Volume 3, Issue 3-A (2015), 47-51.

ISSN: 2347-1557

Available Online: http://ijmaa.in/



#### International Journal of Mathematics And its Applications

# $g^{\star}$ -closed Sets with Respect to an Ideal

Research Article

### K.M.Dharmalingam<sup>1</sup>, D.Bharathi<sup>2</sup> and O.Ravi<sup>3</sup>\*

- 1 Department of Mathematics, The Madura College, Madurai, Tamil Nadu, India.
- 2 Department of Mathematics, Theni Kammavar Sangam College of Technology, Theni, Tamil Nadu, India.
- 3 Department of Mathematics, P.M.Thevar College, Usilampatti, Tamil Nadu, India.

Abstract: An ideal on a set X is a non empty collection of subsets of X with heredity property which is also closed under finite unions. The concept of generalized closed (g-closed) sets was introduced by Levine [10]. Quite Recently, Jafari and Rajesh [7] have introduced and studied the notion of generalized closed (g-closed) sets with respect to an ideal. Many generalizations of g-closed sets are being introduced and investigated by modern researchers. One among them is  $g^*$ -closed sets which were introduced by Veerakumar [17]. In this paper, we introduce and investigate the concept of  $g^*$ -closed sets with respect to

an ideal.

MSC: 54C10

**Keywords:** Topological space, open set,  $g^*$  closed set, g-closed set,  $\mathcal{I}_g$ -closed set,  $\mathcal{I}_{\pi g}$ -closed set, ideal.

© JS Publication.

### 1. Introduction and Preliminaries

The notion of closed set is fundamental in the study of topological spaces. In 1970, Levine [10] introduced the concept of generalized closed sets in a topological space by comparing the closure of a subset with its open supersets. He defined a subset A of a topological space X to be generalized closed (briefly, g-closed) if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is open. This notion has been studied extensively in recent years by many topologists. After advent of g-closed sets, many generalizations of g-closed sets are being introduced and investigated by modern topologists. One among them is  $g^*$ -closed sets which were introduced by Veerakumar [17]. Indeed ideals are very important tools in General Topology. It was the works of Newcomb [11], Rancin [12], Samuels [14] and Hamlett and Jankovic (see [3–6, 8]) which motivated the research in applying topological ideals to generalize the most basic properties in General Topology. A nonempty collection  $\mathcal I$  of subsets on a topological space  $(X, \tau)$  is called a topological ideal [9] if it satisfies the following two conditions:

- 1. If  $A \in \mathcal{I}$  and  $B \subseteq A$  implies  $B \in \mathcal{I}$  (heredity)
- 2. If  $A \in \mathcal{I}$  and  $B \in \mathcal{I}$ , then  $A \cup B \in \mathcal{I}$  (finite additivity)

If A is a subset of a topological space  $(X, \tau)$ , cl(A) and int(A) denote the closure of A and the interior of A, respectively. Let  $A \subseteq B \subseteq X$ . Then  $cl_B(A)$  (resp.  $int_B(A)$ ) denotes closure of A (resp. interior of A) with respect to B. In this paper, we introduce and study the concept of  $g^*$ -closed sets with respect to an ideal, which is the extension of the concept of  $g^*$ -closed sets. The following Definitions and Remarks are useful in the sequel.

<sup>\*</sup> E-mail: siingam@yahoo.com

**Definition 1.1.** A subset A of a topological space X is regular open [15] if A = int(cl(A)).

**Definition 1.2.** The finite union of regular open sets is called  $\pi$ -open [18]. The complement of  $\pi$ -open set is  $\pi$ -closed [18].

**Definition 1.3.** A subset A of a topological space X is called  $\pi$ -generalized closed (briefly,  $\pi g$ -closed) [2] if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is  $\pi$ -open.

**Definition 1.4.** A subset A of a topological space X is called generalized closed (briefly, g-closed) [10] if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is open. The complement of g-closed set is g-open.

