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1. Introduction

A linear transformation T : V → W of vector spaces is said to be an invertible if there is another linear transformation

denoted by T−1 : W → V such that T−1 ◦ T = IV = T ◦ T−1, where IV is an identity operator of V. In this case this T−1

is unique and is called an inverse of T . It is generally known that a linear transformation of vector spaces is an invertible

if and only if it is a bijection. Otherwise, it is non invertible [3]. But there are some linear transformations which have

an inverse from one side only; from the left side or from the right side. In this paper we provide necessary and sufficient

conditions to those linear transformations having an inverse from the left side only and we characterize the class of all left

inverses of these transformations in the case of finite dimensional vector spaces.

2. Preliminaries

Definition 2.1. Let V and W be vector spaces over a field F. A mapping T : V → W is called a linear transformation of

V into W if it satisfies the following properties;

T (x+ y) = Tx+ Ty for all x, y ∈ V and

T (αx) = αTx for all x ∈ V and all scalars α ∈ F.

These two properties are called the linearity properties [1–3].

Definition 2.2. Let T : V → W be a linear transformation. Define kernel of T (or the null space of T ) and Image of T

respectively by: kerT = {x ∈ V : Tx = 0} and Img T = {Tx : x ∈ V }. Then both kerT and Img T are subspaces of V

and W respectively [1].
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Left-invertible Linear Transformations

Theorem 2.3 ([1–3]). For any linear transformation T : V → W . If V and W are finite dimensional say dimV = n and

dimW = m, then dimV = dim (ker T ) + dim (Img T ).

3. Left-Invertible Linear Transformations

Definition 3.1. Let V and W be vector spaces over a field F. A linear transformation T : V →W is called an injection if:

Tx = Ty ⇒ x = y for all x, y ∈ V .

Theorem 3.2 ([2]). A linear transformation T : V →W is an injection if and only if kerT = {0}.

Proof. Suppose that T is an injection. Then it is clear that T (0) = 0 =⇒ 0 ∈ kerT =⇒ {0} ⊆ kerT . On the other hand:

x ∈ kerT =⇒ Tx = 0 = T0

=⇒ Tx = T0

=⇒ x = 0 (∵ T is an injection)

=⇒ kerT ⊆ {0} ⊆ kerT

Therefore, kerT = {0}.

Conversely suppose that kerT = {0}. For any x, y ∈ V ,

Tx = Ty =⇒ Tx− Ty = 0 =⇒ T (x− y) = 0 =⇒ x− y ∈ kerT = {0} =⇒ x− y = 0 =⇒ x = y

Therefore T is an injection.

Theorem 3.3. Let V and W be finite dimensional vector spaces over the given field F. If a linear transformation T : V →W

is an injection, then dimV ≤ dimW .

Proof. It is clear that Img T is a subspace of W and hence dim (Img T ) ≤ dimW . Also, from theorem 1 we have

dimV = dim (kerT ) + dim (Img T )

=⇒ dimV = 0 + dim (Img T ) (∵ kerT = {0})

=⇒ dimV = dim (Img T ) ≤ dimW .

Definition 3.4. A linear transformation T : V → W is is said to be left invertible if there exists a linear transformation

Tl : W → V such that Tl ◦ T = IV where IV is an identity operator of V.

Definition 3.5. A linear transformation T : V →W is is said to be left cancellable if for any vector space U over the same

field F and any linear transformations T1, T2 : U → V ; T ◦ T1 = T ◦ T2 =⇒ T1 = T2.

The next theorem gives us two equivalent conditions (necessary and sufficient conditions) to a given linear transformation

to have a left inverse and it is included here for the completeness of the paper.

Theorem 3.6. Let V and W be finite dimensional vector spaces over a field F such that dimV = n and dimW = m.

Then the following are equivalent for any linear transformation T : V →W .
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(i) T is an injection

(ii) T is Left Invertible

(iii) T is Left cancellable

Proof. (i) =⇒ (ii) Suppose that T is an injection and let {x1, x2, . . . , xn} be an arbitrary basis for V . Then

{Tx1, Tx2, . . . , Txn} forms a basis for Img T in W. For;

y ∈ Img T =⇒ y = Tx for some x ∈ V.

