

International Journal of Mathematics And its Applications

Semi Smooth Graceful Labeling on Some Graphs

Research Article

V J Kaneria¹ and Meera Meghpara^{2*}

1 Department of Mathematics, Saurashtra University, Rajkot, India.

2 Department of Mathematics, Om Engineering College, Junagadh, India.

Abstract: This paper contains some results on semi smooth graceful graph. We proved that $B_{m,n}$, $S'(B_{m,n})$ and $S'(P_n)$ are semi smooth graceful and a graph obtained by joining G and $B^2_{m,n}$ with an arbitrary path P_r is a graceful.

MSC: 05C78.

Keywords: Graceful graph, semi smooth graceful graph, bistar graph, square of bistar, path, splitting graph.© JS Publication.

1. Introduction

We will consider a simple, undirected and finite graph G = (V, E) on p = |V| vertices and q = |E| edges. For all terminology, notations and basic definitions we follows Harary [1]. For a Comprehensive bibliography of papers on different graph labeling are given by Gallian [2].

In 1966 Rosa [3] defined α -labeling as a graceful labeling with an additional property. A graph which admits α -labeling is necessarily bipartite. A natural generalization of graceful graph is the notion of k-graceful graph. Obviously 1-graceful is graceful and a graph which admits α -labeling is always k-graceful graph, $\forall k \in N$. Ng [4] has identified some graphs that are k-graceful, $\forall k \in N$, but do not have α -labeling.

Kaneria and Jariya [5, 6] define smooth graceful labeling and semi smooth graceful labeling. Every smooth graceful graph is also a semi smooth graceful graph. They proved cycle C_n (n $\equiv 0 \pmod{4}$), path P_n , grid graph $P_n \times P_m$ and complete bipartite graph $K_{2,n}$ are smooth graceful graphs. Vaidya and Vyas [7] have proved that $D_2(P_n), B_{n,n}^2, S'(B_{n,n}), M(C_n),$ Df_n are mean graphs. Here we will recall some definitions which are used in this paper.

Definition 1.1. A function f is called graceful labeling of a graph G = (V, E) if $f : V \longrightarrow \{0, 1, ..., q\}$ is injective and the induce function $f^* : E \longrightarrow \{1, 2, ..., q\}$ defined as $f^*(e) = |f(u) - f(v)|$ is bijective for every edge $e = (u, v) \in E(G)$. A graph G is called graceful graph if it admits a graceful labeling.

Definition 1.2. A semi smooth graceful graph G, we mean it is a bipartite graph with |E(G)| = q and the property that for all non-negative integer l, there is an integer t $(1 \le t \le q)$ and an injective function $g: V(G) \longrightarrow \{0, 1, ..., t - 1, t + l, t + l + 1, ..., q + l\}$ such that the induced edge labeling function $g^*: E(G) \longrightarrow \{1 + l, 2 + l, ..., q + l\}$ defined as $g^*(e) = |f(u) - f(v)|$ is a bijection for every edge $e = (u, v) \in E(G)$.

^{*} E-mail: meera.meghpara@gmail.com

Definition 1.3. Bistar $B_{n,n}$ is the graph obtained by joining the apex vertices of two copies of star $K_{1,n}$ by an edge. $B_{n,n}^2$ is the square of $B_{n,n}$ obtained by joining each pair of two vertices of $B_{n,n}$ at distance 2 by a new edge.

Definition 1.4. Let G = (V, E) be a graph. Then the splitting graph of G is denoted by S'(G), which obtained by adding to each $v \in V$, by a new vertex v' such that v' is adjacent to those vertex of G, which are adjacent to v in G. i.e. If $V = \{v_1, v_2, \ldots, v_n\}$, then take $V' = \{v'_1, v'_2, \ldots, v'_n\}$ and $S'(G) = (V \cup V', E \cup \{(u, v'), (u', v)/(u, v) \in E\})$. Observe that |V(S'(G))| = 2|V(G)| and |E(S'(G))| = 3|E(G)|.

2. Main Results

Theorem 2.1. $B_{m,n}$ is a semi smooth graceful graph.

