International Journal of Mathematics And its Applications

Some Relationship Between Matrix Completion Problems

Kalyan Sinha ${ }^{1 *}$
1 Department of Mathematics, PSTDS Vidyapith, Chinsurah, Hooghly, West Bengal-712305, India.

Abstract

In this paper relationship between the solutions of the matrix completion problems for certain class of matrices is studied. Specifically the similarities and dissimilarities among the class P_{0}^{+}and its subclasses completion problem are discussed. MSC: 15A18.

Keywords: Partial matrix; Matrix completion; P_{0}^{+}-matrix.
(c) JS Publication.

1. Introduction

A real $n \times n$ matrix B is a P-matrix (resp. P_{0}-matrix, $P_{0,1}$-matrix) if every principal minor of B is positive (nonnegative, nonnegative with strictly positive diagonal entries). A real $n \times n$ matrix $B=\left[b_{i j}\right]$ is a Q-matrix if for every $k \in\{1,2, \ldots, n\}$, $S_{k}(B)>0$, where $S_{k}(B)$ is the sum of all $k \times k$ principal minors of B. Again a real $n \times n$ matrix $B=\left[b_{i j}\right]$ is a P_{0}^{+}-matrix if for every $k \in\{1,2, \ldots, n\}$, all $k \times k$ principal minors of B are nonnegative and at least one principal minor of each order is positive. The matrix B is sign symmetric (resp. weakly sign symmetric) if $b_{i j} b_{j i}>0$ or $b_{i j}=0=b_{j i}\left(\right.$ resp. $\left.b_{i j} b_{j i} \geq 0\right)$ for each pair of $i, j \in\{1, \ldots, n\}$.

A partial matrix is a rectangular array of numbers in which some entries are specified while others are free to be chosen. A pattern for $n \times n$ matrices is a subset of $\{1, \ldots, n\} \times\{1, \ldots, n\}$. A partial matrix specifies a pattern if its specified entries lie exactly in those positions listed in the pattern. For $\alpha \subseteq\{1, \ldots, n\}$, the principal submatrix $B(\alpha)$ is obtained from B by deleting all rows and columns not in α. A principal minor is the determinant of a principal submatrix. In this paper, a pattern does not include all diagonal positions.

For a given class Π of matrices (e.g., P, P_{0}-matrices) a partial Π-matrix is a partial matrix for which the specified entries satisfy the properties of a Π-matrix. A completion of a partial matrix is a specific choice of values for the unspecified entries. A Π-completion of a partial Π-matrix M is a completion of M which is a Π-matrix. For a particular class Π of matrices, a pattern has Π-completion if every partial Π-matrix specifying the pattern can be completed to a Π-matrix. Matrix completion problems for several classes of matrices have been studied by a number of authors (e.g., [3, 4] etc). Prof L. Hogben compared a large number of pairs of completion problems in her paper [5] in 2003. For a survey of matrix completion results one may see [2].
If X_{1} and X_{2} are classes of matrices with $X_{1} \subseteq X_{2}$, the completion problem for the classes $X_{i}, i=1,2$ may be completely different. In general, it is impossible to conclude whether the completion of X_{1} implies the completion of X_{2} or vice versa.

[^0]In this paper, we examine the relationship between the solutions to the matrix completion problems for pair of related subclasses of P_{0}^{+}-matrices. In all these cases it is established that if a pattern has completion for larger classes, then it has also completion for smaller classes. But the converse is not true i.e. for a pattern a smaller class may have completion whether the larger class may not have completion.

1.1. Partial matrices

A partial P-matrix (resp. $P_{0}, P_{0,1}$-matrix) is matrix in which all fully specified principal minors are P-matrices (resp. P_{0}, $P_{0,1}$-matrices). Although every P_{0}^{+}-matrix is a P-matrix as well as P_{0}-matrix, but the definition of partial P_{0}^{+}-matrix is different from the other classes.