=⇒ y = T (α1x+ α2x2 + · · ·+ αnxn) for some α1, α2, . . . , αn ∈ F (∵ {x1, x2, . . . , xn} is a basis for V)

=⇒ y = α1Tx1 + α2Tx2 + · · ·+ αnTxn (∵ T is linear)

Therefore, {Tx1, Tx2, . . . , Txn} generates Img T . Also let α1Tx1 + α2Tx2 + · · · + αnTxn = 0 for some scalars

α1, α2, . . . , αn ∈ F

=⇒ T (α1x1 + α2x2 + · · ·+ αnxn) = 0

=⇒ α1x1 + α2x2 + · · ·+ αnxn ∈ kerT = {0} (∵ T is an injection)

=⇒ α1x1 + α2x2 + · · ·+ αnxn = 0

=⇒ α1 = 0, α2 = 0, . . . , αn = 0 (∵ {x1, x2, . . . , xn} is a basis for V)

Therefore {Tx1, Tx2, . . . , Txn} is linearly independent and hence a basis for Im T . Put y1 = Tx1, y2 = Tx2, . . . ,yn = Txn.

Then we have a linearly independent set {y1, y2, . . . , yn} in W. If n = m, then {y1, y2, . . . , yn} forms a basis for W and

hence Img T = W . Thus T is a surjection also and hence invertible. If n < m such that m − n = r, then Img T ⊂ W

so that we can choose an element yn+1 in W − Img T . Since yn+1 /∈ Img T then it is not a scalar combination of these

yi’s and hence the set {y1, y2, . . . , yn, yn+1} becomes linearly independent in W. let U1 be the subspace of W generated

by {y1, y2, . . . , yn, yn+1}. Therefore since {y1, y2, . . . , yn, yn+1} is linearly independent we get that dimU1 = n + 1. If

n+ 1 = m then U1 = W and if n+ 1 < m, then we can choose another element yn+2 in W −U and hence yn+2 /∈ U1, so that

this yn+2 is not a linear combination of vectors y1, y2, . . . , yn, yn+1. thus, the set {y1, y2, . . . , yn, yn+1, yn+2} is linearly

independent in W. Similarly doing this process r times, we get r = m− n vectors yn+1, . . . , yn+r in W − Img T such that

the set {y1, y2, . . . , yn, yn+1, . . . , yn+r = ym} is linearly independent in W and hence forms a basis for W. Therefore for any

y ∈W there exists some scalars α1, α2, . . . , αn, . . . , αm in F such that y = α1y1 +α2y2 + · · ·+αnyn + · · ·+αmym. Now for

any y ∈W , define a mapping f : W → V by: f (y) = α1x1 +α2x2 + · · ·+αnxn if y = α1y1 +α2y2 + · · ·+αnyn + · · ·+αmym.

Since any element y in W can be uniquely expressed as a linear combination of elements of a given basis, it follows that f

is well defined. Now we prove that this f is a linear transformation of W into V.

y, z ∈W =⇒ y = α1y1 + α2y2 + · · ·+ αnyn + · · ·+ αmym and z = β1y1 + β2y2 + · · ·+ βnyn + · · ·+ βmym for some scalars

αi’s and βi’s in F, 1 ≤ i ≤ m. Therefore;

f (y + z) = f ((α1 + β1) y1 + (α2 + β2) y2 + · · ·+ (αn + βn) yn + · · ·+ (αm + βm) ym)

= (α1 + β1)x1 + (α2 + β2)x2 + · · ·+ (αn + βn)xn

= α1x1 + β1x1 + α2x2 + β2x2 + · · ·+ αnxn + βnxn

= α1x1 + α2x2 + · · ·+ αnxn + β1x1 + β2x2 + · · ·+ βnxn

= f (y) + f (z)
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Also, for any scalar α, consider:

f (αy) = f (α (α1y1 + α2y2 + · · ·+ αnyn + · · ·+ αmym))

= f (αα1y1 + αα2y2 + · · ·+ ααnyn + · · ·+ ααmym)

= αα1x1 + αα2x2 + · · ·+ ααnxn

= α (α1x1 + α2x2 + · · ·+ αnxn)

= αf(y)