Proof. We know that $B_{m,n}$, bistar graph obtained by joining apex vertices of $K_{1,m}$ and $K_{1,n}$ by a new edge. Let $v_0, v_1, \ldots, v_m, u_0, u_1, \ldots, u_n$ be vertices of $B_{m,n}$. Obviously $E(B_{m,n}) = \{(u_0, v_0), (v_0, v_1), \ldots, (v_0, v_m), (u_0, u_1), \ldots, (u_0, u_n)\}$ i.e. $|V(B_{m,n})| = m + n + 2$ and $|E(B_{m,n})| = m + n + 1$. We shall define vertex labeling function $f : V(B_{m,n}) \longrightarrow \{0, 1, \ldots, t - 1, t + l, t + l + 1, \ldots, q + l\}$, where $q = |E(B_{m,n})| = m + n + 1$, t = m + 1 and l is the arbitrary non-negative integer as follows,

 $f(v_0) = q = m + n + 1 + l;$ $f(u_0) = m;$ $f(v_i) = i - 1, \qquad \forall i = 1, 2, \dots, m;$ $f(u_j) = q - j + l, \qquad \forall j = 1, 2, \dots, n.$

Above labeling pattern give rise a semi smooth graceful labeling to the graph $B_{m,n}$, as it will produce edge labels $(v_0, v_1) = q + l, (v_0, v_2) = q - 1 + l, \dots, (v_0, v_m) = q - m + 1 + l = n + 2 + l, (u_0, v_0) = n + 1 + l, (u_0, u_1) = n + l, (u_0, u_2) = n - 1 + l, \dots, (u_0, u_n) = 1 + l$. Thus f and its induced function f^* both are bijective maps. Therefore $B_{m,n}$ is a semi smooth graceful graph.

Illustration 2.2. $B_{4,6}$ and its semi smooth graceful labeling shown in figure 1. Here $q = |E(B_{4,6})| = 11$.

Figure 1. $B_{4,6}$ and its semi smooth graceful labeling

Theorem 2.3. $S'(B_{m,n})$ is a semi smooth graceful graph.

Proof. Let $G = S'(B_{m,n})$, splitting graph of $B_{m,n}$. Let $V(G) = \{v_0, v_1, \dots, v_m, u_0, u_1, \dots, u_n, v'_0, v'_1, \dots, v'_m, u'_0, u'_1, \dots, u'_n\}$ Obviously $E(S'(B_{m,n})) = E(B_{m,n}) \bigcup \{(v_0, v'_i)(i = 1, 2, \dots, m), (v'_0, v_i)(i = 1, 2, \dots, m), (v'_0, v_0), (u'_0, v_0), (u'_0, u_0), (u'_0, u_0) = 3|E(B_{m,n})| = 3(m + n + 1).$ We shall define vertex labeling function

 $f: V(G) \longrightarrow \{0, 1, \dots, t-1, t+l, t+l+1, \dots, q+l\}$, where q = |E(G)| = 3(m+n+1), t = 2m+2 and l is the arbitrary non-negative integer as follows,

 $\begin{aligned} f(v_0) &= q + l, \ f(u_0) = 2m, \ f(v_0^{'}) = 2m + 3n + 1 + l, \ f(u_0^{'}) = 2m + 1; \\ f(v_i) &= m + (i - 1), & \forall \ i = 1, 2, \dots, m; \\ f(v_i^{'}) &= m - i, & \forall \ i = 1, 2, \dots, m; \\ f(u_j) &= 2m + 2j + l, & \forall \ j = 1, 2, \dots, n; \\ f(u_j^{'}) &= 2(m + n) + j + l, & \forall \ j = 1, 2, \dots, n. \end{aligned}$

Above defined labeling pattern give rise a semi smooth graceful labeling to the graph G.

Illustration 2.4. $S'(B_{3,5})$ and its semi smooth graceful labeling shown in figure 2. Here $q = |E(S'B_{3,5})| = 27$.

Figure 2. $S'(B_{3,5})$ and its semi smooth graceful labeling.

Theorem 2.5. $S'(P_n)$ is a semi smooth graceful graph.

Proof. Let P_n be the path on consecutive v_1, v_2, \ldots, v_n vertices. For the graph $S'(P_n)$ added vertices corresponding to v_1, v_2, \ldots, v_n are v'_1, v'_2, \ldots, v'_n . Obviously $|V(S(P_n))| = 2n$ and $|E(S'(P_n))| = 3n - 3$. We shall define labeling function $f: V(S'(P_n)) \longrightarrow \{0, 1, \ldots, t-1, t+l, t+l+1, \ldots, q+l\}$, where $q = |E(S'(P_n))| = 3n - 3$, $t = 3\lfloor \frac{n}{2} \rfloor - 1$ and l is the arbitrary non-negative integer as follows, $f(v_i) = q - \frac{3}{2}(i-1) + l$, when i is odd,

 $= \left(\frac{3i}{2}\right) - 2, \qquad \text{when } i \text{ is even, } \forall i = 1, 2, \dots, n;$ $f(v'_i) = f(v_i) - 1, \qquad \forall i = 1, 2, \dots, n.$

Above defined labeling pattern give rise a semi smooth graceful labeling to the graph $S'(P_n)$ and so $S'(P_n)$ is a semi smooth graceful graph.

