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1. Introduction

A real n X n matrix B is a P-matriz (resp. Po-matriz, Py 1-matriz) if every principal minor of B is positive (nonnegative,
nonnegative with strictly positive diagonal entries). A real n x n matrix B = [b;;] is a Q-matriz if for every k € {1,2,...,n},
Si(B) > 0, where S(B) is the sum of all k x k principal minors of B. Again a real n x n matrix B = [b;;] is a Py -matriz
if for every k € {1,2,...,n}, all k x k principal minors of B are nonnegative and at least one principal minor of each order
is positive. The matrix B is sign symmetric (resp. weakly sign symmetric) if b;;bj; > 0 or b;; = 0 = bj; ( resp. bi;bj; > 0)
for each pair of 4,5 € {1,...,n}.

A partial matriz is a rectangular array of numbers in which some entries are specified while others are free to be chosen. A
pattern for n X n matrices is a subset of {1,...,n} x {1,...,n}. A partial matrix specifies a pattern if its specified entries
lie exactly in those positions listed in the pattern. For o C {1,...,n}, the principal submatrix B(a) is obtained from B
by deleting all rows and columns not in «. A principal minor is the determinant of a principal submatrix. In this paper, a
pattern does not include all diagonal positions.

For a given class II of matrices (e.g., P, Po-matrices) a partial II-matriz is a partial matrix for which the specified entries
satisfy the properties of a Il-matrix. A completion of a partial matrix is a specific choice of values for the unspecified
entries. A II-completion of a partial IT-matrix M is a completion of M which is a II-matrix. For a particular class II of
matrices, a pattern has II-completion if every partial II-matrix specifying the pattern can be completed to a II-matrix.
Matrix completion problems for several classes of matrices have been studied by a number of authors (e.g., [3, 4] etc). Prof
L. Hogben compared a large number of pairs of completion problems in her paper [5] in 2003. For a survey of matrix
completion results one may see [2].

If X1 and X3 are classes of matrices with X1 C X2, the completion problem for the classes X;,i = 1,2 may be completely

different. In general, it is impossible to conclude whether the completion of X; implies the completion of X2 or vice versa.
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In this paper, we examine the relationship between the solutions to the matrix completion problems for pair of related
subclasses of P;f-matrices. In all these cases it is established that if a pattern has completion for larger classes, then it
has also completion for smaller classes. But the converse is not true i.e. for a pattern a smaller class may have completion

whether the larger class may not have completion.

1.1. Partial matrices

A partial P-matrix (resp. Po, Po,1-matrix) is matrix in which all fully specified principal minors are P-matrices (resp. Fo,
Po,1-matrices). Although every P(;"-matrix is a P-matrix as well as Pp-matrix, but the definition of partial P()*'-matrix is
different from the other classes.

A partial P0+ -matrix M is a partial matrix in which all fully specified principal minors are nonnegative and Si(M) > 0
for every k = 1,2,...,n, whenever all k X k principal submatrices are fully specified. A PJl—matrix is a PS’—matrix with
strictly positive diagonal entries. A partial Pa’l-matrix M is a partial Py -matrix in which all specified diagonal entries
are strictly positive. Again, a partial sign symmetric matriz (resp. weakly sign symmetric-matriz) is a matrix in which
fully specified principal submatrices are sign symmetric matrix (resp. weakly sign symmetric-matrix). A partial positive
(nonnegative)-matrix is a partial matrix whose specified entries are positive (nonnegative).

Thus, a partial sign symmetric (resp. weakly sign symmetric) P-matrix (resp. Po, Po,1, Py, ngl—matrix) is partial P-matrix
(resp. Po, Po1, P(;L , P(f ;-matrix) in which fully specified principal submatrices are sign symmetric matrix (resp. weakly
sign symmetric-matrix). Again a partial positive (resp. nonnegative) P-matrix (resp. Po, Po,1, Py, Pdfl—matrix) is partial

P-matrix (resp. Po, Po1, Py, PO*: ;-matrix) in which fully specified entries are positive (resp. nonnegative).
1.2. Pairs of II/Tly-classes
Definition 1.1 ([5]). The classes of matrices X and Xo are referred to as a pair of I1/Ily-classes if

(i) Any partial X -matriz is a partial Xo matriz.

(i) For any Xo-matriz A and € > 0, A+ €l is a X-matriz.

(i1) For any partial X -matriz A, there exist a 6 > 0 such that A — 6T is a partial X -matriz (where Tisa partial identity

matriz specifying the same pattern as A)

Consider M be a partial P-matrix specifying a pattern N. Let Iy be the partial matrix specifying N with all specified
diagonal entries 1 and off-diagonal entries 0. Since determinant of a matrix is a continuous function of its entries, there is
€ > 0 such that the partial matrix My = M — ey (i.e., one obtained by applying operations on the respective specified
entries) is a partial P-matrix. Clearly, My is a partial Py -matrix specifying N. Thus the classes P and Py -matrices are a

pair of II/IIy-classes.

