

International Journal of Mathematics And its Applications

\tilde{g} -closed Sets in Ideal Topological Spaces

Research Article

R.Asokan¹, O.Ravi^{2*}, I.Rajasekaran² and R.Sathiyapriya³

- 1 School of Mathematics, Madurai Kamaraj University, Madurai, Tamil Nadu, India.
- 2 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai, Tamil Nadu, India.
- 3 Department of Mathematics, Dhanalakshmi Srinivasan Institute of Technology, Tiruchirappalli, Tamil Nadu, India.
- **Abstract:** The notion of \tilde{g} -closed sets is introduced in ideal topological spaces. Characterizations and properties of $\mathcal{I}_{\tilde{g}}$ -closed sets and $\mathcal{I}_{\tilde{g}}$ -open sets are given. A characterization of normal spaces is given in terms of $\mathcal{I}_{\tilde{g}}$ -open sets. Also, it is established that an $\mathcal{I}_{\tilde{g}}$ -closed subset of an \mathcal{I} -compact space is \mathcal{I} -compact.
- MSC: 54A05, Secondary 54D15, 54D30.

Keywords: *g̃*-closed set, *L̃_{g̃}*-closed set and *I*-compact space.
 (c) JS Publication.

1. Introduction and Preliminaries

An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies

- 1. $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$ and
- 2. $A \in \mathcal{I}$ and $B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$ [17].

Given a topological space (X, τ) with an ideal \mathcal{I} on X and if $\wp(X)$ is the set of all subsets of X, a set operator $(.)^*$: $\wp(X) \rightarrow \wp(X)$, called a local function [17] of A with respect to τ and \mathcal{I} is defined as follows: for $A \subseteq X$, $A^*(\mathcal{I},\tau) = \{x \in X \mid U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau \mid x \in U\}$.

We will make use of the basic facts about the local functions [14] without mentioning it explicitly. A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(\mathcal{I},\tau)$, called the *-topology, finer than τ is defined by $cl^*(A)=A\cup A^*(\mathcal{I},\tau)$ [31]. When there is no chance for confusion, we will simply write A^* for $A^*(\mathcal{I},\tau)$ and τ^* for $\tau^*(\mathcal{I},\tau)$.

If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal topological space. \mathcal{N} is the ideal of all nowhere dense subsets in (X, τ) . A subset A of an ideal topological space (X, τ, \mathcal{I}) is \star -closed [14] (resp. \star -dense in itself [10]) if $A^{\star} \subseteq A$ (resp. $A \subseteq A^{\star}$). A subset A of an ideal topological space (X, τ, \mathcal{I}) is \mathcal{I}_g -closed [2] if $A^{\star} \subseteq U$ whenever $A \subseteq U$ and U is open.

^{*} E-mail: siingam@yahoo.com

By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $A \subseteq X$, cl(A) and int(A) will, respectively, denote the closure and interior of A in (X, τ) and $int^*(A)$ will denote the interior of A in (X, τ^*) .

A subset A of a space (X, τ) is an α -open [26] (resp. semi-open [18], preopen [21], regular open [30]) set if A \subseteq int(cl(int(A))) (resp. A \subseteq cl(int(A)), A \subseteq int(cl(A)), A = int(cl(A))).

The complement of semi-open set is called semi-closed. The semi closure of a subset A of (X, τ) , scl(A), is the intersection of all semi-closed sets of X containing A.

The family of all α -open sets in (X, τ), denoted by τ^{α} , is a topology on X finer than τ . The closure of A in (X, τ^{α}) is denoted by $cl_{\alpha}(A)$.

Definition 1.1. A subset A of a space (X, τ) is said to be

- 1. g-closed [19] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.
- 2. g-open [19] if its complement is g-closed.
- 3. \hat{g} -closed [32] or ω -closed [29] or s^*g -closed [16, 22, 27] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open.
- 4. \hat{g} -open [32] if its complement is \hat{g} -closed.
- 5. *g-closed [33] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open.
- 6. *g-open [33] if its complement is *g-closed.
- 7. #gs-closed [34] if scl(A) $\subseteq U$ whenever A $\subseteq U$ and U is *g-open.
- 8. #gs-open [34] if its complement is #gs-closed.
- 9. \tilde{g} -closed [12] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is #gs-open.
- 10. \tilde{g} -open [12] if its complement is \tilde{g} -closed.