**Definition 1.5.** A subset A of a topological space X is called  $g^*$ -closed [17] or strongly g-closed [16] if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is g-open.

**Definition 1.6.** Let  $(X, \tau)$  be a topological space and  $\mathcal{I}$  be an ideal on X. A subset A of X is said to be generalized closed with respect to an ideal (briefly  $\mathcal{I}_q$ -closed) [7] if and only if  $cl(A)-B \in \mathcal{I}$ , whenever  $A \subseteq B$  and B is open.

**Remark 1.7** ([17]). For a subset of a topological space, the following properties hold:

- 1. Every closed set is  $g^*$ -closed but not conversely.
- 2. Every  $g^*$ -closed set is g-closed but not conversely.

**Remark 1.8** ([7]). Every g-closed set is  $\mathcal{I}_g$ -closed but not conversely.

**Definition 1.9** ([13]). Let  $(X, \tau)$  be a topological space and  $\mathcal{I}$  be an ideal on X. A subset A of X is said to be  $\pi$ -generalized closed with respect to an ideal (briefly  $\mathcal{I}_{\pi g}$ -closed) if and only if  $cl(A) - B \in \mathcal{I}$ , whenever  $A \subseteq B$  and B is  $\pi$ -open.

Remark 1.10 ([13]). For several subsets defined above, we have the following implications.

$$\mathcal{I}_g\text{-}closed\ set\longrightarrow\mathcal{I}_{\pi g}\text{-}closed\ set}$$

$$\uparrow \qquad \qquad \uparrow$$

$$closed\ set\longrightarrow g\text{-}closed\ set\longrightarrow\pi g\text{-}closed\ set}$$

The reverse implications are not true.

**Remark 1.11** ([10]). The intersection of a g-closed set and a closed set is g-closed.

**Definition 1.12** ([1]). A function  $f:(X, \tau) \to (Y, \sigma)$  is called gc-irresolute if the inverse image of g-closed set of Y is g-closed in X.

# 2. $g^*$ -Closed Sets with Respect to an Ideal

**Definition 2.1.** Let  $(X, \tau)$  be a topological space and  $\mathcal{I}$  be an ideal on X. A subset A of X is said to be  $g^*$ -closed with respect to an ideal (briefly  $\mathcal{I}_{g^*}$ -closed) if and only if  $cl(A)-B\in \mathcal{I}$ , whenever  $A\subseteq B$  and B is g-open.

**Remark 2.2.** Every  $g^*$ -closed set is  $\mathcal{I}_{g^*}$ -closed, but the converse need not be true, as this may be seen from the following Example.

**Example 2.3.** Let  $X = \{a, b, c, d\}$ ,  $\tau = \{\emptyset, X, \{a\}, \{d\}, \{a, d\}\}$  and  $\mathcal{I} = \{\emptyset, \{c\}\}$ . Then  $\{b\}$  is  $\mathcal{I}_{g^*}$ -closed but not  $g^*$ -closed.

The following theorem gives a characterization of  $\mathcal{I}_{q^*}$ -closed sets.

**Theorem 2.4.** A set A is  $\mathcal{I}_{q^*}$ -closed in  $(X, \tau)$  if and only if  $F \subseteq cl(A)-A$  and F is g-closed in X implies  $F \in \mathcal{I}$ .

*Proof.* Assume that A is  $\mathcal{I}_{g^*}$ -closed. Let  $F \subseteq cl(A)-A$ . Suppose F is g-closed. Then  $A \subseteq X-F$ . By our assumption,  $cl(A)-(X-F) \in \mathcal{I}$ . But  $F \subseteq cl(A)-(X-F)$  and hence  $F \in \mathcal{I}$ .