A partial P_{0}^{+}-matrix M is a partial matrix in which all fully specified principal minors are nonnegative and $S_{k}(M)>0$ for every $k=1,2, \ldots, n$, whenever all $k \times k$ principal submatrices are fully specified. A $P_{0,1}^{+}-m a t r i x ~ i s ~ a ~ P_{0}^{+}-m a t r i x ~ w i t h ~$ strictly positive diagonal entries. A partial $P_{0,1}^{+}$-matrix M_{1} is a partial P_{0}^{+}-matrix in which all specified diagonal entries are strictly positive. Again, a partial sign symmetric matrix (resp. weakly sign symmetric-matrix) is a matrix in which fully specified principal submatrices are sign symmetric matrix (resp. weakly sign symmetric-matrix). A partial positive (nonnegative)-matrix is a partial matrix whose specified entries are positive (nonnegative).

Thus, a partial sign symmetric (resp. weakly sign symmetric) P-matrix (resp. $P_{0}, P_{0,1}, P_{0}^{+}, P_{0,1}^{+}$-matrix) is partial P-matrix (resp. $P_{0}, P_{0,1}, P_{0}^{+}, P_{0,1}^{+}$-matrix) in which fully specified principal submatrices are sign symmetric matrix (resp. weakly sign symmetric-matrix). Again a partial positive (resp. nonnegative) P-matrix (resp. $P_{0}, P_{0,1}, P_{0}^{+}, P_{0,1}^{+}$-matrix) is partial P-matrix (resp. $P_{0}, P_{0,1}, P_{0}^{+}, P_{0,1}^{+}$-matrix) in which fully specified entries are positive (resp. nonnegative).

1.2. Pairs of Π / Π_{0}-classes

Definition 1.1 ([5]). The classes of matrices X and X_{0} are referred to as a pair of Π / Π_{0}-classes if
(i) Any partial X-matrix is a partial X_{0} matrix.
(ii) For any X_{0}-matrix A and $\epsilon>0, A+\epsilon I$ is a X-matrix.
(iii) For any partial X-matrix A, there exist a $\delta>0$ such that $A-\delta \widehat{I}$ is a partial X-matrix (where \widehat{I} is a partial identity matrix specifying the same pattern as A)

Consider M be a partial P-matrix specifying a pattern N. Let I_{M} be the partial matrix specifying N with all specified diagonal entries 1 and off-diagonal entries 0 . Since determinant of a matrix is a continuous function of its entries, there is $\epsilon>0$ such that the partial matrix $M_{0}=M-\epsilon I_{M}$ (i.e., one obtained by applying operations on the respective specified entries) is a partial P-matrix. Clearly, M_{0} is a partial P_{0}^{+}-matrix specifying N. Thus the classes P and $P_{0}^{+}-$matrices are a pair of Π / Π_{0}-classes.

2. Relationship Between the Subclasses of P_{0}^{+}and P-matrix Completion Problem

Theorem 2.1. Any pattern that has P_{0}^{+}-completion also has P-completion.

In Theorem 2.2 of [5], it is shown that for a pair of Π / Π_{0}-matrices, if a pattern has Π_{0}-completion, then it must also have Π-completion. Since P-matrix and P_{0}^{+}-matrix are a pair of Π / Π_{0}-classes, hence the result follows.

The following equivalent corollary is immediate.

Corollary 2.2. Any pattern that does not have P-completion does not have P_{0}^{+}-completion.
Also the following corollary which is similar to the corollary 2.3 in [5] hold for the subclasses of P_{0}^{+}and P-matrices.

Corollary 2.3.

(i) Any pattern that has nonnegative P_{0}^{+}-completion also has nonnegative P-completion.
(ii) Any pattern that has sign symmetric P_{0}^{+}-completion also has sign symmetric P-completion.
(iii) Any pattern that has weakly sign symmetric P_{0}^{+}-completion also has weakly sign symmetric P-completion.

The proof of the above corollary is similar to the proof of the Theorem 2.1. However, the converse of the above Corollary 2.3 is not true for all cases. The following examples show this. Suppose $N_{2}=\{(1,1),(2,2),(3,3),(1,2),(2,1)$ $,(2,3),(3,1),(3,2)\}$. The pattern N_{2} has P-completion [3]. On the other hand, consider the partial P_{0}^{+}-matrix,

$$
M_{2}=\left[\begin{array}{lll}
1 & 1 & ? \\
1 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

specifies N_{2}. Clearly M_{2} cannot be completed to a P_{0}^{+}-matrix since $\operatorname{det} \widehat{M_{2}}=0$ for any completion $\widehat{M_{2}}$ of M_{2}.

