

International Journal of Mathematics And its Applications

Some Generalized Results on G_{δ} -diagonal Regular Spaces

Research Article

Pralahad Mahagaonkar^{1*}

1 Department of Mathematics, Ballari Institute of Technology and Management, Ballari, India.

Abstract: In this paper we constructed a space X possessing a regular G_{δ} -diagonal set of full measure, then the space X has a diagonal set if $\{(x, x) : x \in X\}$ and is regular in G_{δ} -set for $X \times X$. We extend our result for some characterization of spaces with G_{δ} -diagonal set. Such a kind obtained by Borges.C.J.R [1], Cinder.J.G [2] and Zenor.P [5].

MSC: 22A15, 22A20, 22A10.

Keywords: Regular spaces, G_{δ} -diagonals, $w\Delta$ -spaces © JS Publication.

1. Introduction

A subset H of the space X is a regular G_{δ} -set if there is a sequence $\{U_n\}$ of open sets containing H such that $H = \bigcap_{i=1}^{\infty} U_i = \bigcup_{i=1}^{\infty} U_i^-$. A space X has a regular G_{δ} -diagonal if $\{(x, x) : x \in X\}$ is a regular, G_{δ} -set in $X \times X$.

2. Main Results

Theorem 2.1. X has a G_{δ} -diagonal if and only if there is a sequence $\{G_n\}$ is open covers of X such that if $x \in X$, then $x = \bigcap_{n=1}^{\infty} st(x, G_1)$.

Theorem 2.2. X has a regular G_{δ} -diagonal if and only if there is a sequence $\{G_n\}$ of open covers of X such that if x and y are distinct points of X, then there are an integer n and open sets U and V containing x and y respectively such that no member of $\{G_n\}$ intersects both U and V.

From Theorem 2.1 and 2.2, we see that any paracompact T_2 -space with a G_{δ} -diagonal has a regular G_{δ} -diagonal and a corollary to Theorem 2.2 that any space with a regular G_{δ} -diagonal is Hausdorff. A development $\{G_n\}$ for the space X is said to satisfy the 3-link property if it is true that if p and q are distinct points, then there is an integer n such that no member of $\{G_n\}$ intersects both at $st(p, G_n)$ and $st(q, G_n)$ (Heath [3]). According to Borges [1], a space X is a $w\Delta$ -space if there is a sequence $\{G_n\}$ of open covers of X such that if x is a point and, for each n, x_n is a point of $st(x, G_n)$, then the sequence $\{x_n\}$ has a cluster point, further we extend the following results.

Theorem 2.3. Let X be a topological space. Then the following conditions are satisfied.

^{*} E-mail: pralahadpralhad@yahoo.com

- (i) X admits a development satisfying the 3-link property.
- (ii) X is a $w\Delta$ -space with a regular G_{δ} -diagonal.
- (iii) There is a semi-metric d on X such that
 - (A) If $\{x_n\}$ and $\{y_n\}$ are sequences both converging to x, then $\lim_{n \to \infty} d(x_n, y_n) = 0$
 - (B) If x and y are distinct points of X and $\{x_n\}$ and $\{y_n\}$ are sequences converging to x and y respectively.

Proof. According to Health [3] and Moore [4], a space X is an M-space if there is normal sequence $\{G_n\}$ of open covers of X such that is x is a point and, for each n, x_n is a point of $st(x, G_n)$, then the sequence $\{x_n\}$ has a cluster point.

Theorem 2.4. If X is a topological space, then the following conditions are equivalent:

- (a) X is a metrizable.
- (b) X is a T_1 -M-space such that X^2 is a perfectly normal.
- (c) X is an M-space with a regular G_{δ} -diagonal.
- (d) X is a T_1 -M-space such that X^3 is hereditarily normal.
- (e) X is a T_1 -M-space such that X^3 is hereditarily countable paracompact.
- (f) X is an M-space that admits a one-to-one continuous function onto a metricspace.

Borges [1] shows that X is paracompact, locally connected and locally peripherally compact, then X is metrizable if and only if X has G_{δ} -diagonal.

Theorem 2.5. If X is locally connected and locally peripherally compact, then X is metrizable if and only if X has a regular G_{δ} -diagonal.

Proof. Let $\{U_n\}$ be a sequence of open covers of X such that each member of U_n is connected and such that if p and q are distinct points, then there are open sets U and V containing p and q respectively and an integer n such that no member of U_n intersects both $st(p, G_n)$ and $st(q, G_n)$. We will first show that $\{U_n\}$ is a development for X. To this end, let $x \in X$ and let U be an open set containing x. There is an open set V with compact boundary such that $x \in V \subset U$. Suppose that, for each n, there is member ,say g_n , of U_n that contains x and intersects X-V. Then, since each g_n is connected, there is a point x_n of the boundary of V that is in g_n . Since the boundary of V is compact, the sequence $\{x_n\}$ has cluster point, say x_0 . It follows that $x_0 \in \bigcap_{n=1}^{\infty} cl \ (st \ (x, U_n))$ which is a contradiction.

By Theorem 2.3, there is a development $\{G_n\}$ for X that satisfies the 3-link property. Since X is locally connected. Let x denote, we may assume that, for each n, the members of G_n are connected. Let x denoted a point of X and let U be an open set containing x, We will show that there is an integer n such that if $g \in G_n$ and $g \cap st(x, G_n) \neq \Phi$, then $g \subset U$. It will follow that X is metrizable by Moore's [4]. To this end, let V be an open subset of U containing x with compact, suppose that, for each n, there are members U_n and V_n of G_n such that $x \in U_n$ and $U_n \cap V_n \neq \phi$, and $(U_n \cap V_n) \cap (X - V) \neq \phi$. Since, for each n, $U_n \bigcup V_n$ is connected, there is point x_n of $U_n \bigcup V_n$ in the boundary of V. Since the boundary of V is compact, there is a cluster point x_0 , of $\{x_n\}$. But it follows that , for each n, there is a member of G_n that intersects both of $st(x, G_n)$ and $st(x_0, G_n)$ which is contradiction.

References

- [1] C.J.R.Berges, On metrizability of topological spaces, Canad. J Math., 20(1978), 795-803.
- [2] J.G.Ceder, Some generalization of metric spaces, Pacific J Math., 11(1961), 105-125.
- [3] R.W.Health, Metrizablity, compactness and paracompacetness in Moore spaces, Amer. Math. Soc., 10(1978), 105-125.
- [4] R.L.Moore, Products of normal spaces with metric spaces, Math. Ann., 154(1964), 365-382.
- [5] P.Zenor, On spaces with regular spaces, Pacific J Math., (1986), 122-132.