Illustration 2.6. $S'(P_7)$ and its semi smooth graceful labeling shown in figure 3. Here $q = |E(S'(P_7))| = 18$.

Figure 3. $S'(P_7)$ and its semi smooth graceful labeling.

Theorem 2.7. Let G be a semi smooth graceful graph. A graph obtained by joining G and $B_{m,n}^2$ with an arbitrary path P_r is graceful.

Proof. Let K be the graph obtained by joining a semi smooth graph G, $B_{m,n}^2$ with an arbitrary path P_r . Let $q_1 = |E(G)|$, $q_2 = r - 1$, $q_3 = 2(m + n) + 1$. Let G be a semi smooth graceful graph with semi smooth vertex labeling function $f: V(G) \longrightarrow \{0, 1, \dots, t - 1, t + l, t + l + 1, \dots, q_1 + l\}$, whose induced edge labeling function is absolute difference of end vertices for each edge and $t \in \{1, 2, \dots, q_1\}$, l be an arbitrary non-negative integer.

Since G is a bipartite graph, we shall have following partitions of V(G).

$$V_1 = \{ u \in V(G) / f(u) < t \}$$

$$V_2 = \{ u \in V(G) / f(u) \ge t \}$$

Let $w_0 \in V(G)$ be such that $f(w_0) = t - 1$, such vertex would lies in V_1 , otherwise 1 + l edge label can not be produce in G. In fact 1 + l edge label can be produce by the vertices of G whose vertex labels are t - 1, t + l and they are adjacent in G. Let $w_0 = w_1, w_2, \ldots, w_r$ be the vertices of P_r . Let $u_i(i = 0, 1, \ldots, m), v_j(j = 0, 1, \ldots, n)$ be vertices of $B_{m,n}^2$ with $w_r = v_0$. Obviously $|E(K)| = q_1 + q_2 + q_3 = q_1 + r + 2(m+n)$. Now we define vertex labeling function $g : V(K) \longrightarrow \{0, 1, \ldots, q_1 + q_2 + q_3\}$ as follows.

g(w) = f(w),	when $w \in V_1$;
g(w) = f(w) - l + r + 2(m + n),	when $w \in V_2$;
$g(w_i) = t + r + 2(m+n) - \frac{i}{2},$	when i is even,
$=t+rac{i-3}{2},$	when i is odd, $\forall i = 1, 2, \dots, r;$

Case-I: r is odd.

Case-II: r is even.	
$g(u_i) = g(w_r) + n + i,$	$\forall i = 1, 2, \dots, m;$
$g(v_j) = g(w_r) + j,$	$\forall j = 1, 2, \dots, n;$
$g(v_0) = g(w_r) , g(u_0) = g(w_r) + q_3;$	

$$g(v_0) = g(w_{r-1}) + q_3, g(u_0) = g(w_{r-1}) + 1;$$

$$g(v_j) = g(w_{r-1}) + j + 1, \qquad \forall j = 1, 2, \dots, n;$$

$$g(u_i) = g(w_{r-1}) + n + i + 1, \qquad \forall i = 1, 2, \dots, m.$$

Above labeling function give rise graceful labeling to the graph K and so it is graceful.

Illustration 2.8. A graph obtained by joining $S'(P_4)$ and $B_{2,3}^2$ with path P_5 and its graceful labeling is shown in figure 4

Figure 4. A graph obtained by joining $S'(P_4)$ and $B^2_{2,3}$ with path P_5 and its graceful labeling.

Acknowledgement

The authors of this paper would like to thanks the reviewers for their valuable suggestions.

References

- [1] F.Harary, Graph theory, Addition Wesley, Massachusetts, (1972).
- [2] J.A.Gallian, A Dynamic Survey of Graph Labeling, The Electronics Journal of Combinatorics, 17(2014), #DS6.
- [3] A.Rosa, On certain valuation of graph, Theory of Graphs (Rome, July 1966), Goden and Breach, N.Y. and Paris, (1967), 349-355.
- [4] H.K.Ng, α-valuations and K-gracefulness, Notices AMS, 7(1986), 247.
- [5] V.J.Kaneria and M.M.Jariya, Smooth graceful graphs and its applications to constract graceful graphs, Int. J. Sci. and Res., 3(8)(2014), 909-912.
- [6] V.J.Kaneria and M.M.Jariya, Semi smooth graceful graph and construction of new graceful trees, Elixir Appl. Math., 76(2014), 28536-28538.
- [7] S.K.Vaidya and N.B.Vyas, Some new results on mean labeling, Int. J. of Information Science and Computer Mathematics, 6(1-2)(2012), 19-29.