This shows that f is a linear transformation. Moreover, f (yi)= xi for all 1 ≤ i ≤ n. Since {x1, x2, . . . , xn} is a basis for V,

any vector x in V is of the form α1x1 + α2x2 + · · ·+ αnxn. Now for any x = α1x1 + α2x2 + · · ·+ αnxn in V , consider:

f ◦ T (x) = f (T (x))

= f (T (α1x1 + α2x2 + · · ·+ αnxn ))

= f (α1Tx1 + α2Tx2 + · · ·+ αnTxn ) (∵ T is linear)

= f (α1y1 + α2y2 + · · ·+ αnyn ) (∵ Txi = yi for all 1 ≤ i ≤ n)

= α1x1 + α2x2 + · · ·+ αnxn

= x

Thus f ◦ T = IV , where IV is an identity operator on V and therefore this f is a left inverse of T and hence T is left

invertible.

(ii) =⇒ (iii) Suppose that T is left invertible and let f be the left inverse of T . For any vector space U over the same field

F, let T1 and T2 be linear transformations of U into V such that; ; T ◦ T1 = T ◦ T2 =⇒ f ◦ T ◦ T1 = f ◦ T ◦ T2 =⇒ T1 = T2

and hence T is left cancellable.

(iii) =⇒ (i) Suppose that T is left cancellable. Let x1 and x2 be any arbitrary vectors in V such that Tx1 = Tx2.

Consider a subspace U of V generated by {x1, x2} and define T1 and T2 : U → V by: T1 (α1x1 + α2x2) = (α1 + α2)x1 and

T2 (α1x1 + α2x2) = α1x1 + α2x2 for all scalars α1 and α1 in F. If x = α1x1 + α2x2 and y = β1x1 + β2x2 are any vectors in

U and α is any scalar in F, then consider;

T1 (x+ y) = T1 (α1x1 + α2x2 + β1x1 + β2x2)

= T1 ((α1 + β1)x1 + (α2 + β2)x2)

= ((α1 + β1) + (α2 + β2))x1

= ((α1 + α2) + (β1 + β2))x1

= (α1 + α2)x1 + (β1 + β2)x1

= T1 (α1x1 + α2x2) + T1 (β1x1 + β2x2)

= T1 (x) + T1 (y)
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Also,

T1 (αx) = T1 (αα1x1 + αα2x2)

= (αα1 + αα2)x1

= α(α1 + α2)x1

= αT1 (α1x1 + α2x2)

= αT1 (x)

Thus T1 is a linear transformation. Similarly:

T2 (x+ y) = T2 (α1x1 + α2x2 + β1x1 + β2x2)

= T2 ((α1 + β1)x1 + (α2 + β2)x2)

= (α1 + β1)x1 + (α2 + β2)x2

= α1x1 + β1x1 + α2x2 + β2x2

= α1x1 + α2x2 + β1x1 + β2x2

= T2 (α1x1 + α2x2) + T2 (β1x1 + β2x2)

= T2 (x) + T2 (y)

Also,

T2 (αx) = T2 (αα1x1 + αα2x2)

= αα1x1 + αα2x2

= α (α1x1 + α2x2)

= αT2 (α1x1 + α2x2)

= αT2 (x)

Therefore T2 is again a linear transformation. Now for any x = α1x1 + α2x2 in U, consider;

T ◦ T1 (x) = T (T1 (α1x1 + α2x2))

= T ((α1 + α2)x1)

= (α1 + α2)Tx1 (∵ T is linear)

On the other hand, consider;

T ◦ T2 (x) = T (T2 (α1x1 + α2x2))

= T (α1x1 + α2x2)

= α1Tx1 + α2Tx2 (∵ T is linear)

= α1Tx1 + α2Tx1 (∵ Tx1 = Tx2)

= (α1 + α2)Tx1
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Therefore we have that, T ◦ T1 (x) = T ◦ T2(x) for all x ∈ U . Thus T ◦ T1 = T ◦ T2 and since T is left cancellable it follows

that, T1 = T2; ; that is T1 (x) = T2 (x) for all x ∈ U . In particular, T1 (x2) = T2 (x2) =⇒ x1 = x2 and hence T is an

injection.