Consider $N_{3}=\{(1,1),(2,1),(2,2)\}$. The pattern N_{3} has sign symmetric (resp. nonnegative, weakly sign symmetric) P-completion ([4], [5]). But the pattern does not have sign symmetric (resp. nonnegative, weakly sign symmetric) $P_{0}^{+}-$ completion. To see this, consider the partial sign symmetric (resp. nonnegative, weakly sign symmetric) P_{0}^{+}-matrix,

$$
M_{3}=\left[\begin{array}{ll}
1 & ? \\
2 & 0
\end{array}\right]
$$

specifies N_{3}. Since det $\widehat{M_{3}} \leq 0$ for any sign symmetric (resp. nonnegative, weakly sign symmetric) completion $\widehat{M_{3}}$ of M_{3}, M_{3} cannot be completed to a sign symmetric P_{0}^{+}-matrix.

3. Relationship Between the Subclasses of $P_{0,1}^{+}$and P-matrix Completion Problem

The Theorem 2.1 can also be applied to find the relationship between the subclasses of $P_{0,1}^{+}$and P-matrix completion problem. Since every $P_{0,1}^{+}$-matrix is a P_{0}^{+}-matrix, thus the hypothesis of Definition 1.1 is satisfied if we replace X_{0}-matrix as $P_{0,1}^{+}$-matrix and X-matrix as P-matrix. The following corollary which is similar to the corollary 2.9 in [5] hold for the subclasses of P_{0}^{+}and P-matrices.

Corollary 3.1.

(i) Any pattern that has $P_{0,1}^{+}$-completion also has P-completion.
(ii) Any pattern that has nonnegative $P_{0,1}^{+}$-completion also has nonnegative P-completion.
(iii) Any pattern that has sign symmetric $P_{0,1}^{+}$-completion also has sign symmetric P-completion.
(iv) Any pattern that has weakly sign symmetric $P_{0,1}^{+}$-completion also has weakly sign symmetric P-completion.

The proof of the Corollary 3.1 follows from the Theorem 2.1 by replacing role of P_{0}^{+}to $P_{0,1}^{+}$. But the converse of the above Corollary 3.1 is not true which can be seen from the following Example 3.
The pattern $N_{4}=\{(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,2),(3,1)\}$ has (nonnegative, sign symmetric, weakly sign symmetric) P-completion [4] but does not has (nonnegative, sign symmetric, weakly sign symmetric) $P_{0,1}^{+}$-completion. The partial $P_{0,1}^{+}$-matrix,

$$
M_{4}=\left[\begin{array}{lll}
1 & 1 & ? \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

specifies N_{4} and cannot be completed to a (nonnegative, sign symmetric, weakly sign symmetric) $P_{0,1}^{+}$-matrix since det $\widehat{M}_{4}=0$ for any completion \widehat{M}_{4} of M_{4}.

4. Relationship Between the Subclasses of $P_{0,1}^{+}$and P_{0}^{+}-matrix Completion Problem

We now consider the following $P_{0,1}^{+}$-matrix,

$$
M=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

Since the condition [iii] of the Definition 1.1 does not hold for the $P_{0,1}^{+}$-matrix M, thus the Theorem 2.1 cannot be applied to the subclasses of $P_{0,1}^{+}$and P_{0}^{+}-matrices. However the following theorem is true for $P_{0,1}^{+}$and P_{0}^{+}-matrices.

