Volume 3, Issue 3-A (2015), 41-45.

ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Further Decompositions of rg-Continuity

Research Article

K.M.Dharmalingam¹, P.Ramesh² and O.Ravi³*

- 1 Department of Mathematics, The Madura College, Madurai, Tamil Nadu, India.
- 2 Department of Mathematics, M.Kumarasamy College of Engineering, Thalavapalayam, Karur, Tamil Nadu, India.
- 3 Department of Mathematics, P.M.Thevar College, Usilampatti, Tamil Nadu, India.

Abstract: In [12], Sundaram and Rajamani obtained three decompositions of rg-continuity. In this paper, we obtain three further

decompositions of rg-continuity.

MSC: 54C08.

Keywords: $r\alpha g$ -continuity, gpr-continuity, C_r -continuity, C_r^* -continuity and rg-continuity.

© JS Publication.

1. Introduction and Preliminaries

In 1970, Levine [6] initiated the study of so called g-closed sets in topological spaces. As a generalization, in 1997, Gnanambal [3] introduced and studied the concepts of gpr-closed sets and gpr-continuity. In 1999, Noiri [9] defined the notion of $r\alpha g$ -closed sets in topological spaces. The concept of g-continuity was introduced and studied by Balachandran et. al. in 1991 [2]. In 1993, Palaniappan and Rao [10] introduced the notions of regular generalized closed (rg-closed) sets and rg-continuity in topological spaces. In 2000, Sundaram and Rajamani [12] obtained three different decompositions of rg-continuity by providing two types of weaker forms of continuity, namely C_r -continuity and C_r^* -continuity. In this paper, we obtain three further decompositions of rg-continuity. Let (X, τ) be a topological space and also cl(A) and int(A) denote the closure of R and the interior of R in R, respectively.

Definition 1.1. A subset A of (X, τ) is said to be

```
1. regular open [11] if A = int(cl(A)),
```

2. α -open [8] if $A \subseteq int(cl(int(A)))$,

3. preopen [7] if $A \subseteq int(cl(A))$.

The complements of the above mentioned open sets are called their respective closed sets. The preinterior pint(A) (resp. α -interior, $\alpha int(A)$) of A is the union of all preopen sets (resp. α -open sets) contained in A. The α -closure $\alpha cl(A)$ (resp. preclosure, pcl(A)) of A is the intersection of all α -closed sets (resp. preclosed sets) containing A.

 $^{^*}$ E-mail: siingam@yahoo.com

Definition 1.2. A subset A of (X, τ) is said to be

- 1. rg-closed [10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X,
- 2. $r\alpha g$ -closed [9] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X,
- 3. gpr-closed [3] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.

The complements of the above mentioned closed sets are called their respective open sets.

Definition 1.3. A subset A of (X, τ) is said to be

- 1. rg-open [10] iff $F \subseteq int(A)$ whenever $F \subseteq A$ and F is regular closed in (X, τ) ,
- 2. gpr-open [3] iff $F \subseteq pint(A)$ whenever $F \subseteq A$ and F is regular closed in (X, τ) ,
- 3. a t-set [13] if int(A) = int(cl(A)),
- 4. an α^* -set [4] if int(A) = int(cl(int(A))).

Lemma 1.4 ([1]). If A is a subset of X, then

- 1. $pint(A) = A \cap int(cl(A)),$
- 2. $\alpha int(A) = A \cap int(cl(int(A)))$ and $\alpha cl(A) = A \cup cl(int(cl(A)))$.

Remark 1.5. The following holds in a topological space. Every rg-open set is gpr-open but not conversely [3].

2. $r\alpha g$ -open Sets

Proposition 2.1. For a subset of a topological space, the following hold:

- 1. Every $r\alpha g$ -open set is gpr-open.
- 2. Every rg-open set is $r\alpha g$ -open.

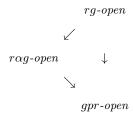
Proof. It follows from the definitions.

Remark 2.2. The converses of Proposition 2.1 is not true, in general.

Example 2.3. Let $X = \{a, b, c, d, e\}$ and $\tau = \{\emptyset, \{a\}, \{e\}, \{a, e\}, \{c, d\}, \{a, c, d\}, \{c, d, e\}, \{a, c, d, e\}, \{b, c, d, e\}, X\}$. Then $\{b, e\}$ is gpr-open set but not $r\alpha g$ -open.

Example 2.4. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$. Then $\{a, b, d\}$ is rag-open set but not rg-open.

Remark 2.5. By Proposition 2.1 and Remark 1.5, we have the following diagram. In this diagram, there is no implication which is reversible as shown by examples above.



Lemma 2.6. Let A be a subset of (X, τ) . Then A is $r\alpha g$ -open iff $F \subseteq \alpha int(A)$ whenever $F \subseteq A$ and F is regular closed in (X, τ) .

