Line of Mathematics

International Journal of Mathematics And its Applications

New Weakly Generalized locally Closed Sets

Research Article

O. Ravi^{1*}, L. Rajendran², J. Xavier Adaikalaraj³ and A. Pandi⁴

1 Department of Mathematics, P.M.Thevar College, Usilampatti, Tamil Nadu, India.

2 Department of Mathematics, The Madura College, Madurai, Tamil Nadu, India.

3 Department of Mathematics, Arul Anandar College, Karumathur, Madurai District, Tamil Nadu, India.

4 Department of Mathematics, Senthamarai College of Arts and Science College, Madurai, Tamil Nadu, India.

Abstract: The aim of this paper is to introduce and study the classes of $g^{\#}$ -locally closed sets, $g^{\#}$ -lc[#] sets and $g^{\#}$ -lc^{##} sets which are weaker forms of the class of locally closed sets. Furthermore the relations with other notions connected with the forms of locally closed sets are investigated.

MSC: 54C10, 54C08, 54C05.

Keywords: Topological space, g-closed set, $g^{\#}$ -closed set, $g^{\#}$ -lc[#] set, $g^{\#}$ -lc^{##} set. © JS Publication.

1. Introduction

The first step of locally closedness was done by Bourbaki [3]. He defined a set A to be locally closed if it is the intersection of an open set and a closed set. In literature many general topologists introduced the studies of locally closed sets. Extensive research on locally closedness and generalizing locally closedness were done in recent years. Stone [16] used the term FG for a locally closed set. Ganster and Reilly used locally closed sets in [6] to define LC-continuity and LC-irresoluteness. Balachandran et al [1] introduced the concept of generalized locally closed sets.

In this paper, we introduce three forms of locally closed sets called $g^{\#}$ -locally closed sets, $g^{\#}$ -lc[#] sets and $g^{\#}$ -lc^{##} sets. Properties of these new concepts are studied as well as their relations to the other classes of locally closed sets are investigated.

2. Preliminaries

Throughout this paper (X, τ) (or X) represents topological space on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ), cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A, respectively.

We recall the following Definitions, Remarks, Corollary and Theorem which are useful in the sequel.

Definition 2.1. A subset A of a space (X, τ) is called

1. semi-open set [9] if $A \subseteq cl(int(A))$;

E-mail: siingam@yahoo.com

- 2. α -open set [12] if $A \subseteq int(cl(int(A)));$
- 3. regular open set [17] if A = int(cl(A)).

The complements of the above mentioned open sets are called their respective closed sets.

The semi-closure [4] of a subset A of X, denoted by scl(A), is defined to be the intersection of all semi-closed sets of (X, τ) containing A. It is known that scl(A) is a semi-closed set.

The α -closure [11] of a subset A of X, denoted by $\alpha cl(A)$, is defined to be the intersection of all α -closed sets of (X, τ) containing A. It is known that $\alpha cl(A)$ is a α -closed set.

Definition 2.2. A subset A of a space (X, τ) is called

- 1. a generalized closed (briefly g-closed) set [8] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . The complement of g-closed set is called g-open set.
- 2. a regular generalized closed (briefly rg-closed) set [13] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) . The complement of rg-closed set is called rg-open set.
- 3. a semi-generalized closed (briefly sg-closed) set [2] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) . The complement of sg-closed set is called sg-open set.
- 4. an αg -closed [10] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . The complement of αg -closed set is called αg -open.
- 5. $g^{\#}$ -closed [19] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is αg -open in (X, τ) .
- 6. $g^{\#}$ -open [19] if A^{c} is $g^{\#}$ -closed.

Remark 2.3. The collection of all $g^{\#}$ -closed (resp. g-closed) sets in X is denoted by $G^{\#}C(X)$ (resp. GC(X)). The collection of all $g^{\#}$ -open (resp. g-open) sets in X is denoted by $G^{\#}O(X)$ (resp. GO(X)). We denote the power set of X by P(X).

Definition 2.4. A subset S of a space (X, τ) is called

- 1. locally closed (briefly lc) [6] if $S=U\cap F$, where U is open and F is closed in (X, τ) .
- 2. generalized locally closed (briefly glc) [1] if $S=U\cap F$, where U is g-open and F is g-closed in (X, τ) .
- 3. semi-generalized locally closed (briefly sglc) [14] if $S=U\cap F$, where U is sg-open and F is sg-closed in (X, τ) .
- 4. generalized locally semi-closed (briefly glsc) [7] if $S=U\cap F$, where U is g-open and F is semi-closed in (X, τ) .
- 5. locally semi-closed (briefly lsc) [7] if $S=U\cap F$, where U is open and F is semi-closed in (X, τ) .
- 6. α-locally closed (briefly α-lc) [7] if S=U∩F, where U is α-open and F is α-closed in (X, τ).
 The class of all locally closed (resp. generalized locally closed, generalized locally semi-closed, locally semi-closed) sets in X is denoted by LC(X) (resp. GLC(X), GLSC(X), LSC(X)).