Conversely, assume that  $F \subseteq cl(A)-A$  and F is g-closed in X implies that  $F \in \mathcal{I}$ . Suppose  $A \subseteq U$  and U is g-open. Then  $cl(A)-U=cl(A)\cap (X-U)$  is a g-closed set in X, that is contained in cl(A)-A. By assumption,  $cl(A)-U\in \mathcal{I}$ . This implies that A is  $\mathcal{I}_{g^*}$ -closed.

**Theorem 2.5.** If A and B are  $\mathcal{I}_{g^*}$ -closed sets of  $(X, \tau)$ , then their union  $A \cup B$  is also  $\mathcal{I}_{g^*}$ -closed.

*Proof.* Suppose A and B are  $\mathcal{I}_{g^*}$ -closed sets in  $(X, \tau)$ . If  $A \cup B \subseteq U$  and U is g-open, then  $A \subseteq U$  and  $B \subseteq U$ . By assumption,  $cl(A) - U \in \mathcal{I}$  and  $cl(B) - U \in \mathcal{I}$  and hence  $cl(A \cup B) - U = (cl(A) - U) \cup (cl(B) - U) \in \mathcal{I}$ . That is  $A \cup B$  is  $\mathcal{I}_{g^*}$ -closed.

**Remark 2.6.** The intersection of two  $\mathcal{I}_{g^*}$ -closed sets need not be an  $\mathcal{I}_{g^*}$ -closed as shown by the following Example.

**Example 2.7.** Let  $X = \{a, b, c, d\}$ ,  $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$  and  $\mathcal{I} = \{\emptyset, \{d\}\}$ . Then  $A = \{a, b, c\}$  and  $B = \{a, b, d\}$  are  $\mathcal{I}_{g^*}$ -closed but their intersection  $A \cap B = \{a, b\}$  is not  $\mathcal{I}_{g^*}$ -closed.

**Remark 2.8.** Every  $\mathcal{I}_{g^*}$ -closed set is  $\mathcal{I}_g$ -closed but not conversely.

**Example 2.9.** Let  $X = \{a, b, c, d\}$ ,  $\tau = \{\emptyset, X, \{a\}, \{d\}, \{a, d\}\}$  and  $\mathcal{I} = \{\emptyset\}$ . Then  $\{b\}$  is  $\mathcal{I}_g$ -closed but not  $\mathcal{I}_{g^*}$ -closed.

Remark 2.10. For several subsets defined above, we have the following implications.

$$\mathcal{I}_{g^{\star}}\text{-}closed\ set}\longrightarrow \mathcal{I}_{g}\text{-}closed\ set}\longrightarrow \mathcal{I}_{\pi g}\text{-}closed\ set}$$

$$\uparrow \qquad \qquad \uparrow$$

$$closed\ set\longrightarrow g^{\star}\text{-}closed\ set}\longrightarrow g\text{-}closed\ set}\longrightarrow \pi g\text{-}closed\ set}$$

The reverse implications are not true.

**Theorem 2.11.** If A is  $\mathcal{I}_{a^*}$ -closed and  $A \subseteq B \subseteq cl(A)$  in  $(X, \tau)$ , then B is  $\mathcal{I}_{a^*}$ -closed in  $(X, \tau)$ .

*Proof.* Suppose A is  $\mathcal{I}_{g^*}$ -closed and  $A \subseteq B \subseteq cl(A)$  in  $(X, \tau)$ . Suppose  $B \subseteq U$  and U is g-open. Then  $A \subseteq U$ . Since A is  $\mathcal{I}_{g^*}$ -closed, we have  $cl(A)-U \in \mathcal{I}$ . Now  $B \subseteq cl(A)$ . This implies that  $cl(B)-U \subseteq cl(A)-U \in \mathcal{I}$ . Hence B is  $\mathcal{I}_{g^*}$ -closed in  $(X, \tau)$ .

**Theorem 2.12.** Let  $A \subseteq Y \subseteq X$  and suppose that A is  $\mathcal{I}_{g^*}$ -closed in  $(X, \tau)$ . Then A is  $\mathcal{I}_{g^*}$ -closed relative to the subspace Y of X, with respect to the ideal  $\mathcal{I}_Y = \{F \subseteq Y : F \in \mathcal{I}\}$ .