Definition 1.2. An ideal \mathcal{I} is said to be

- 1. codense [3] or τ -boundary [25] if $\tau \cap \mathcal{I} = \{\phi\}$,
- 2. completely codense [3] if $PO(X) \cap \mathcal{I} = \{\phi\}$, where PO(X) is the family of all preopen sets in (X, τ) .

Lemma 1.3. Every completely codense ideal is codense but not conversely [3].

Lemma 1.4 ([14]). Let (X, τ, \mathcal{I}) be an ideal topological space and A, B subsets of X. Then the following properties hold:

- 1. $A \subseteq B \Rightarrow A^* \subseteq B^*$,
- 2. $A^* = cl(A^*) \subseteq cl(A),$
- 3. $(A^{\star})^{\star} \subseteq A^{\star}$,
- 4. $(A \cup B)^* = A^* \cup B^*$,
- 5. $(A \cap B)^* \subseteq A^* \cap B^*$.

Lemma 1.5. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. If $A \subseteq A^*$, then $A^* = cl(A^*) = cl(A) = cl^*(A)$ [28].

Lemma 1.6. Let (X, τ, \mathcal{I}) be an ideal topological space. Then \mathcal{I} is codense if and only if $G \subseteq G^*$ for every semi-open set G in X [28].

Lemma 1.7. Let (X, τ, \mathcal{I}) be an ideal topological space. If \mathcal{I} is completely codense, then $\tau^* \subseteq \tau^{\alpha}$ [28].

Result 1.8. For a subset of a topological space, the following properties hold:

- 1. Every closed set is \tilde{g} -closed but not conversely [12].
- 2. Every \tilde{g} -closed set is \hat{g} -closed but not conversely [12].
- 3. Every \hat{g} -closed set is g-closed but not conversely [32].

Definition 1.9. An ideal topological space (X, τ, \mathcal{I}) is said to be a $T_{\mathcal{I}}$ -space [2] if every \mathcal{I}_g -closed subset of X is a \star -closed set.

Lemma 1.10. If (X, τ, \mathcal{I}) is a $T_{\mathcal{I}}$ -space and A is an \mathcal{I}_g -closed set, then A is a \star -closed set [23].

Lemma 1.11. Every g-closed set is \mathcal{I}_g -closed but not conversely [2].

Definition 1.12. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be

- 1. \mathcal{I}_{rg} -closed [24] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ, \mathcal{I}) .
- 2. $pre_{\mathcal{I}}^{\star}$ -open [4] if $A \subseteq int^{\star}(cl(A))$.
- 3. $pre_{\mathcal{I}}^{\star}$ -closed [4] if $X \setminus A$ is $pre_{\mathcal{I}}^{\star}$ -open.
- 4. \mathcal{I} -R closed [1] if $A = cl^{\star}(int(A))$.

Remark 1.13 ([5]). In any ideal topological space, every \mathcal{I} -R closed set is \star -closed but not conversely.

Definition 1.14 ([5]). Let (X, τ, \mathcal{I}) be an ideal topological space. A subset A of X is said to be a weakly \mathcal{I}_{rg} -closed set if $(int(A))^* \subseteq U$ whenever $A \subseteq U$ and U is a regular open set in X.

Remark 1.15 ([5]). Let (X, τ, \mathcal{I}) be an ideal topological space. The following diagram holds for a subset $A \subseteq X$:

These implications are not reversible.

Definition 1.16 ([6, 7]). A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be

- 1. semi^{*}- \mathcal{I} -open if $A \subseteq cl(int^*(A))$,
- 2. semi^{*}-*I*-closed if its complement is semi^{*}-*I*-open.

Definition 1.17 ([6]). The semi^{*}- \mathcal{I} -closure of a subset A of an ideal topological space (X, τ, \mathcal{I}) , denoted by $s_{\mathcal{I}}^{\star}cl(A)$, is defined by the intersection of all semi^{*}- \mathcal{I} -closed sets of X containing A.