Definition 2.5 ([15]). For any $A \subseteq X$, the $g^{\#}$ -interior of a subset A of X, $g^{\#}$ -int(A), is defined as the union of all $g^{\#}$ -open sets contained in A. i.e., $g^{\#}$ -int $(A) = \cup \{G : G \subseteq A \text{ and } G \text{ is } g^{\#}$ -open $\}$.

Definition 2.6 ([15]). For every set $A \subseteq X$, we define the $g^{\#}$ -closure of A to be the intersection of all $g^{\#}$ -closed sets containing A. i.e., $g^{\#}$ -cl $(A) = \cap \{F : A \subseteq F \in G^{\#}C(X)\}$.

Definition 2.7 ([15]). A space (X, τ) is called a $T^{\#}_{\frac{1}{2}}$ -space if every $g^{\#}$ -closed set in it is closed.

Recall that a subset A of a space (X, τ) is called dense if cl(A)=X.

Definition 2.8. A topological space (X, τ) is called

- 1. submaximal [5, 18] if every dense subset is open.
- 2. g-submaximal [1] if every dense subset is g-open.
- 3. rg-submaximal [13] if every dense subset is rg-open.

Remark 2.9. For a topological space (X, τ) , the following statements hold:

- 1. Every closed set is $g^{\#}$ -closed but not conversely [19].
- 2. Every $g^{\#}$ -closed set is g-closed but not conversely [19].
- 3. A subset A of X is $g^{\#}$ -closed if and only if $g^{\#}$ -cl(A)=A [15].
- 4. A subset A of X is $g^{\#}$ -open if and only if $g^{\#}$ -int(A)=A [15].

Corollary 2.10 ([15]). If A is a $g^{\#}$ -closed set and F is a closed set, then $A \cap F$ is a $g^{\#}$ -closed set.

Theorem 2.11 ([18]). Let (X, τ) be a topological space.

- 1. If X is g-submaximal, then X is rg-submaximal.
- 2. The converse of the above need not be true in general.

3. $g^{\#}$ -Locally Closed Sets

We introduce the following definition.

Definition 3.1. A subset A of (X, τ) is called $g^{\#}$ -locally closed (briefly $g^{\#}$ -lc) if $A=S\cap G$, where S is $g^{\#}$ -open and G is $g^{\#}$ -closed in (X, τ) .

The class of all $g^{\#}$ -locally closed sets in X is denoted by $G^{\#}LC(X)$.

Proposition 3.2. Every $g^{\#}$ -closed (resp. $g^{\#}$ -open) set is $g^{\#}$ -lc set but not conversely.

Proof. It follows from Definition 3.1.

Example 3.3. Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, \{a\}, X\}$. Then the set $\{a\}$ is $g^{\#}$ -lc set but it is not $g^{\#}$ -closed and the set $\{b, c\}$ is $g^{\#}$ -lc set but it is not $g^{\#}$ -open in (X, τ) .

Proposition 3.4. Every lc set is $g^{\#}$ -lc set but not conversely.

Proof. It follows from Remark 2.9 (1).

Example 3.5. Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, \{b, c\}, X\}$. Then the set $\{b\}$ is $g^{\#}$ -lc set but it is not lc set in (X, τ) .

Proposition 3.6. Every $g^{\#}$ -lc set is a (1) glc set and (2) sglc set. However the separate converses are not true.

Proof. It follows from Remark 2.9 (2) and the fact that every $g^{\#}$ -closed set is sg-closed.

Example 3.7. Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$. Then the set $\{a, c\}$ is glc set but it is not $g^{\#}$ -lc set in (X, τ) . Moreover, the set $\{a, c\}$ is sglc set but it is not $g^{\#}$ -lc set in (X, τ) .

Remark 3.8. The concepts of α -lc set and $g^{\#}$ -lc set are independent of each other.

Example 3.9. The set $\{a, c\}$ in Example 3.7 is α -lc set but it is not a $g^{\#}$ -lc set in (X, τ) .

Example 3.10. Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, \{a, b\}, X\}$. Then set $\{a\}$ is $g^{\#}$ -lc set but it is not an α -lc set in (X, τ) .