Remark 3.7. We observe from the above theorem that any injective linear transformation has at least one left inverse and

in fact it is not necessarily unique. So, the question in this case is that how many left inverses can be there for a given

injective linear transformation? In the next theorem we characterize the set of all left inverses of a given injective linear

transformation.

Theorem 3.8. Let V and W be finite dimensional vector spaces over the field F such that dimV = n and dimW = m and

T : V →W be an injection. For any arbitrary basis {x1, x2, . . . , xn} for V, if we let L (T ) = be the class of all left inverses

of T and, B (T ) = {B : B is a basis for W, containing vectors Tx1, Tx2, . . . , Txn and span [B1 − {Tx1, Tx2, . . . , Txn}] ∩

span [B2 − {Tx1, Tx2, . . . , Txn}] = {0} for any B1 6= B2 ∈ B (T )} Then there is a one to one correspondence between L (T )

and B (T )}.

Proof. If B ∈ B (T ), then B is a basis for W containing Tx1, Tx2, . . . , Txn. If B = {y1, y2, . . . , yn, yn+1, . . . , ym} then

by simple rearrangement of elements of B we can assume that yi = Txi for all 1 ≤ i ≤ n. Therefore any y in W can be

expressed as y = α1y1 +α2y2 + · · ·+αnyn + · · ·+αmym for some scalar αi’s. Now for any B ∈ B (T ), define fB : W → V

by:

fB (α1y1 + α2y2 + · · ·+ αnyn + · · ·+ αmym) = α1x1 + α2x2 + · · ·+ αnxn

Then as it is observed from the above theorem we get that fB is a a left inverse of T , so that fB ∈ L (T ). Now define

h: B (T ) → L (T ) by: h (B) = fB for all B ∈ B (T ). It is clear that this h is well defined. Now we prove that h is a

one-to-one correspondence.

Let B1 = {y1, y2, . . . , yn, yn+1, . . . , ym} and B2 = {z1, z2, . . . , zn, zn+1, . . . , zm} ∈ B (T ) such that B1 6= B2. Therefore

yi = zi = Txi for all 1 ≤ i ≤ n and span [B1 − {y1, y2, . . . , yn}] ∩ span [B2 − {y1, y2, . . . , yn}] = {0}. Now choose exactly

one element y ∈W − Img T , then y /∈ Img T and hence y is not a linear combination of y1, y2, . . . , yn.

Considering a basis B1, y can be expressed as y = α1y1 + α2y2 + · · ·+ αnyn + · · ·+ αmym for some scalars α1, α2, . . . , αm.

On the other hand, considering a basis B2 y can also be expressed as y = β1z1 + · · · + βnzn + · · · + βmzm = β1y1 + · · · +

βnyn + βn+1zn+1 + · · ·+ βmzm for some scalars β1, β2, . . . βm. Now our claim is to see that αi 6= βi for some 1 ≤ i ≤ n and

we use proof by contradiction. Suppose if possible that αi = βi for all 1 ≤ i ≤ n.

α1y1 + α2y2 + · · ·+ αnyn + · · ·+ αmym = β1y1 + · · ·+ βnyn + βn+1zn+1 + · · ·+ βmzm

=⇒ α1y1 + α2y2 + · · ·+ αnyn + · · ·+ αmym = α1y1 + · · ·+ αnyn + βn+1zn+1 + · · ·+ βmzm

=⇒ αn+1yn+1 + αn+2yn+2 + · · ·+ αmym = βn+1zn+1 + βn+2zn+2 + · · ·+ βmzm

If u = αn+1yn+1+· · ·+αmym = βn+1zn+1+· · ·+βmzm. Then u ∈ span [B1 − {y1, . . . , yn}]∩span [B2 − {y1, . . . , yn}] = {0}.

So that u = 0. Thus we have that: αn+1yn+1+ · · ·+αmym= 0 and βn+1zn+1+ · · ·+βmzm= 0. Since each yi’s and zi’s are lin-

early independent to each other for n<i ≤ m it follows that αi= 0 =βi for all n<i ≤ m. Therefore, y=α1y1+α2y2+ · · ·+αnyn

and hence y ∈ Img T which is a contradiction to our choice of y.