*Proof.* Suppose  $A \subseteq U \cap Y$  and U is g-open in  $(X, \tau)$ , then  $A \subseteq U$ . Since A is  $\mathcal{I}_{g^*}$ -closed in  $(X, \tau)$ , we have  $cl(A)-U \in \mathcal{I}$ . Now  $(cl(A) \cap Y)-(U\cap Y)=(cl(A)-U)\cap Y \in \mathcal{I}$ , whenever  $A \subseteq U \cap Y$  and U is g-open. Hence A is  $\mathcal{I}_{g^*}$ -closed relative to the subspace Y.

**Theorem 2.13.** Let A be an  $\mathcal{I}_{q^*}$ -closed set and F be a closed set in  $(X, \tau)$ , then  $A \cap F$  is an  $\mathcal{I}_{q^*}$ -closed set in  $(X, \tau)$ .

*Proof.* Let A ∩ F ⊆ U and U is g-open. Then A ⊆ U ∪ (X−F). Since A is  $\mathcal{I}_{g^*}$ -closed, we have  $\operatorname{cl}(A) - (U \cup (X-F)) \in \mathcal{I}$ . Now,  $\operatorname{cl}(A \cap F) \subseteq \operatorname{cl}(A) \cap F = (\operatorname{cl}(A) \cap F) - (X-F)$ . Therefore,  $\operatorname{cl}(A \cap F) - U \subseteq (\operatorname{cl}(A) \cap F) - (U \cap (X-F)) \subseteq \operatorname{cl}(A) - (U \cup (X-F)) \in \mathcal{I}$ . Hence A ∩ F is  $\mathcal{I}_{g^*}$ -closed in (X,  $\tau$ ).

**Definition 2.14.** Let  $(X, \tau)$  be a topological space and  $\mathcal{I}$  be an ideal on X. A subset  $A \subseteq X$  is said to be  $g^*$ -open with respect to an ideal (briefly  $\mathcal{I}_{g^*}$ -open) if and only if X-A is  $\mathcal{I}_{g^*}$ -closed.

**Theorem 2.15.** A set A is  $\mathcal{I}_{g^*}$ -open in  $(X, \tau)$  if and only if  $F-U \subseteq int(A)$ , for some  $U \in \mathcal{I}$ , whenever  $F \subseteq A$  and F is g-closed.

*Proof.* Suppose A is  $\mathcal{I}_{g^*}$ -open. Suppose  $F \subseteq A$  and F is g-closed. We have  $X-A \subseteq X-F$ . By assumption,  $cl(X-A) \subseteq (X-F) \cup U$ , for some  $U \in \mathcal{I}$ . This implies  $X-((X-F) \cup U) \subseteq X-(cl(X-A))$  and hence  $F-U \subseteq int(A)$ .

Conversely, assume that  $F \subseteq A$  and F is g-closed. Then  $F - U \subseteq int(A)$ , for some  $U \in \mathcal{I}$ . Consider an g-open set G such that  $X - A \subseteq G$ . Then  $X - G \subseteq A$ . By assumption,  $(X - G) - U \subseteq int(A) = X - cl(X - A)$ . This gives that  $X - (G \cup U) \subseteq X - cl(X - A)$ . Then,  $cl(X - A) \subseteq G \cup U$ , for some  $U \in \mathcal{I}$ .

This shows that  $cl(X-A)-G \in \mathcal{I}$ . Hence X-A is  $\mathcal{I}_{g^*}$ -closed.

Recall that the sets A and B are said to be separated if  $cl(A) \cap B = \emptyset$  and  $A \cap cl(B) = \emptyset$ .

**Theorem 2.16.** If A and B are separated  $\mathcal{I}_{g^*}$ -open sets in  $(X, \tau)$ , then  $A \cup B$  is  $\mathcal{I}_{g^*}$ -open.