Remark 3.11. The concepts of lsc set and $g^{\#}$ -lc set are independent of each other.

Example 3.12. The set $\{b\}$ in Example 3.3 is lsc set but it is not a $g^{\#}$ -lc set in (X, τ) and the set $\{a\}$ in Example 3.10 is $g^{\#}$ -lc set but it is not a lsc set in (X, τ) .

Remark 3.13. The concepts of $g^{\#}$ -lc set and glsc set are independent of each other.

Example 3.14. The set $\{a, c\}$ in Example 3.3 is glsc set but it is not a $g^{\#}$ -lc set in (X, τ) and the set $\{a, c\}$ in Example 3.10 is $g^{\#}$ -lc set but it is not a glsc set in (X, τ) .

Theorem 3.15. For a $T^{\#}_{\frac{1}{2}}$ -space (X, τ) , the following properties hold:

- 1. $G^{\#}LC(X) = LC(X)$.
- 2. $G^{\#}LC(X) \subseteq GLC(X)$.
- 3. $G^{\#}LC(X) \subseteq GLSC(X)$.
- *Proof.* 1. Since every $g^{\#}$ -open set is open and every $g^{\#}$ -closed set is closed in (X, τ) , $G^{\#}LC(X) \subseteq LC(X)$ and hence $G^{\#}LC(X) = LC(X)$.
 - (2), (3) since for any space (X, τ) , $LC(X)\subseteq GLC(X)$, $LC(X)\subseteq GLSC(X)$.

Corollary 3.16. If $GO(X) = \tau$, then $G^{\#}LC(X) \subseteq GLSC(X) \subseteq LSC(X)$.

Proof. $GO(X) = \tau$ implies that (X, τ) is a $T^{\#}_{\frac{1}{2}}$ -space and hence by Theorem 3.15, $G^{\#}LC(X) \subseteq GLSC(X)$. Let $A \in GLSC(X)$. Then $A = U \cap F$, where U is g-open and F is semi-closed. By hypothesis, U is open and hence A is a lsc set and so $A \in LSC(X)$.

Definition 3.17. A subset A of a space (X, τ) is called

1. $g^{\#}$ - $lc^{\#}$ set if $A=S\cap G$, where S is $g^{\#}$ -open in (X, τ) and G is closed in (X, τ) .

2. $g^{\#}$ -lc^{##} set if $A=S\cap G$, where S is open in (X, τ) and G is $g^{\#}$ -closed in (X, τ) .

The class of all $g^{\#}$ - $lc^{\#}$ (resp. $g^{\#}$ - $lc^{\#\#}$) sets in a topological space (X, τ) is denoted by $G^{\#}LC^{\#}(X)$ (resp. $G^{\#}LC^{\#\#}(X)$).

Proposition 3.18. Every lc set is $g^{\#}$ -lc[#] set but not conversely.

Proof. It follows from Definitions 2.4 (1) and 3.17 (1).

Example 3.19. The set $\{b\}$ in Example 3.10 is $g^{\#}$ -lc[#] set but it is not a lc set in (X, τ) .

Proposition 3.20. Every lc set is $g^{\#}$ -lc^{##} set but not conversely.

Proof. It follows from Definitions 2.4(1) and 3.17(2).

Example 3.21. The set $\{a, c\}$ in Example 3.10 is $g^{\#}$ -lc^{##} set but it is not a lc set in (X, τ) .

Proposition 3.22. Every $g^{\#}$ - $lc^{\#}$ set is $g^{\#}$ -lc set but not conversely.

Proof. It follows from Definitions 3.1 and 3.17 (1).

Example 3.23. The set $\{a, c\}$ in Example 3.10 is $g^{\#}$ -lc set but it is not a $g^{\#}$ -lc[#] set in (X, τ) .

Proposition 3.24. Every $g^{\#}$ - $lc^{\#\#}$ set is $g^{\#}$ -lc set.

Proof. It follows from Definitions 3.1 and 3.17 (2).

The converse of Proposition 3.24 is not true as shown by the following Example.

Let $X = \mathbb{R}$, the set of all real numbers, with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{Q}\}$ where \mathbb{Q} is the set of all rational numbers. Then \mathbb{N} , the set of natural numbers, is $g^{\#}$ -lc set but not $g^{\#}$ -lc^{##} set.