Theorem 1.18 ([6]). For a subset A of an ideal topological space (X, τ, \mathcal{I}) , $s_{\mathcal{I}}^{\star}cl(A) = A \cup int(cl^{\star}(A))$.

Definition 1.19 ([8]). Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. A is called

- 1. generalized semi^{*}- \mathcal{I} -closed ($gs_{\mathcal{I}}^*$ -closed) in (X, τ , \mathcal{I}) if $s_{\mathcal{I}}^* cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an open set in (X, τ , \mathcal{I}).
- 2. generalized semi^{*}- \mathcal{I} -open ($gs_{\mathcal{I}}^*$ -open) in (X, τ , \mathcal{I}) if X\A is a $gs_{\mathcal{I}}^*$ -closed set in (X, τ , \mathcal{I}).

2. $\mathcal{I}_{\tilde{q}}$ -closed Sets

Definition 2.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be

- 1. $\mathcal{I}_{\tilde{g}}$ -closed if $A^* \subseteq U$ whenever $A \subseteq U$ and U is #gs-open.
- 2. $\mathcal{I}_{\tilde{g}}$ -open if its complement is $\mathcal{I}_{\tilde{g}}$ -closed.

Theorem 2.2. If (X, τ, \mathcal{I}) is any ideal topological space, then every $\mathcal{I}_{\tilde{g}}$ -closed set is \mathcal{I}_{g} -closed but not conversely.

Proof. It follows from the fact that every open set is #gs-open.

Example 2.3. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{c\}, \{a, b\}\}$ and $\mathcal{I} = \{\phi, \{a\}\}$. It is clear that $\{b\}$ is \mathcal{I}_g -closed but not $\mathcal{I}_{\tilde{g}}$ -closed.

Theorem 2.4. If (X, τ, \mathcal{I}) is any ideal topological space and $A \subseteq X$, then the following are equivalent.

1. A is $\mathcal{I}_{\tilde{g}}$ -closed.

2. $cl^{\star}(A) \subseteq U$ whenever $A \subseteq U$ and U is #gs-open in X.

Proof.

- (1) \Rightarrow (2) Let $A \subseteq U$ where U is #gs-open in X. Since A is $\mathcal{I}_{\tilde{g}}$ -closed, $A^* \subseteq U$ and so $cl^*(A) = A \cup A^* \subseteq U$.
- (2) \Rightarrow (1) It follows from the fact that $A^* \subseteq cl^*(A) \subseteq U$.

Theorem 2.5. Every \star -closed set is $\mathcal{I}_{\tilde{g}}$ -closed but not conversely.

Proof. Let A be a *-closed. To prove A is $\mathcal{I}_{\tilde{g}}$ -closed, let U be any #gs-open set such that A \subseteq U. Since A is *-closed, A* \subseteq A \subseteq U. Thus A is $\mathcal{I}_{\tilde{g}}$ -closed.

Example 2.6. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a, b\}\}$ and $\mathcal{I} = \{\phi\}$. It is clear that $\{a, c\}$ is $\mathcal{I}_{\tilde{g}}$ -closed but not \star -closed.

Theorem 2.7. Let (X, τ, \mathcal{I}) be an ideal topological space. For every $A \in \mathcal{I}$, A is $\mathcal{I}_{\tilde{g}}$ -closed.

Proof. Let $A \in \mathcal{I}$ and let $A \subseteq U$ where U is ${}^{\#}gs$ -open. Since $A \in \mathcal{I}$, $A^{\star} = \phi \subseteq U$. Thus A is $\mathcal{I}_{\tilde{g}}$ -closed.

Theorem 2.8. If (X, τ, \mathcal{I}) is an ideal topological space, then A^* is always $\mathcal{I}_{\bar{g}}$ -closed for every subset A of X.

Proof. Let $A^* \subseteq U$ where U is #gs-open. Since $(A^*)^* \subseteq A^*$ [14], we have $(A^*)^* \subseteq U$. Hence A^* is $\mathcal{I}_{\tilde{g}}$ -closed.

Theorem 2.9. Let (X, τ, \mathcal{I}) be an ideal topological space. Then every $\mathcal{I}_{\tilde{g}}$ -closed, #gs-open set is \star -closed.