*Proof.* Suppose A and B are separated  $\mathcal{I}_{g^*}$ -open sets in  $(X, \tau)$  and F be a g-closed subset of A ∪ B. Then F ∩ cl(A) ⊆ A and F ∩ cl(B) ⊆ B. By assumption,  $(F \cap cl(A)) - U_1 \subseteq int(A)$  and  $(F \cap cl(B)) - U_2 \subseteq int(B)$ , for some  $U_1, U_2 \in \mathcal{I}$ . It means that  $((F \cap cl(A)) - int(A)) \in \mathcal{I}$  and  $((F \cap cl(B)) - int(B)) \in \mathcal{I}$ . Then  $((F \cap cl(A)) - int(A)) \cup ((F \cap cl(B)) - int(B)) \in \mathcal{I}$ .

Hence  $(F \cap (cl(A) \cup cl(B)) - (int(A) \cup int(B))) \in \mathcal{I}$ . But  $F = F \cap (A \cup B) \subseteq F \cap cl(A \cup B)$ , and we have  $F - int(A \cup B) \subseteq (F \cap cl(A \cup B)) - int(A \cup B) \subseteq (F \cap cl(A \cup B)) - (int(A) \cup int(B)) \in \mathcal{I}$ . Hence,  $F - U \subseteq int(A \cup B)$ , for some  $U \in \mathcal{I}$ . This proves that  $A \cup B$  is  $\mathcal{I}_{g^*}$ -open.

Corollary 2.17. Let A and B be  $\mathcal{I}_{g^*}$ -closed sets and suppose X-A and X-B are separated in  $(X, \tau)$ . Then  $A \cap B$  is  $\mathcal{I}_{g^*}$ -closed.

**Corollary 2.18.** If A and B are  $\mathcal{I}_{g^*}$ -open sets in  $(X, \tau)$ , then  $A \cap B$  is  $\mathcal{I}_{g^*}$ -open.

*Proof.* If A and B are  $\mathcal{I}_{g^*}$ -open, then X-A and X-B are  $\mathcal{I}_{g^*}$ -closed. By Theorem 2.5, X-(A  $\cap$  B) is  $\mathcal{I}_{g^*}$ -closed, which implies A  $\cap$  B is  $\mathcal{I}_{g^*}$ -open.

**Theorem 2.19.** If  $int(A) \subseteq B \subseteq A$  and A is  $\mathcal{I}_{g^*}$ -open in  $(X, \tau)$ , then B is  $\mathcal{I}_{g^*}$ -open in X.

*Proof.* Suppose  $\operatorname{int}(A) \subseteq B \subseteq A$  and A is  $\mathcal{I}_{g^*}$ -open. Then  $X-A \subseteq X-B \subseteq \operatorname{cl}(X-A)$  and X-A is  $\mathcal{I}_{g^*}$ -closed. By Theorem 2.11, X-B is  $\mathcal{I}_{g^*}$ -closed and hence B is  $\mathcal{I}_{g^*}$ -open.

**Theorem 2.20.** Let  $(X, \tau)$  be a topological space. Then a set A is  $\mathcal{I}_{g^*}$ -closed in X if and only if cl(A)-A is  $\mathcal{I}_{g^*}$ -open in X.

*Proof.* Necessity: Suppose  $F \subseteq cl(A)-A$  and F be g-closed. Then by Theorem 2.4,  $F \in \mathcal{I}$ . This implies that  $F-U = \emptyset$ , for some  $U \in \mathcal{I}$ . Clearly,  $F-U \subseteq int(cl(A)-A)$ . By Theorem 2.15, cl(A)-A is  $\mathcal{I}_{g^*}$ -open.

