)=s_{\alpha}^{k_{2}} t_{\alpha}$, $0 \leq k_{2}<2^{\alpha-1}$ and k_{2} is odd are homomorphisms that preserve the order of a_{m} and b_{m}. Then $\rho\left(a_{m}^{l} b_{m}\right)=s_{\alpha}^{l n+k_{2}} t_{\alpha}$. Then $\left|\rho\left(a_{m}^{l} b_{m}\right)\right|=\left|a_{m}^{l} b_{m}\right|$ only when n is even. Therefore, $2 m$ cannot equal to $2^{\alpha-1}$. Thus we have $2^{\alpha-2} \phi(2 m)$ monomorphisms from Q_{m} into $Q D_{2^{\alpha}}$, if $2 m$ divides $2^{\alpha-2}$ and $m \neq 2$.

Suppose that $\rho: Q_{2} \rightarrow Q D_{2}^{\alpha}$ is a monomorphism. Then $\rho\left(a_{m}\right)$ is one of $s_{\alpha}^{2^{\alpha-3}}, s_{\alpha}^{32^{\alpha-3}}$ or $s_{\alpha}^{k_{1}} t_{\alpha}, 0 \leq k_{1}<2^{\alpha-1}$ and k_{1} is odd; and $\rho\left(b_{m}\right)$ is one of $s_{\alpha}^{2^{\alpha-3}}, s_{\alpha}^{3} 2^{2^{\alpha-3}}$ or $s_{\alpha}^{k_{1}} t_{\alpha}, 0 \leq k_{2}<2^{\alpha-1}$ and k_{2} is odd.
Suppose $\rho\left(a_{m}\right)=s_{\alpha}^{2^{\alpha-3}}$ or $s_{\alpha}^{32^{\alpha-3}}$ and $\rho\left(b_{m}\right)=s_{\alpha}^{k_{1}} t_{\alpha}, 0 \leq k_{2}<2^{\alpha-1}$ and k_{2} is odd is a monomorphism. Thus we have $2^{\alpha-1}$ monomorphisms. Similarly if $\rho\left(a_{m}\right)=s_{\alpha}^{k_{1}} t_{\alpha}, 0 \leq k_{1}<2^{\alpha-1}$ and k_{1} is odd, and $\rho\left(b_{m}\right)=s_{\alpha}^{2^{\alpha-3}}$ or $s_{\alpha}^{3} 2^{2^{\alpha-3}}$ is a monomorphism. Thus we have another $2^{\alpha-1}$ monomorphisms.

Suppose $\rho\left(a_{m}\right)=s_{\alpha}^{k_{1}} t_{\alpha}, 0 \leq k_{1}<2^{\alpha-1}$ and k_{1} is odd and $\rho\left(b_{m}\right)=s_{\alpha}^{k_{2}} t_{\alpha}, 0 \leq k_{2}<2^{\alpha-1}$ and k_{2} is odd. Then $\rho\left(a_{m}^{l} b_{m}\right)$ is one of $s_{\alpha}^{k_{1}} t_{\alpha}, s_{\alpha}^{k_{1}+k_{2} 2^{\alpha-2}-k_{2}}, s_{\alpha}^{k_{1} 2^{\alpha-2}+k_{2}} t_{\alpha}$ or $s_{\alpha}^{k_{1} 2^{\alpha-2}+k_{1}-k_{2}}$. Then $\left|\rho\left(a_{m}^{l} b_{m}\right)\right|=4$ only when $k_{1}-k_{2}$ is either $2^{\alpha-3}$ or $32^{\alpha-3}$. Thus we have $2^{\alpha-1}$ monomorphisms. Hence we get the result.

Corollary 4.2. Let $\alpha>3$ and m be any two positive integers. Then the number of epimorphisms from Q_{m} onto $Q D_{2^{\alpha}}$ is $2^{2 \alpha-3}$, if $2^{\alpha-1}$ divides m; 0 , if $2^{\alpha-1}$ does not divide m.

Proof. If $2^{\alpha-1}$ does not divide m, none of the homomorphisms obtained in the Theorem 4.2, is onto. But if $2^{\alpha-1}$ divides m, the homomorphisms $\rho\left(a_{m}\right)=s_{\alpha}^{k_{1}}$, where k_{1} is odd, and $\rho\left(b_{m}\right)=s_{\alpha}^{k_{2}} t_{\alpha}, 0 \leq k_{2}<2^{\alpha-1}$ is onto since $\rho\left(a_{m}\right)$ and $\rho\left(b_{m}\right)$ generate the group $Q D_{2^{\alpha}}$. Thus we have $2^{\alpha-1} \phi\left(2^{\alpha-1}\right)=2^{2 \alpha-3}$ epimorphisms, if $2^{\alpha-1}$ does not divide m.

5. The Number of Homomorphisms from Q_{m} into $M_{p^{\alpha}}$

Theorem 5.1. Let $p \neq 2$ be a prime, m be a positive integer and $\alpha>2$. Then there is only the trivial homomorphism from Q_{m} into $M_{p^{\alpha}}$.