Solution: Since $\mathbb{N} \in \tau$, \mathbb{N} is not open. Since $\alpha cl(\mathbb{N}) = \mathbb{R}$, $\mathbb{N} \subseteq \mathbb{Q}$ and $\mathbb{Q} \in \tau$, \mathbb{N} is not αg -closed and $\mathbb{R}\setminus\mathbb{N}$ is not αg -open. It is clear that $\mathbb{R}\setminus\mathbb{N}$ is αg -closed, being \mathbb{R} is the only open set containing $\mathbb{R}\setminus\mathbb{N}$. Since $cl(\mathbb{N}) = \mathbb{R} \nsubseteq \mathbb{N}$, $\mathbb{N} \subseteq \mathbb{N}$ and \mathbb{N} is αg -open, \mathbb{N} is not $g^{\#}$ -closed. Since $\mathbb{R}\setminus\mathbb{N}$ is not αg -open and \mathbb{R} is the only αg -open set containing $\mathbb{R}\setminus\mathbb{N}$, $\mathbb{R}\setminus\mathbb{N}$ is $g^{\#}$ -closed and hence \mathbb{N} is $g^{\#}$ -open. Since \mathbb{N} is $g^{\#}$ -open, \mathbb{N} is $g^{\#}$ -lc set. Also, \mathbb{N} is not $g^{\#}$ -lc $^{\#\#}$ set, since \mathbb{N} is neither open nor $g^{\#}$ -closed. Hence the solution.

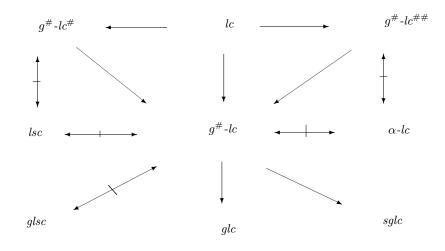
Remark 3.25. The concepts of $g^{\#}$ -lc[#] set and lsc set are independent of each other.

Example 3.26. The set $\{a\}$ in Example 3.10 is $g^{\#}$ -lc[#] set but it is not a lsc set in (X, τ) and the set $\{b\}$ in Example 3.3 is lsc set but it is not a $g^{\#}$ -lc[#] set in (X, τ) .

Remark 3.27. The concepts of $g^{\#}$ -lc^{##} set and α -lc set are independent of each other.

Example 3.28. The set $\{a, c\}$ in Example 3.10 is $g^{\#}$ -l $c^{\#\#}$ set but it is not an α -lc set in (X, τ) and the set $\{a, c\}$ in Example 3.7 is α -lc set but it is not a $g^{\#}$ -l $c^{\#\#}$ set in (X, τ) .

Remark 3.29. From the above discussions we have the following implications where $A \rightarrow B$ (resp. $A \leftrightarrow B$) represents A implies B but not conversely (resp. A and B are independent of each other).



23

Proposition 3.30. If $GO(X) = \tau$, then $G^{\#}LC(X) = G^{\#}LC^{\#}(X) = G^{\#}LC^{\#\#}(X)$.

Proof. For any space $(X, \tau), \tau \subseteq G^{\#}O(X) \subseteq GO(X)$. Therefore by hypothesis, $G^{\#}O(X) = \tau$. i.e., (X, τ) is a $T^{\#}_{\frac{1}{2}}$ -space and hence $G^{\#}LC(X) = G^{\#}LC^{\#}(X) = G^{\#}LC^{\#}(X)$.

Remark 3.31. The converse of Proposition 3.30 need not be true.

For the topological space (X, τ) in Example 3.3, $G^{\#}LC(X) = G^{\#}LC^{\#}(X) = G^{\#}LC^{\#\#}(X)$ holds. However $GO(X) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, X\} \neq \tau$.

Proposition 3.32. Let (X, τ) be a topological space. If $GO(X) \subseteq LC(X)$, then $G^{\#}LC(X) = G^{\#}LC^{\#\#}(X)$.

Proof. Let A∈G[#]LC(X). Then A=S∩G where S is $g^{\#}$ -open and G is $g^{\#}$ -closed. Since G[#]O(X)⊆GO(X) and by hypothesis GO(X)⊆LC(X), S is locally closed. Then S=P∩Q, where P is open and Q is closed. Therefore, A=P∩(Q∩G). By Corollary 2.10, Q∩G is $g^{\#}$ -closed and hence A∈G[#]LC^{##}(X). i.e., G[#]LC(X)⊆G[#]LC^{##}(X). For any topological space, G[#]LC^{##}(X)⊆G[#]LC(X) and so G[#]LC(X)=G[#]LC^{##}(X).