2. Relationship Between the Subclasses of PJF and P-matrix Comple-
tion Problem

Theorem 2.1. Any pattern that has PS’-completion also has P-completion.

In Theorem 2.2 of [5], it is shown that for a pair of IT/Ilp-matrices, if a pattern has Ilp-completion, then it must also have
M-completion. Since P-matrix and Py -matrix are a pair of II/TIo-classes, hence the result follows.

The following equivalent corollary is immediate.
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Corollary 2.2. Any pattern that does not have P-completion does not have PS’-completion.
Also the following corollary which is similar to the corollary 2.3 in [5] hold for the subclasses of Py and P-matrices.
Corollary 2.3.
(i) Any pattern that has nonnegative Py -completion also has nonnegative P-completion.
(i) Any pattern that has sign symmetric PJ-completion also has sign symmetric P-completion.
(iii) Any pattern that has weakly sign symmetric Py -completion also has weakly sign symmetric P-completion.

The proof of the above corollary is similar to the proof of the Theorem 2.1. However, the converse of the above Corol-
lary 2.3 is not true for all cases. The following examples show this. Suppose N» = {(1,1),(2,2),(3,3),(1,2),(2,1)

,(2,3),(3,1),(3,2)}. The pattern N has P-completion [3]. On the other hand, consider the partial P;'-matrix,

117
Ma=1]112
000

specifies Na. Clearly Ma cannot be completed to a Py -matrix since det ]\/4\2 = 0 for any completion ]\/4\2 of Mo.

Consider N3 = {(1,1),(2,1),(2,2)}. The pattern N3 has sign symmetric (resp. nonnegative, weakly sign symmetric)
P-completion ([4], [5]). But the pattern does not have sign symmetric (resp. nonnegative, weakly sign symmetric) P0+ -

completion. To see this, consider the partial sign symmetric (resp. nonnegative, weakly sign symmetric) P -matrix,
Mz =

specifies N3. Since det ]\/4\3 < 0 for any sign symmetric (resp. nonnegative, weakly sign symmetric) completion ]\/4\3 of Ms,

M3 cannot be completed to a sign symmetric Py -matrix.

3. Relationship Between the Subclasses of PSF 1 and P-matrix Comple-
tion Problem

The Theorem 2.1 can also be applied to find the relationship between the subclasses of P&' ; and P-matrix completion
problem. Since every P&l—matrix is a P(;L—rnatrix, thus the hypothesis of Definition 1.1 is satisfied if we replace Xo-matrix
as POJf ;-matrix and X-matrix as P-matrix. The following corollary which is similar to the corollary 2.9 in [5] hold for the

subclasses of Py” and P-matrices.
Corollary 3.1.
(i) Any pattern that has ngl—completion also has P-completion.
(i) Any pattern that has nonnegative Po'fl—completion also has nonnegative P-completion.
(i1) Any pattern that has sign symmetric Pofl—completion also has sign symmetric P-completion.

w) Any pattern that has weakly sign symmetric -completion also has weakly sign symmetric P-completion.
iv) Any that h kly sign sy 1:‘P0+’1 leti lso h kly sign sy tric P leti
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The proof of the Corollary 3.1 follows from the Theorem 2.1 by replacing role of P(j' to Po-,_1- But the converse of the above
Corollary 3.1 is not true which can be seen from the following Example 3.

The pattern Ny = {(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,2),(3,1)} has (nonnegative, sign symmetric, weakly sign sym-
metric) P-completion [4] but does not has (nonnegative, sign symmetric, weakly sign symmetric) P(f ;-completion. The

partial P(f ;-matrix,

specifies N4 and cannot be completed to a (nonnegative, sign symmetric, weakly sign symmetric) PJ 1-matrix since det M, =0

for any completion ]\/4\4 of My.

4. Relationship Between the Subclasses of P0+ ; and P0+ -matrix Com-
pletion Problem

We now consider the following Py, -matrix,
101
M=1]110

111

Since the condition [iii] of the Definition 1.1 does not hold for the P(;fl-matrix M, thus the Theorem 2.1 cannot be applied

to the subclasses of PO": , and Py -matrices. However the following theorem is true for Py, and Py -matrices.
Lemma 4.1. If a positive real number is added to a diagonal entry of Py (Pyf))-matriz, it remains Py (Pyy)-matriz.

Let A be a P (Pyf,)-matrix (So, A is necessarily a Py matrix). Without loss of generality we may assume a positive number
is added to (1, 1)-entry, so let A’ be obtained from A by adding @ > 0 to a11. Then det A’ = det A + det A", where the first
row of A” is (a,0,0,...,0) and the remaining rows are the same as the corresponding rows of A, because the determinant
is multi-linear function of the rows. det A” = adet A[2,3,...,n] > 0, so det A’ > det A. The same argument can be applied

to all principal minors, so for Pg" (Pof 1)-matrices the result can be applied.
Theorem 4.2. Any pattern that has P(;L—completion also has P(;fl—completion.