Proof. Suppose $\rho: Q_{m} \rightarrow M_{p^{\alpha}}$ is a group homomorphism, where $p \neq 2$. Then $\left|\rho\left(a_{m}\right)\right|$ divides $\left|a_{m}\right|=2 m$ and $\left|\rho\left(b_{m}\right)\right|$ divides $\left|b_{m}\right|=4$. Then $\rho\left(b_{m}\right)$ must be e and $\rho\left(a_{m}\right)=r_{\alpha}^{k}$, where $\left|r_{\alpha}^{k}\right|$ divides both $2 m$ and $p^{\alpha-1}$. Then $\rho\left(a_{m}^{l} b_{m}\right)=r_{\alpha}^{l k}$. Then $\left|r_{\alpha}^{l k}\right|$ must divide $\left|a_{m}^{l} b_{m}\right|=4$. This is possible only when $k=0$. Thus we have only the trivial homomorphism.

Theorem 5.2. Let m be a positive integer and $\alpha>3$. If m is odd, then the number of homomorphisms from Q_{m} to $M_{2^{\alpha}}$ is 4 homomorphisms, if m is odd; 32 homomorphisms, if m is even.

Proof. Suppose $\rho: Q_{m} \rightarrow M_{2^{\alpha}}$ is a group homomorphism. Then $\left|\rho\left(a_{m}\right)\right|$ divides $\left|a_{m}\right|=2 m$ and $\left|\rho\left(b_{m}\right)\right|$ divides $\left|b_{m}\right|=4$. Then $\rho\left(a_{m}\right)=r_{\alpha}^{k_{1}} f_{\alpha}^{m_{1}}$, where $\left|r_{\alpha}^{k_{1}}\right|$ divides both $2 m$ and $2^{\alpha-1}$ and $m_{1}=0,1$ and $\rho\left(b_{m}\right)=r_{\alpha}^{k_{2}} f_{\alpha}^{m_{2}}$, where $\left|r_{\alpha}^{k_{2}}\right|$ divides 4
 $k_{1}+k_{2}$ is one of $0,2^{\alpha-2}, 2^{\alpha-3}$ or $32^{\alpha-3}$. If $k_{2}=0$ or $2^{\alpha-2}$, then $\rho\left(b_{m}^{2}\right)=e$. Then $\left|\rho\left(a_{m}\right)\right|$ must divide m. Thus $\rho\left(a_{m}\right)$ must be e, if m is odd; k_{1} is either 0 or $2^{\alpha-2}$, if $m \equiv 2(\bmod 4) ; k_{1}$ is one of 0 or $2^{\alpha-2}, 2^{\alpha-3}$ or $32^{\alpha-3}$ if $m \equiv 2(\bmod 4)$. Therefore, we have 2 homomorphisms, if m is odd; 16 homomorphisms, if $m \equiv 2(\bmod 4) ; 32$ homomorphisms, if $m \equiv 0(\bmod 4)$.

If $k_{2}=2^{\alpha-3}$ or $2^{\alpha-3}$, then $\rho\left(b_{m}^{2}\right)=r_{\alpha}^{2^{\alpha-2}}$. Then $\left|\rho\left(a_{m}\right)\right|$ must not divide m. Thus, $\rho\left(a_{m}\right)$ is $r_{\alpha}^{2^{\alpha-2}}$, if m is odd; k_{1} either $2^{\alpha-3}$ or $32^{\alpha-3}$, if $m \equiv 2(\bmod 4)$; there is no such choice, if $m \equiv 0(\bmod 4)$. Therefore in this case, we have 2 homomorphisms, if m is odd; 16 homomorphisms, if $m \equiv 2(\bmod 4) ; 0$ homomorphisms, if $m \equiv 0(\bmod 4)$.

Corollary 5.1. Suppose $\alpha>3$ and $\beta>2$ are two positive integers. Then there is no monomorphism from $Q D_{2^{\alpha}}$ into $M_{2^{\beta}}$; no epimorphisms from Q_{m} onto $M_{2^{\beta}}$.

Proof. The group $Q D_{2^{\alpha}}$ contains $1+2^{\alpha-2}$ elements having order 2. But $M_{2^{\alpha}}$ have only two elements of order 2 . Therefore there is monomorphism from $Q D_{2^{\alpha}}$ into $M_{2^{\alpha}}$. Also we can verify that none of the homomorphisms obtained in the Theorem 5.2 are epimorphism.

References

[1] M.Bate, The number of homomorphisms from finite groups to classical groups, J. Algebra, 308(2007), 612-628
[2] J.A.Gallian and J.Van Buskirk, The number of homomorphisms from \mathbb{Z}_{m} into \mathbb{Z}_{n}, Amer. Math. Monthly, 91(1984), 196-197.
[3] J.A.Gallian and D.S.Jungreis, Homomorphisms from $\mathbb{Z}_{m}[i]$ into $\mathbb{Z}_{n}[i]$ and $\mathbb{Z}_{m}[\rho]$ into $\mathbb{Z}_{n}[\rho]$, where $i^{2}+1=0$ and $\rho^{2}+\rho+1=0$, Amer. Math. Monthly, 95(1988), 247-249.
[4] Jeremiah Johnson, The number of group homomorphisms from D_{m} into D_{n}, The College Mathematics Journal, 44(2013), 190-192.
[5] D.Matei and A.Suciu, Counting homomorphisms onto finite solvable groups, J. Algebra, 286 (2005), 161-186.
[6] R.Rajkumar, M.Gayathri and T.Anitha, The number of homomorphisms from dihedral groups in to some finite groups, Mathematical Sciences International Research Journal, 4(2015), 161-165.

[^0]: Abstract: We derive general formulae for counting the number of homomorphisms from quaternion group into each of quaternion group, dihedral group, quasi-dihedral group and modular group by using only elementary group theory.

 MSC: 20K30.

[^1]: * E-mail: rrajmaths@yahoo.co.in