Remark 3.33. The converse of Proposition 3.32 need not be true in general. For the topological space (X, τ) in Example 3.3, we have $G^{\#}LC(X)=G^{\#}LC^{\#\#}(X) = \{\emptyset, X, \{a\}, \{b, c\}\}$. But $GO(X)=\{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, X\} \not\subseteq LC(X)=\{\emptyset, \{a\}, \{b, c\}, X\}$. The following results are characterizations of $g^{\#}$ -lc sets, $g^{\#}$ -lc^{##} sets and $g^{\#}$ -lc^{##} sets.

Theorem 3.34. Assume that $G^{\#}C(X)$ is closed under finite intersections. For a subset A of (X, τ) the following statements are equivalent:

- 1. $A \in G^{\#} LC(X)$,
- 2. $A = S \cap g^{\#} cl(A)$ for some $g^{\#}$ -open set S,
- 3. $g^{\#}$ -cl(A)-A is $g^{\#}$ -closed,
- 4. $A \cup (g^{\#} cl(A))^{c}$ is $g^{\#} open$,
- 5. $A \subseteq g^{\#} int(A \cup (g^{\#} cl(A))^{c}).$

Proof. (1) \Rightarrow (2). Let $A \in G^{\#}LC(X)$. Then $A = S \cap G$ where S is $g^{\#}$ -open and G is $g^{\#}$ -closed. Since $A \subseteq G$, $g^{\#}$ -cl(A) $\subseteq G$ and so $S \cap g^{\#}$ -cl(A) $\subseteq A$. Also $A \subseteq S$ and $A \subseteq g^{\#}$ -cl(A) implies $A \subseteq S \cap g^{\#}$ -cl(A) and therefore $A = S \cap g^{\#}$ -cl(A).

 $(2) \Rightarrow (3)$. A=S $\cap g^{\#}$ -cl(A) implies $g^{\#}$ -cl(A)-A= $g^{\#}$ -cl(A) \cap S^c which is $g^{\#}$ -closed since S^c is $g^{\#}$ -closed and $g^{\#}$ -cl(A) is $g^{\#}$ -closed.

 $(3) \Rightarrow (4). A \cup (g^{\#} - \operatorname{cl}(A))^{c} = (g^{\#} - \operatorname{cl}(A) - A)^{c} \text{ and by assumption, } (g^{\#} - \operatorname{cl}(A) - A)^{c} \text{ is } g^{\#} - \operatorname{open and so is } A \cup (g^{\#} - \operatorname{cl}(A))^{c}.$

(4) \Rightarrow (5). By assumption, $A \cup (g^{\#}-cl(A))^{c} = g^{\#}-int(A \cup (g^{\#}-cl(A))^{c})$ and hence $A \subseteq g^{\#}-int(A \cup (g^{\#}-cl(A))^{c})$.

 $(5) \Rightarrow (1)$. By assumption and since $A \subseteq g^{\#}$ -cl(A), $A = g^{\#}$ -int $(A \cup (g^{\#}$ -cl(A))^{c}) \cap g^{\#}-cl(A). Therefore, $A \in G^{\#}LC(X)$.

Theorem 3.35. For a subset A of (X, τ) , the following statements are equivalent:

- 1. $A \in G^{\#} L C^{\#} (X)$,
- 2. $A = S \cap cl(A)$ for some $g^{\#}$ -open set S,
- 3. cl(A) A is $g^{\#}$ -closed,
- 4. $A \cup (cl(A))^c$ is $g^{\#}$ -open.

Proof. $(1)\Rightarrow(2)$. Let $A \in G^{\#}LC^{\#}(X)$. There exist an $g^{\#}$ -open set S and a closed set G such that $A=S\cap G$. Since $A\subseteq S$ and $A\subseteq cl(A)$, $A\subseteq S\cap cl(A)$. Also since $cl(A)\subseteq G$, $S\cap cl(A)\subseteq S\cap G=A$. Therefore $A=S\cap cl(A)$.

(2) \Rightarrow (1). Since S is $g^{\#}$ -open and cl(A) is a closed set, A=S \cap cl(A) \in G[#]LC[#](X).

(2) \Rightarrow (3). Since cl(A)-A=cl(A)\cap S^c, cl(A)-A is $g^{\#}$ -closed by Corollary 2.10.

(3)⇒(2). Let S=(cl(A)-A)^c. Then S is $g^{\#}$ -open in (X, τ) and A=S∩cl(A).

(3) \Rightarrow (4). Let G=cl(A)-A. Then G^c=A \cup (cl(A))^c and A \cup (cl(A))^c is $g^{\#}$ -open.

 $(4) \Rightarrow (3)$. Let $S = A \cup (cl(A))^c$. Then S^c is $g^{\#}$ -closed and $S^c = cl(A) - A$ and so cl(A) - A is $g^{\#}$ -closed.