Lemma 4.1. If a positive real number is added to a diagonal entry of $P_{0}^{+}\left(P_{0,1}^{+}\right)$-matrix, it remains $P_{0}^{+}\left(P_{0,1}^{+}\right)$-matrix.
Let A be a $P_{0}^{+}\left(P_{0,1}^{+}\right)$-matrix (So, A is necessarily a P_{0} matrix). Without loss of generality we may assume a positive number is added to $(1,1)$-entry, so let A^{\prime} be obtained from A by adding $a>0$ to a_{11}. Then $\operatorname{det} A^{\prime}=\operatorname{det} A+\operatorname{det} A^{\prime \prime}$, where the first row of $A^{\prime \prime}$ is $(a, 0,0, \ldots, 0)$ and the remaining rows are the same as the corresponding rows of A, because the determinant is multi-linear function of the rows. $\operatorname{det} A^{\prime \prime}=a \operatorname{det} A[2,3, \ldots, n] \geq 0$, so $\operatorname{det} A^{\prime} \geq \operatorname{det} A$. The same argument can be applied to all principal minors, so for $P_{0}^{+}\left(P_{0,1}^{+}\right)$-matrices the result can be applied.

Theorem 4.2. Any pattern that has P_{0}^{+}-completion also has $P_{0,1}^{+}$-completion.
Let N be a pattern that has P_{0}^{+}-completion, and let M be a partial $P_{0,1}^{+}$-matrix specifying N. Clearly M is a partial P_{0}^{+}-matrix. Since N has P_{0}^{+}-completion, M can be completed to a P_{0}^{+}-matrix \widehat{M}. If \widehat{M} is not a $P_{0,1}^{+}$-matrix, then one or more diagonal entries are 0 . Since M was a partial $P_{0,1}^{+}$-matrix, any diagonal entry specified in M was positive. Let $D=\left[d_{i j}\right]$ be defined as follows:

$$
d_{i j}= \begin{cases}0, & \text { if } i=j,(i, i) \in N, \\ 1 & \text { if } i=j,(i, i) \notin N, \\ 0 & \text { otherwise }\end{cases}
$$

Then $\widehat{M}+D$ completes M to a $P_{0,1}^{+}$-matrix, because it has a positive diagonal and, as a sum of a P_{0}^{+}-matrix and nonnegative diagonal matrix, $\widehat{M}+D$ is a P_{0}^{+}-matrix. Thus N has $P_{0,1}^{+}$-completion. But the converse of the Theorem 4.2 is not true i.e. a pattern that has $P_{0,1}^{+}$-completion may not have P_{0}^{+}-completion. Suppose $N_{6}=\{(1,1),(1,2),(1,3),(2,2),(3,3)\}$. The pattern N_{6} has $P_{0,1}^{+}$-completion but does not have P_{0}^{+}-completion.

Consider the partial P_{0}^{+}-matrix,

$$
A_{1}=\left[\begin{array}{lll}
0 & 0 & 0 \\
? & 0 & ? \\
? & ? & 1
\end{array}\right]
$$

specifies N_{6} and cannot be completed to a P_{0}^{+}-matrix since det $\widehat{A_{1}}=0$ for any completion $\widehat{A_{1}}$ of A_{1}. On the other hand, consider the partial $P_{0,1}^{+}$-matrix $A_{2}=\left[a_{i j}\right]$ as follows:

$$
A_{2}=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
? & a_{22} & ? \\
? & ? & a_{33}
\end{array}\right] .
$$

Clearly A_{2} specifies N_{6} and by definition of partial $P_{0,1}^{+}$-matrix, all diagonals are positive. Consider a completion B_{2} of A_{2} as follows:

$$
B_{2}=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & 0 \\
0 & 0 & a_{33}
\end{array}\right]
$$

Now, B_{2} is a $P_{0,1}^{+}$-matrix completion of A_{2}. The following corollary which is similar to the Theorem 2.12 in [5] hold for the subclasses of P_{0}^{+}and $P_{0,1}^{+}$-matrices. The proof of Theorem 4.2 can also be true to the following subclasses:

Corollary 4.3. (i) Any pattern that has nonnegative P_{0}^{+}-completion also has nonnegative $P_{0,1}^{+}$-completion.
(ii) Any pattern that has sign symmetric P_{0}^{+}-completion also has sign symmetric $P_{0,1}^{+}$-completion.
(iii) Any pattern that has weakly sign symmetric P_{0}^{+}-completion also has weakly sign symmetric $P_{0,1}^{+}$-completion.

