International Journal of Mathematics And its Applications

Some Generalized Results on G_{δ}-diagonal Regular Spaces

Pralahad Mahagaonkar ${ }^{\text {1* }}$

1 Department of Mathematics, Ballari Institute of Technology and Management, Ballari, India.

```
Abstract: In this paper we constructed a space X possessing a regular G}\mp@subsup{G}{\delta}{}\mathrm{ -diagonal set of full measure, then the space X has a diagonal set if \(\{(x, x): x \in X\}\) and is regular in \(G_{\delta}-\) set for \(X \times X\). We extend our result for some characterization of spaces with \(G_{\delta}\)-diagonal set. Such a kind obtained by Borges.C.J.R [1], Cinder.J.G [2] and Zenor.P [5].
MSC: \(\quad 22 \mathrm{~A} 15,22 \mathrm{~A} 20,22 \mathrm{~A} 10\).
```

Keywords: Regular spaces, G_{δ}-diagonals, $w \Delta$-spaces
(C) JS Publication.

1. Introduction

A subset H of the space X is a regular G_{δ}-set if there is a sequence $\left\{U_{n}\right\}$ of open sets containing H such that $H=\bigcap_{i=1}^{\infty} U_{i}=$ $\bigcap_{i=1}^{\infty} U_{i}^{-}$. A space X has a regular G_{δ}-diagonal if $\{(x, x): x \in X\}$ is a regular, G_{δ}-set in $X \times X$.

2. Main Results

Theorem 2.1. X has a G_{δ}-diagonal if and only if there is a sequence $\left\{G_{n}\right\}$ is open covers of X such that if $x \in X$, then $x=\bigcap_{i=1}^{\infty} s t\left(x, G_{1}\right)$.

Theorem 2.2. X has a regular G_{δ}-diagonal if and only if there is a sequence $\left\{G_{n}\right\}$ of open covers of X such that if x and y are distinct points of X, then there are an integer n and open sets U and V containing x and y respectively such that no member of $\left\{G_{n}\right\}$ intersects both U and V.

From Theorem 2.1 and 2.2 , we see that any paracompact T_{2}-space with a G_{δ}-diagonal has a regular G_{δ}-diagonal and a corollary to Theorem 2.2 that any space with a regular G_{δ}-diagonal is Hausdorff. A development $\left\{G_{n}\right\}$ for the space X is said to satisfy the 3 -link property if it is true that if p and q are distinct points, then there is an integer n such that no member of $\left\{G_{n}\right\}$ intersects both at $\operatorname{st}\left(p, G_{n}\right)$ and $s t\left(q, G_{n}\right)$ (Heath [3]). According to Borges [1], a space X is a $w \Delta$-space if there is a sequence $\left\{G_{n}\right\}$ of open covers of X such that if x is a point and, for each n, x_{n} is a point of $\operatorname{st}\left(x, G_{n}\right)$, then the sequence $\left\{x_{n}\right\}$ has a cluster point, further we extend the following results.

Theorem 2.3. Let X be a topological space. Then the following conditions are satisfied.

[^0](i) X admits a development satisfying the 3-link property.
(ii) X is a $w \Delta$-space with a regular G_{δ}-diagonal.
(iii) There is a semi-metric d on X such that
(A) If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences both converging to x, then $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0$
(B) If x and y are distinct points of X and $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences converging to x and y respectively.

Proof. According to Health [3] and Moore [4], a space X is an M-space if there is normal sequence $\left\{G_{n}\right\}$ of open covers of X such that is x is a point and, for each n, x_{n} is a point of $s t\left(x, G_{n}\right)$, then the sequence $\left\{x_{n}\right\}$ has a cluster point.

Theorem 2.4. If X is a topological space, then the following conditions are equivalent:
(a) X is a metrizable.
(b) X is a $T_{1}-M$-space such that X^{2} is a perfectly normal.
(c) X is an M-space with a regular G_{δ}-diagonal.
(d) X is a $T_{1}-M$-space such that X^{3} is hereditarily normal.
(e) X is a $T_{1}-M$-space such that X^{3} is hereditarily countable paracompact.
(f) X is an M-space that admits a one-to-one continuous function onto a metricspace.

Borges [1] shows that X is paracompact, locally connected and locally peripherally compact, then X is metrizable if and only if X has G_{δ}-diagonal.

Theorem 2.5. If X is locally connected and locally peripherally compact, then X is metrizable if and only if X has a regular G_{δ}-diagonal.

Proof. Let $\left\{U_{n}\right\}$ be a sequence of open covers of X such that each member of U_{n} is connected and such that if p and q are distinct points, then there are open sets U and V containing p and q respectively and an integer n such that no member of U_{n} intersects both $\operatorname{st}\left(p, G_{n}\right)$ and $\operatorname{st}\left(q, G_{n}\right)$. We will first show that $\left\{U_{n}\right\}$ is a development for X. To this end, let $x \in X$ and let U be an open set containing x . There is an open set V with compact boundary such that $x \in V \subset U$. Suppose that, for each n , there is member ,say g_{n}, of U_{n} that contains x and intersects X-V. Then, since each g_{n} is connected, there is a point x_{n} of the boundary of V that is in g_{n}. Since the boundary of V is compact, the sequence $\left\{x_{n}\right\}$ has cluster point, say x_{0}. It follows that $x_{0} \in \bigcap_{n=1}^{\infty} c l\left(s t\left(x, U_{n}\right)\right)$ which is a contradiction.

By Theorem 2.3, there is a development $\left\{G_{n}\right\}$ for X that satisfies the 3 -link property. Since X is locally connected. Let x denote, we may assume that, for each n , the members of G_{n} are connected. Let x denoted a point of X and let U be an open set containing x , We will show that there is an integer n such that if $g \in G_{n}$ and $g \bigcap$ st $\left(x, G_{n}\right) \neq \Phi$, then $g \subset U$. It will follow that X is metrizable by Moore's [4]. To this end, let V be an open subset of U containing x with compact, suppose that, for each n, there are members U_{n} and V_{n} of G_{n} such that $x \in U_{n}$ and $U_{n} \bigcap V_{n} \neq \phi$, and $\left(U_{n} \bigcap V_{n}\right) \bigcap(X-V) \neq \phi$. Since, for each n, $U_{n} \bigcup V_{n}$ is connected, there is point x_{n} of $U_{n} \bigcup V_{n}$ in the boundary of V. Since the boundary of V is compact, there is a cluster point x_{0}, of $\left\{x_{n}\right\}$. But it follows that, for each n , there is a member of G_{n} that intersects both of $s t\left(x, G_{n}\right)$ and $s t\left(x_{0}, G_{n}\right)$ which is contradiction.

References

[1] C.J.R.Berges, On metrizability of topological spaces, Canad. J Math., 20(1978), 795-803.
[2] J.G.Ceder, Some generalization of metric spaces, Pacific J Math., 11(1961), 105-125.
[3] R.W.Health, Metrizablity, compactness and paracompacetness in Moore spaces, Amer. Math. Soc., 10(1978), 105-125.
[4] R.L.Moore, Products of normal spaces with metric spaces, Math. Ann., 154(1964), 365-382.
[5] P.Zenor, On spaces with regular spaces, Pacific J Math., (1986), 122-132.

[^0]: * E-mail: pralahadpralhad@yahoo.com