Theorem 3.36. Let A be a subset of (X, τ) . Then $A \in G^{\#}LC^{\#\#}(X)$ if and only if $A = S \cap g^{\#}-cl(A)$ for some open set S.

Proof. Let $A \in G^{\#}LC^{\#\#}(X)$. Then $A = S \cap G$ where S is open and G is $g^{\#}$ -closed. Since $A \subseteq G$, $g^{\#}$ -cl(A) $\subseteq G$. We obtain $A = A \cap g^{\#}$ -cl(A) = $S \cap G \cap g^{\#}$ -cl(A)= $S \cap g^{\#}$ -cl(A).

Converse part is trivial.

Corollary 3.37. Let A be a subset of (X, τ) . If $A \in G^{\#}LC^{\#\#}(X)$, then $g^{\#}-cl(A)-A$ is $g^{\#}-closed$ and $A \cup (g^{\#}-cl(A))^{c}$ is $g^{\#}$ -open.

Proof. Let $A \in G^{\#}LC^{\#\#}(X)$. Then by Theorem 3.36, $A = S \cap g^{\#}-cl(A)$ for some open set S and $g^{\#}-cl(A) - A = g^{\#}-cl(A) \cap S^{c}$ is $g^{\#}$ -closed in (X, τ) . If $G = g^{\#}-cl(A) - A$, then $G^{c} = A \cup (g^{\#}-cl(A))^{c}$ and G^{c} is $g^{\#}$ -open and so is $A \cup (g^{\#}-cl(A))^{c}$.

4. $g^{\#}$ -dense Sets and $g^{\#}$ -submaximal Spaces

We introduce the following definition.

Definition 4.1. A subset A of a space (X, τ) is called $g^{\#}$ -dense if $g^{\#}$ -cl(A)=X.

Example 4.2. Consider the topological space (X, τ) in Example 3.5. Then the set $A = \{b, c\}$ is $g^{\#}$ -dense in (X, τ) .

Proposition 4.3. Every $g^{\#}$ -dense set is dense.

Proof. Let A be an $g^{\#}$ -dense set in (X, τ) . Then $g^{\#}$ -cl(A)=X. Since $g^{\#}$ -cl(A) \subseteq cl(A), we have cl(A)=X and so A is dense.

The converse of Proposition 4.3 need not be true as seen from the following example.

Example 4.4. The set $\{a, c\}$ in Example 3.10 is a dense in (X, τ) but it is not $g^{\#}$ -dense in (X, τ) .

Definition 4.5. A topological space (X, τ) is called $g^{\#}$ -submaximal if every dense subset in it is $g^{\#}$ -open in (X, τ) .

Proposition 4.6. Every submaximal space is $g^{\#}$ -submaximal.

Proof. Let (X, τ) be a submaximal space and A be a dense subset of (X, τ) . Then A is open. But every open set is $g^{\#}$ -open and so A is $g^{\#}$ -open. Therefore (X, τ) is $g^{\#}$ -submaximal.

The converse of Proposition 4.6 need not be true as seen from the following example.

Example 4.7. Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, X\}$. Then $G^{\#}O(X) = P(X)$. We have every dense subset is $g^{\#}$ -open and hence (X, τ) is $g^{\#}$ -submaximal. However, the set $A = \{a\}$ is dense in (X, τ) , but it is not open in (X, τ) . Therefore (X, τ) is not submaximal.

Proposition 4.8. Every $g^{\#}$ -submaximal space is g-submaximal.

Proof. Let (X, τ) be a $g^{\#}$ -submaximal space and A be a dense subset of (X, τ) . Then A is $g^{\#}$ -open. But every $g^{\#}$ -open set is g-open and so A is g-open. Therefore (X, τ) is g-submaximal.

The converse of Proposition 4.8 need not be true as seen from the following example.

X, $\{a\}\}$. Every dense subset is g-open and hence (X, τ) is g-submaximal. However, the set $A = \{a, b\}$ is dense in (X, τ) , but it is not $g^{\#}$ -open in (X, τ) . Therefore (X, τ) is not $g^{\#}$ -submaximal.

Remark 4.10. From Propositions 4.6, 4.8 and Theorem 2.11, we have the following diagram: $submaximal \rightarrow q^{\#}$ - $submaximal \rightarrow q$ - $submaximal \rightarrow rq$ -submaximal

Theorem 4.11. A space (X, τ) is $g^{\#}$ -submaximal if and only if $P(X) = G^{\#}LC^{\#}(X)$.