However the converse of the Corollary 4.3 is not true. Consider the pattern $N_{7}=\{(1,1),(2,2),(1,2)\}$. Now, the partial $P_{0,1}^{+}$-matrix

$$
A_{3}=\left[\begin{array}{cc}
a_{11} & a_{12} \\
? & a_{22}
\end{array}\right]
$$

specifies N_{7}. Since A_{3} is a partial $P_{0,1}^{+}$-matrix, thus $a_{i i}>0$ for $i=1,2$. The matrix A_{3} can be completed to a (nonnegative, sign symmetric, weakly sign symmetric) $P_{0,1}^{+}$-matrix for suitable choice of unspecified entries. On the other hand, consider the partial P_{0}^{+}-matrix,

$$
A_{4}=\left[\begin{array}{ll}
1 & 0 \\
? & 0
\end{array}\right]
$$

specifies N_{7}. Now for any completion B_{4} of A_{4}, $\operatorname{det} B_{4}=0$. Hence, A_{4} cannot be completed to a P_{0}^{+}-matrix.

5. Relationship Between Asymmetric Patterns of P-matrices and $P_{0,1^{-}}^{+}$ matrices

In the previous sections, for classes $X_{1} \subseteq X_{2}$, all the results inferred X_{1}-completion of a pattern from X_{2}-completion of a pattern. For certain special patterns it is also possible to infer completion of a pattern for the larger class from completion for the smaller class.

A pattern Q is asymmetric if $(i, j) \in Q$ implies $(j, i) \notin Q$.

Theorem 5.1. Any asymmetric pattern that has P-completion must have $P_{0,1}^{+}$-completion.

Let N^{\prime} be an asymmetric pattern that has P-completion, and let M be a partial $P_{0,1}^{+}$-matrix specifying N^{\prime}. Since the pattern is asymmetric, there are no fully specified principal submatrices of size large than 1 , and the size 1 matrices are P-matrices. Thus M is a partial P-matrix and can be completed to a P-matrix \widehat{M}. Clearly \widehat{M} is a $P_{0,1}^{+}$-matrix that completes M. The above Theorem 5.1 can be applied to the other subclasses of P-matrices and $P_{0,1}^{+}$-matrices. Thus the following corollary is also true.

Corollary 5.2.

(i) Any asymmetric pattern that has nonnegative P-completion also has nonnegative $P_{0,1}^{+}$-completion.
(ii) Any asymmetric pattern that has sign symmetric P-completion also has sign symmetric $P_{0,1}^{+}$-completion.
(iii) Any asymmetric pattern that has weakly sign symmetric P-completion also has weakly sign symmetric $P_{0,1}^{+}$-completion.

Also from the Theorem 5.1, the following corollary can easily derived.

Corollary 5.3. Any asymmetric pattern has $P_{0,1}^{+}$-completion.

Any asymmetric pattern has P-completion [1]. Thus by Theorem 5.1, every asymmetric pattern has $P_{0,1}^{+}$-completion.

6. Conclusion

In this paper, the relationship between the the subclasses of $P, P_{0}^{+}, P_{0,1}^{+}$-matrices are discussed. Although the set of both P_{0}^{+}-matrices ($P_{0,1}^{+}$-matrices) is the intersection of the set of Q-matrices with the set of P_{0}-matrices, but the relationship between Q-matrices and other classes say P, P_{0}-matrices etc is still remains unsolved.

References

[1] J.Y.Choi, L.M.DeAlba, L.Hogben, B.Kivunge, S.Nordstrom, M.Shedenhelm, The nonnegative P_{0}-matrix completion problem, Electronic Journal of Linear Algebra, 10(2003), 4659.
[2] L.Hogben and A.Wangsness, Matrix Completion Problems, Handbook of Linear Algebra, L. Hogben, Editor, Chapman and Hall/CRC Press, Boca Raton, (2007).
[3] C.R.Johnson and B.K.Kroschel, The Combinatorially Symmetric P-Matrix Completion Problem, Electronic Journal of Linear Algebra, 1(1996), 59-63.
[4] L.Hogben, Graph theoretic methods for matrix completion problems, Linear Algebra and its Applications, 328(2001), 161-202.
[5] L.Hogben, Matrix Completion Problems for Pairs of Related Classes of Matrices, Linear Algebra and its Applications, 373(2003), 13-29.

[^0]: * E-mail: kalyansinha90@gmail.com