Sufficiency: Suppose  $A \subseteq G$  and G is g-open in  $(X, \tau)$ . Then  $cl(A) \cap (X-G) \subseteq cl(A) \cap (X-A) = cl(A)-A$ . By hypothesis,  $(cl(A) \cap (X-G))-U \subseteq int(cl(A)-A) = \emptyset$ , for some  $U \in \mathcal{I}$ . This implies that  $cl(A) \cap (X-G) \subseteq U \in \mathcal{I}$  and hence  $cl(A)-G \in \mathcal{I}$ . Thus, A is  $\mathcal{I}_{g^*}$ -closed.

**Theorem 2.21.** Let  $f:(X,\tau)\to (Y,\sigma)$  be gc-irresolute and closed. If  $A\subseteq X$  is  $\mathcal{I}_{g^*}$ -closed in X, then f(A) is  $f(\mathcal{I})_{g^*}$ -closed in  $(Y,\sigma)$ , where  $f(\mathcal{I})=\{f(U):U\in\mathcal{I}\}$ .

*Proof.* Suppose A ⊆ X and A is  $\mathcal{I}_{g^*}$ -closed. Suppose f(A) ⊆ G and G is g-open. Then A ⊆  $f^{-1}(G)$ . By definition,  $cl(A)-f^{-1}(G) \in \mathcal{I}$  and hence  $f(cl(A))-G \in f(\mathcal{I})$ . Since f is closed,  $cl(f(A)) \subseteq cl(f(cl(A))) = f(cl(A))$ . Then  $cl(f(A))-G \subseteq f(cl(A))-G \in f(\mathcal{I})$  and hence f(A) is  $f(\mathcal{I})_{g^*}$ -closed.

#### References

- [1] K.Balachandran, P.Sundaram and H.Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A (Math.) 12(1991), 5-13.
- [2] J.Dontchev and T.Noiri, Quasi-normal spaces and πq-closed sets, Acta Math. Hungar., 89(3)(2000), 211-219.
- [3] T.R.Hamlett and D.Jankovic, Compactness with respect to an ideal, Boll. Un. Mat. Ita., (7), 4-B(1990), 849-861.
- [4] T.R.Hamlett and D.Jankovic, Ideals in topological spaces and the set operator, Boll. Un. Mat. Ita., 7(1990), 863-874.
- [5] T.R.Hamlett and D.Jankovic, Ideals in General Topology and Applications (Midletown, CT, 1988), Lecture Notes in Pure and Appl. Math. Dekker, New York, (1990), 115-125.
- [6] T.R.Hamlett and D.Jankovic, Compatible extensions of ideals, Boll. Un. Mat. Ita., 7(1992), 453-465.
- [7] S.Jafari and N.Rajesh, Generalized closed sets with respect to an ideal, European J. Pure Appl. Math., 4(2)(2011), 147-151.
- [8] D.Jankovic and T.R. Hamlett, New topologies from old via ideals, Amer. Math. Month., 97(1990), 295-310.
- [9] K.Kuratowski, Topologies I, Warszawa, (1933).
- [10] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo., 19(2)(1970), 89-96.
- [11] R.L.Newcomb, Topologies which are compact modulo an ideal, Ph.D. Dissertation, Univ. Cal. at Santa Barbara, (1967).
- [12] D.V.Rancin, Compatness modulo an ideal, Soviet Math. Dokl., 13(1972), 193-197.
- [13] O.Ravi, M.Suresh and A.Pandi,  $\pi$ -Generalized closed sets with respect to an ideal, Submitted.
- [14] P.Samuels, A topology from a given topology and ideal, J. London Math. Soc., (2)(10)(1975), 409-416.
- [15] M.H.Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 375-481.
- [16] P.Sundaram and A.Pushpalatha, Strongly generalized closed sets in topological spaces, Far East J. Math. Sci., 3(4)(2001), 563-575.
- [17] M.K.R.S.Veerakumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 21(2000), 1-19.
- [18] V.Zaitsev, On certain classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk. SSSR, 178(1968), 778-779.