Proof. Necessity. Let $A \in P(X)$ and let $V = A \cup (cl(A))^c$. This implies that $cl(V) = cl(A) \cup cl(A)$ $(cl(A))^c = X$. Hence cl(V) = X. Therefore V is a dense subset of X. Since (X, τ) is $g^{\#}$ -submaximal, V is $g^{\#}$ -open. Thus $A \cup (cl(A))^c$ is $q^{\#}$ -open and by Theorem 3.35, we have $A \in G^{\#}LC^{\#}(X)$. Sufficiency. Let A be a dense subset of (X, τ) . This implies $A \cup (cl(A))^c = A \cup X^c = A \cup \emptyset = A$. Now $A \in G^{\#}LC^{\#}(X)$ implies that $A = A \cup (cl(A))^c$ is $g^{\#}$ -open by Theorem 3.35. Hence (X, τ) is $g^{\#}$ -submaximal.

Proposition 4.12. Assume that $G^{\#}O(X)$ forms a topology. For subsets A and B in (X, τ) , the following are true:

- 1. If A, $B \in G^{\#} LC(X)$, then $A \cap B \in G^{\#} LC(X)$.
- 2. If A, $B \in G^{\#} LC^{\#}(X)$, then $A \cap B \in G^{\#} LC^{\#}(X)$.
- 3. If A, $B \in G^{\#} L C^{\#\#}(X)$, then $A \cap B \in G^{\#} L C^{\#\#}(X)$.
- 4. If $A \in G^{\#}LC(X)$ and B is $g^{\#}$ -open (resp. $g^{\#}$ -closed), then $A \cap B \in G^{\#}LC(X)$.
- 5. If $A \in G^{\#}LC^{\#}(X)$ and B is $g^{\#}$ -open (resp. closed), then $A \cap B \in G^{\#}LC^{\#}(X)$.
- 6. If $A \in G^{\#}LC^{\#\#}(X)$ and B is $g^{\#}$ -closed (resp. open), then $A \cap B \in G^{\#}LC^{\#\#}(X)$.
- 7. If $A \in G^{\#}LC^{\#}(X)$ and B is $q^{\#}$ -closed, then $A \cap B \in G^{\#}LC(X)$.
- 8. If $A \in G^{\#}LC^{\#\#}(X)$ and B is $g^{\#}$ -open, then $A \cap B \in G^{\#}LC(X)$.
- 9. If $A \in G^{\#}LC^{\#\#}(X)$ and $B \in G^{\#}LC^{\#}(X)$, then $A \cap B \in G^{\#}LC(X)$.

Proof. By Remark 2.9 and Corollary 2.10, (1) to (8) hold.

(9). Let A=S \cap G where S is open and G is $g^{\#}$ -closed and B=P \cap Q where P is $g^{\#}$ -open and Q is closed. Then $A \cap B = (S \cap P) \cap (G \cap Q)$ where $S \cap P$ is $g^{\#}$ -open and $G \cap Q$ is $g^{\#}$ -closed, by Corollary 2.10. Therefore $A \cap B \in G^{\#}LC(X)$. \square

Remark 4.13. Union of two $q^{\#}$ -lc sets (resp. $q^{\#}$ -lc[#] sets, $q^{\#}$ -lc^{##} sets) need not be an $q^{\#}$ -lc set (resp. $q^{\#}$ -lc[#] set, $q^{\#}$ -lc^{##} set) as seen from the following Examples.

Example 4.14. In Example 3.7, we have $G^{\#}LC(X) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\}$. Then the sets $\{a\}$ and $\{c\}$ are $g^{\#}$ -lc sets, but their union $\{a, c\} \notin G^{\#}LC(X)$.

Example 4.15. In Example 3.7, we have $G^{\#}LC^{\#}(X) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\}$. Then the sets $\{a\}$ and $\{c\}$ are $g^{\#}-lc^{\#}$ sets, but their union $\{a, c\} \notin G^{\#}LC^{\#}(X)$.

Example 4.16. In Example 3.7, we have $G^{\#}LC^{\#\#}(X) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\}$. Then the sets $\{a\}$ and $\{c\}$ are $g^{\#}$ -lc^{##} sets, but their union $\{a, c\} \notin G^{\#}LC^{\#\#}(X)$.

We introduce the following definition.

Definition 4.17. Let A and B be subsets of (X, τ) . Then A and B are said to be $g^{\#}$ -separated if $A \cap g^{\#}$ - $cl(B) = \emptyset$ and $g^{\#}$ - $cl(A) \cap B = \emptyset$.