3. C_r -sets and C_r^* -sets

Definition 3.1 ([12]). A subset A of a topological space (X, τ) is called

1. a C_r -set if $A = U \cap V$, where U is rg-open and V is a t-set,

2. a C_r^* -set if $A = U \cap V$, where U is rg-open and V is an α^* -set.

We have the following proposition:

Proposition 3.2. For a subset of a topological space, the following hold:

- 1. Every t-set is an α^* -set [4] and a C_r -set.
- 2. Every α^* -set is a C_r^* -set.
- 3. Every C_r -set is a C_r^* -set.
- 4. Every rg-open set is a C_r -set.

From Proposition 3.2, We have the following diagram.

$$rg$$
-open set $\longrightarrow C_r$ -set \longleftarrow t -set
$$\downarrow \qquad \qquad \downarrow$$

$$C_r^*\text{-set} \longleftarrow \alpha^*\text{-set}$$

Remark 3.3. The converses of implications in Diagram II need not be true as the following examples show.

Example 3.4. Let $X = \{a, b, c, d, e\}$ and $\tau = \{\emptyset, \{a\}, \{e\}, \{a, e\}, \{c, d\}, \{a, c, d\}, \{c, d, e\}, \{a, c, d, e\}, \{b, c, d, e\}, X\}$. Then $\{b\}$ is C_r -set but not rg-open.

Example 3.5. In Example 3.4, $\{c\}$ is C_r -set but not t-set.

Example 3.6. In Example 3.4, $\{b, c, e\}$ is C_r^* -set but not C_r -set.

Example 3.7. In Example 3.4, $\{c\}$ is α^* -set but not t-set.

Example 3.8. In Example 3.4, $\{c, d, e\}$ is C_r^* -set but not α^* -set.

Proposition 3.9. A subset A of X is rg-open if and only if it is both gpr-open and a C_r -set in X.

Proof. Necessity is trivial. We prove the sufficiency. Assume that A is gpr-open and a C_r -set in X. Let $F \subseteq A$ and F is regular closed in X. Since A is a C_r -set in X, $A = U \cap V$, where U is rg-open and V is a t-set. Since A is gpr-open, $F \subseteq pint(A) = A \cap int(cl(A)) = (U \cap V) \cap int(cl(U \cap V)) \subseteq (U \cap V) \cap int(cl(U)) = (U \cap V) \cap int(cl(U)) \cap int(cl(V))$. This implies $F \subseteq int(cl(V)) = int(V)$ since V is a t-set. Since F is regular closed, U is rg-open and $F \subseteq U$, we have $F \subseteq int(U)$. Therefore, $F \subseteq int(U) \cap int(V) = int(U \cap V) = int(A)$. Hence A is rg-open in X.

Corollary 3.10. A subset A of X is rg-open if and only if it is both rag-open and a C_r -set in X.

Proof. This is an immediate consequence of Proposition 3.9.

Proposition 3.11. A subset A of X is rg-open if and only if it is both rag-open and a C_r^* -set in X.

Proof. Necessity is trivial. We prove the sufficiency. Assume that A is $r\alpha g$ -open and a C_r^* -set in X. Let $F \subseteq A$ and F is regular closed in X. Since A is a C_r^* -set in X, $A = U \cap V$, where U is rg-open and V is an α^* -set. Now since F is regular closed, $F \subseteq U$ and U is rg-open, $F \subseteq \operatorname{int}(U)$. Since A is $r\alpha g$ -open, $F \subseteq \operatorname{aint}(A) = A \cap \operatorname{int}(\operatorname{cl}(\operatorname{int}(A))) = (U \cap V) \cap \operatorname{int}(\operatorname{cl}(\operatorname{int}(U) \cap \operatorname{int}(V))) \subseteq (U \cap V) \cap \operatorname{int}(\operatorname{cl}(\operatorname{int}(U))) = (U \cap V) \cap \operatorname{int}(\operatorname{cl}(\operatorname{int}(U))) \cap \operatorname{int}(\operatorname{cl}(\operatorname{int}(V))) = (U \cap V) \cap \operatorname{int}(\operatorname{cl}(\operatorname{int}(U))) \cap \operatorname{int}(\operatorname{cl}(\operatorname{int}(V))) = (U \cap V) \cap \operatorname{int}(\operatorname{cl}(\operatorname{int}(U))) \cap \operatorname{int}(\operatorname{cl}(\operatorname{int}(V))) = (U \cap V) \cap \operatorname{int}(\operatorname{cl}(\operatorname{int}(U))) \cap \operatorname{int}(V) = \operatorname{int}(V)$. Therefore, $F \subseteq \operatorname{int}(U) \cap \operatorname{int}(V) = \operatorname{int}(U \cap V) = \operatorname{int}(A)$. Hence A is rg-open in X.

Remark 3.12.