Thus αi 6= βi for some i, 1 ≤ i ≤ n. Therefore fB1 (y) =α1x1+α2x2+ · · ·+αnxn 6= β1x1+β2x2+ · · ·+βnxn=fB2 (y); ; that

is, we get an element y ∈W−Img T such that fB1 (y) 6= fB2 (y) and hence fB1 6= fB2 which implies that h (B1) 6= h (B2).
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Therefore h is a one to one map. Furthermore, we prove that h is an onto; for, let f ∈ L (T ), then f is a left inverse of T ;

that is, f is a linear transformation of W into V such that f ◦ T = IV (an identity operator on V). So that f (Tx) = x for

all x ∈ V . In particular, f (Txi) = xi and hence f (yi) = xi for all 1 ≤ i ≤ n. x ∈ V =⇒ x = α1x1+α2x2+ · · ·+αnxn for

some scalars α1, α2, . . . , αn

=⇒ x = α1f(Tx1)+α2f(x2) + · · ·+αnf(xn)

=⇒ x = f (α1Tx1+α2Tx2+ · · ·+αnTxn)

=⇒ x ∈ Img f

=⇒ V ⊆ Img f ⊆ V

=⇒ Img f = V and hence dim (Img f) = dimV = n.

Since f is a linear transformation of W into V, we have that:

dim (ker f ) + dim (Img f) = dimW =⇒ dim (ker f ) + n = m

In this case if m 6= n, then dim (ker f ) = m − n > 0, and hence ker f is a nontrivial subspace of W with dimension

m − n. So that we can choose m − n linearly independent vectors yn+1, yn+2, . . . , ym in ker f . Thus f (yn+i) = 0 for all

1 ≤ i ≤ m− n.

Claim 1: The set B = {y1, y2, . . . , yn, yn+1, . . . , ym} is linearly independent in W.

For any scalars α1, α2, . . . , αm;

α1y1 + α2y2 + · · ·+ αnyn + · · ·+ αmym = 0 (1)

=⇒ f (α1y1 + α2y2 + · · ·+ αnyn + · · ·+ αmym) = 0

=⇒ α1f(y1) + α2f(y2) + · · ·+ αnf(yn) + · · ·+ αmf(ym) = 0

=⇒ α1x1 + α2x2 + · · ·+ αnxn + αn+1f (yn+1) + · · ·+ αmf(ym) = 0 (∵ f (yi) = xi for all 1 ≤ i ≤ n)

=⇒ α1x1 + α2x2 + · · ·+ αnxn = 0 (∵ f (yn+i) = 0 for all 1 ≤ i ≤ m− n)

=⇒ α1 = 0, α2 = 0, . . . , αn = 0 (∵ {x1, . . . , xn} is linearly independent in V)

Substituting the value of each αi’s in equation (1) we have that: αn+1yn+1 + · · · + αmym = 0 and since each yn+i’s are

linearly independent to each other, we get that αn+i = 0 for all 1 ≤ i ≤ m − n. This says that, αi = 0 for all 1 ≤ i ≤ m.

Therefore he set B = {y1, y2, . . . , yn, yn+1, . . . , ym} is linearly independent in W and since B has exactly m elements, then

it becomes a basis for W containing y1, y2, . . . , yn so that B ∈ L (T ).

Claim 2: f = fB = h (B)

Since B forms a basis for W, any y ∈W can be expressed as y = α1y1 + α2y2 + · · ·+ αnyn + · · ·+ αmym, then

f (y) = f (α1y1 + α2y2 + · · ·+ αnyn + · · ·+ αmym)

= α1f(y1) + α2f(y2) + · · ·+ αnf(yn) + · · ·+ αmf(ym) (∵ f is linear)

= α1x1 + α2x2 + · · ·+ αnxn + αn+1f (yn+1) + · · ·+ αmf(ym) (∵ f (yi) = xi for all 1 ≤ i ≤ n)

= α1x1 + α2x2 + · · ·+ αnxn (∵ f (yn+i) = 0 for all 1 ≤ i ≤ m− n)

= fB (α1y1 + α2y2 + · · ·+ αnyn + · · ·+ αmym)

= fB (y)
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Thus f = fB = h(B); ; that is, h is an onto and hence a one-to-one correspondence. Thus, B (T ) and L (T ) are equivalent

to each other.
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