Example 4.18. For the topological space (X, τ) of Example 3.10. Let $A = \{a\}$ and $B = \{b\}$. Then $g^{\#} - cl(A) = \{a, c\}$ and $g^{\#} - cl(B) = \{b, c\}$ and so the sets A and B are $g^{\#}$ -separated.

Proposition 4.19. Assume that $G^{\#}O(X)$ forms a topology. For a topological space (X, τ) , the following are true:

- 1. Let A, $B \in G^{\#}LC(X)$. If A and B are $g^{\#}$ -separated then $A \cup B \in G^{\#}LC(X)$.
- 2. Let A, $B \in G^{\#} LC^{\#}(X)$. If A and B are separated (i.e., $A \cap cl(B) = \emptyset$ and $cl(A) \cap B = \emptyset$), then $A \cup B \in G^{\#} LC^{\#}(X)$.
- 3. Let A, $B \in G^{\#}LC^{\#\#}(X)$. If A and B are $g^{\#}$ -separated then $A \cup B \in G^{\#}LC^{\#\#}(X)$.

Proof. 1. Since A, B∈G[#]LC(X), by Theorem 3.34, there exist g[#]-open sets U and V of (X, τ) such that A=U∩g[#]-cl(A) and B=V∩g[#]-cl(B). Now G=U∩(X -g[#]-cl(B)) and H=V∩(X-g[#]-cl(A)) are g[#]-open subsets of (X, τ). Since A∩g[#]-cl(B)=Ø, A⊆(g[#]-cl(B))^c. Now A=U∩g[#]-cl(A) becomes A∩(g[#]-cl(B))^c =G∩g[#]-cl(A). Then A=G∩g[#]-cl(A). Similarly B=H∩g[#]-cl(B). Moreover G∩ g[#]-cl(B)=Ø and H∩g[#]-cl(A)=Ø. Since G and H are g[#]-open sets of (X, τ), G∪H is g[#]-open. Therefore A∪B=(G∪H)∩g[#]-cl(A∪B) and hence A∪B ∈G[#]LC(X).

(2) and (3) are similar to (1), using Theorems 3.35 and 3.36.

П

Remark 4.20. The assumption that A and B are $g^{\#}$ -separated in (1) of Proposition 4.19 cannot be removed. In Example 3.7, the sets $\{a\}$ and $\{c\}$ are not $g^{\#}$ -separated and their union $\{a, c\}\notin G^{\#}LC(X)$.

References

- K.Balachandran, P.Sundaram and H.Maki, Generalized locally closed sets and GLC-continuous functions, Indian J. Pure Appl Math., 27(3)(1996), 235-244.
- [2] P.Bhattacharyya and B.K.Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(3)(1987), 375-382.

[5] J.Dontchev, On submaximal spaces, Tamkang J. Math., 26(1995), 253-260.

^[3] N.Bourbaki, General topology, Part I, Addison-Wesley, Reading, Mass., (1966).

^[4] S.G.Crossley and S.K.Hildebrand, Semi-closure, Texas J. Sci., 22(1971), 99-112.

^[6] M.Ganster and I.L.Reilly, Locally closed sets and LC-continuous functions, Internat J. Math. Math. Sci., 12(3)(1989), 417-424.

- [7] Y.Gnanambal, Studies on generalized pre-regular closed sets and generalization of locally closed sets, Ph.D Thesis, Bharathiar University, Coimbatore (1998).
- [8] N.Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- [9] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [10] H.Maki, R.Devi and K.Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 15(1994), 51-63.
- [11] A.S.Mashhour, I.A.Hasanein and S.N.El-Deeb, α-continuous and α-open mappings, Acta Math. Hungar., 41(1983), 213-218.
- [12] O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [13] N.Palaniappan and K.C.Rao, Regular generalized closed sets, Kyungpook Math. J., 33(1993), 211-219.
- [14] J.H.Park and J.K.Park, On semi-generalized locally closed sets and SGLC-continuous functions, Indian J. Pure Appl. Math., 31(9)(2000), 1103-1112.
- [15] O.Ravi, Properties of $g^{\#}$ -closed sets, (Preprint).
- [16] A.H.Stone, Absolutely FG spaces, Proc. Amer. Math. Soc., 80(1980), 515-520.
- [17] M.H.Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 374-481.
- [18] M.K.R.S.Veera Kumar, *ĝ-locally closed sets and ĜLC-functions*, Indian J. Math., 43(2)(2001), 231-247.
- [19] M.K.R.S.Veera Kumar, $g^{\#}$ -closed sets in topological spaces, Mem. Fac. Sci. Kochi Univ. (Math.)., 24(2003), 1-13.