- (1) The concepts of gpr-open sets and C_r -sets are independent of each other.
- (2) The concepts of $r\alpha g$ -open sets and C_r -sets are independent of each other.
- (3) The concepts of rag-open sets and C_r^* -sets are independent of each other.

Example 3.13. Let $X = \{a, b, c, d, e\}$ and $\tau = \{\emptyset, \{a\}, \{e\}, \{a, e\}, \{c, d\}, \{a, c, d\}, \{c, d, e\}, \{a, c, d, e\}, \{b, c, d, e\}, X\}$. Then $\{b, c, e\}$ is gpr-open but not C_r -set and $\{a, b, e\}$ is C_r -set but not gpr-open.

Example 3.14. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}\}$. Then $\{a, d\}$ is C_r -set but not $r\alpha g$ -open set. Also $\{a, b, d\}$ is an $r\alpha g$ -open set but not C_r -set.

Example 3.15. In Example 3.14, $\{a, d\}$ is C_r^* -set but not $r\alpha g$ -open set and $\{a, b, d\}$ is an $r\alpha g$ -open set but not C_r^* -set.

4. Decompositions of rg-continuity

Definition 4.1. A mapping $f:(X, \tau) \to (Y, \sigma)$ is said to be rg-continuous [10] (resp. gpr-continuous [3], r α g-continuous, C_r -continuous [12] and C_r^* -continuous [12]) if $f^{-1}(V)$ is rg-open (resp. gpr-open, r α g-open, C_r -set and C_r^* -set) in (X, τ) for every open set V in (Y, σ) .

From Propositions 3.9 and 3.11 and Corollary 3.10 we have the following decompositions of rg-continuity.

Theorem 4.2. For a mapping $f:(X,\tau)\to (Y,\sigma)$, the following properties are equivalent:

- 1. f is rg-continuous;
- 2. f is gpr-continuous and C_r -continuous;
- 3. f is $r\alpha g$ -continuous and C_r -continuous;
- 4. f is $r\alpha g$ -continuous and C_r^* -continuous.

Remark 4.3.

- (1) The concepts of gpr-continuity and C_r -continuity are independent of each other.
- (2) The concepts of rag-continuity and C_r -continuity are independent of each other.
- (3) The concepts of $r\alpha g$ -continuity and C_r^* -continuity are independent of each other.

Example 4.4.

(1) Let $X = Y = \{a, b, c, d, e\}, \tau = \{\emptyset, \{a\}, \{e\}, \{a, e\}, \{c, d\}, \{a, c, d\}, \{c, d, e\}, \{a, c, d, e\}, \{b, c, d, e\}, X\}$ and $\sigma = \{\emptyset, \{b, c, e\}, Y\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is gpr-continuous but not C_r -continuous.

(2) Let $X = Y = \{a, b, c, d, e\}, \tau = \{\emptyset, \{a\}, \{e\}, \{a, e\}, \{c, d\}, \{a, c, d\}, \{c, d, e\}, \{a, c, d, e\}, \{b, c, d, e\}, X\}$ and $\sigma = \{\emptyset, \{a, b, e\}, Y\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is C_r -continuous but not gpr-continuous.

Example 4.5.

- (1) Let $X = Y = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\sigma = \{\emptyset, \{a, d\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is C_r -continuous but not $r \alpha g$ -continuous.
- (2) Let $X = Y = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\sigma = \{\emptyset, \{a, b, d\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is $r \alpha g$ -continuous but not C_r -continuous.

Example 4.6.

- (1) Let $X = Y = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\sigma = \{\emptyset, \{a, d\}, Y\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is C_r^* -continuous but not $r \alpha g$ -continuous.
- (2) Let $X = Y = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\sigma = \{\emptyset, \{a, b, d\}, Y\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is reg-continuous but not C_r^* -continuous.

References

- [1] D.Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1)(1986), 24-32.
- [2] K.Balachandran, P.Sundaram and H.Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 12(1991), 5-13.
- [3] Y.Gnanambal, On generalized preregular closed sets in topological spaces, Indian J. Pure Appl. Math., 28(3)(1997), 351-360.
- [4] E.Hatir, T.Noiri and S.Yuksel, A decomposition of continuity, Acta Math. Hungar., 70(1996), 145-150.
- [5] N.Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly, 68(1961), 44-46.
- [6] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2)(1970), 89-96.
- [7] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [8] O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [9] T.Noiri, Almost αg-closed functions and separation axioms, Acta Math. Hungar., 82(3)(1999), 193-205.
- [10] N.Palaniappan and K.C.Rao, Regular generalized closed sets, Kyungpook Math. J., 33(1993), 211-219.
- [11] M.H.Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 375-481.
- [12] P.Sundaram and M.Rajamani, Some decompositions of regular generalized continuous maps in topological spaces, Far East J. Math. Sci., special volume, Part II, (2000), 179-188.
- [13] J.Tong, On decomposition of continuity in topological spaces, Acta Math. Hungar., 54(1989), 51-55.