Let N be a pattern that has PJ—completion, and let M be a partial P(fl—matrix specifying N. Clearly M is a partial
P0+—matrix. Since N has P(;"—completion, M can be completed to a Pg-matrix M. If M is not a PJl-matrix, then one
or more diagonal entries are 0. Since M was a partial Pa'l-matrix7 any diagonal entry specified in M was positive. Let
D = [d;;] be defined as follows:
0, ifi =4, (4,4) € N,
dij =4 1 ifi=4j(i,3) ¢ N,
0 otherwise.

Then M+ D completes M to a PJl—matriX, because it has a positive diagonal and, as a sum of a P()*—matrix and nonnegative
diagonal matrix, ]\7—1— D is a P(;"—matrix. Thus N has POJfl-completion. But the converse of the Theorem 4.2 is not true
i.e. a pattern that has P;";-completion may not have Py -completion. Suppose Ns = {(1,1),(1,2),(1,3),(2,2),(3,3)}. The

pattern Ng has POJf ;-completion but does not have P0+ -completion.
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Consider the partial PO+ -matrix,

specifies Ng and cannot be completed to a Py -matrix since det A; = 0 for any completion A7 of A;. On the other hand,

consider the partial Py;-matrix Ay = [a;] as follows:

ailr ai2 ais
AQ - ? az2 ?

? 7 ass

Clearly A specifies Ng and by definition of partial P(f ,-matrix, all diagonals are positive. Consider a completion By of As

as follows:

ail ai2 ai3
By = 0 a2 O

0 0 ass

Now, Bs is a Pofl-matrix completion of Az. The following corollary which is similar to the Theorem 2.12 in [5] hold for the

subclasses of Py~ and P&' ,-matrices.The proof of Theorem 4.2 can also be true to the following subclasses:
Corollary 4.3. (i) Any pattern that has nonnegative Py -completion also has nonnegative ngl—completionA

(ii) Any pattern that has sign symmetric Py -completion also has sign symmelric ngl—completion.

(iii) Any pattern that has weakly sign symmetric Pyt -completion also has weakly sign symmetric ngl—completion.

However the converse of the Corollary 4.3 is not true. Consider the pattern N7 = {(1,1),(2,2),(1,2)}. Now, the partial
POJf ;-matrix
air a2

A3: )

? az2

specifies N7. Since As is a partial P()Jfl—matrix, thus a;; > 0 for ¢ = 1,2. The matrix As can be completed to a (nonnegative,
sign symmetric, weakly sign symmetric) POT ;-matrix for suitable choice of unspecified entries. On the other hand, consider

the partial P;f-matrix,

specifies N;y. Now for any completion B4 of A4, det By = 0. Hence, A4 cannot be completed to a P(T—matrix.

5. Relationship Between Asymmetric Patterns of P-matrices and P0+ 1
matrices

In the previous sections, for classes X1 C X», all the results inferred Xi-completion of a pattern from Xs-completion of a
pattern. For certain special patterns it is also possible to infer completion of a pattern for the larger class from completion
for the smaller class.

A pattern Q is asymmetric if (i,7) € Q implies (5,1) ¢ Q.
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Theorem 5.1. Any asymmetric pattern that has P-completion must have P(;‘:l-completion.

Let N’ be an asymmetric pattern that has P-completion, and let M be a partial P&'l-matrix specifying N'. Since the pattern
is asymmetric, there are no fully specified principal submatrices of size large than 1, and the size 1 matrices are P-matrices.
Thus M is a partial P-matrix and can be completed to a P-matrix M. Clearly Misa Pofl—matrix that completes M.

The above Theorem 5.1 can be applied to the other subclasses of P-matrices and P(;‘: ;-matrices. Thus the following corollary

is also true.
Corollary 5.2.
(i) Any asymmetric pattern that has nonnegative P-completion also has nonnegative P()Jfl—completion.
(#) Any asymmetric pattern that has sign symmetric P-completion also has sign symmetric P(fl—completion.
(4ii) Any asymmetric pattern that has weakly sign symmetric P-completion also has weakly sign symmetric P(fl—completion.
Also from the Theorem 5.1, the following corollary can easily derived.
Corollary 5.3. Any asymmetric pattern has Po"fl—completion.

Any asymmetric pattern has P-completion [1]. Thus by Theorem 5.1, every asymmetric pattern has POJT 1-completion.

6. Conclusion

In this paper, the relationship between the the subclasses of P, PJ,P&'I—matrices are discussed. Although the set of both
P -matrices (PJ: ;-matrices) is the intersection of the set of Q-matrices with the set of Pyp-matrices, but the relationship

between @Q-matrices and other classes say P,Py-matrices etc is still remains unsolved.
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