Proof. Let A be $\mathcal{I}_{\tilde{g}}$ -closed and #gs-open. We have A \subseteq A where A is #gs-open. Since A is $\mathcal{I}_{\tilde{g}}$ -closed, A^{*} \subseteq A. Thus A is *-closed.

Corollary 2.10. If (X, τ, \mathcal{I}) is a $T_{\mathcal{I}}$ -space and A is an $\mathcal{I}_{\tilde{g}}$ -closed set, then A is \star -closed set.

Proof. By assumption A is $\mathcal{I}_{\tilde{g}}$ -closed in (X, τ, \mathcal{I}) and so by Theorem 2.2, A is \mathcal{I}_{g} -closed. Since (X, τ, \mathcal{I}) is a $T_{\mathcal{I}}$ -space, by Definition 1.9, A is \star -closed.

Corollary 2.11. Let (X, τ, \mathcal{I}) be an ideal topological space and A be an $\mathcal{I}_{\tilde{q}}$ -closed set. Consider the following statements.

- 1. A is a \star -closed set,
- 2. $cl^{\star}(A) A$ is an #gs-closed set,
- 3. $A^* A$ is an #gs-closed set.

Then $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ hold.

Proof.

(1) \Rightarrow (2) By (1) A is \star -closed. Hence $A^{\star} \subseteq A$ and $cl^{\star}(A) - A = (A \cup A^{\star}) - A = \phi$ which is an #gs-closed set.

 $(2) \Rightarrow (3) \operatorname{cl}^{*}(A) - A = A^{*} \cup A - A = (A^{*} \cup A) \cap A^{c} = (A^{*} \cap A^{c}) \cup (A \cap A^{c}) = (A^{*} \cap A^{c}) \cup \phi = A^{*} - A \text{ which is an } \#gs\text{-closed set by } (2).$

Theorem 2.12. Let (X, τ, \mathcal{I}) be an ideal topological space. Then every \tilde{g} -closed set is an $\mathcal{I}_{\tilde{g}}$ -closed set but not conversely.

Proof. Let A be a \tilde{g} -closed set. Let U be any #gs-open set such that $A \subseteq U$. Since A is \tilde{g} -closed, $cl(A) \subseteq U$. So, by Lemma 1.4, $A^* \subseteq cl(A) \subseteq U$ and thus A is $\mathcal{I}_{\tilde{g}}$ -closed.

Example 2.13. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{c\}, \{a, b\}\}$ and $\mathcal{I} = \{\phi, \{a\}\}$. It is clear that $\{a\}$ is $\mathcal{I}_{\tilde{g}}$ -closed but not \tilde{g} -closed.

Theorem 2.14. If (X, τ, \mathcal{I}) is an ideal topological space and A is a *-dense in itself, $\mathcal{I}_{\tilde{g}}$ -closed subset of X, then A is \tilde{g} -closed.

Proof. Let $A \subseteq U$ where U is #gs-open. Since A is $\mathcal{I}_{\tilde{g}}$ -closed, $A^* \subseteq U$. As A is \star -dense in itself, by Lemma 1.5, $cl(A) = A^*$. Thus $cl(A) \subseteq U$ and hence A is \tilde{g} -closed.

Corollary 2.15. If (X, τ, \mathcal{I}) is any ideal topological space where $\mathcal{I} = \{\phi\}$, then A is $\mathcal{I}_{\tilde{g}}$ -closed if and only if A is \tilde{g} -closed.

Proof. In (X, τ, \mathcal{I}) , if $\mathcal{I} = \{\phi\}$ then $A^* = cl(A)$ for the subset A. A is $\mathcal{I}_{\tilde{g}}$ -closed $\Leftrightarrow A^* \subseteq U$ whenever $A \subseteq U$ and U is ${}^{\#}gs$ -open $\Leftrightarrow cl(A) \subseteq U$ whenever $A \subseteq U$ and U is ${}^{\#}gs$ -open $\Leftrightarrow A$ is \tilde{g} -closed.

Corollary 2.16. In an ideal topological space (X, τ, \mathcal{I}) where \mathcal{I} is codense, if A is a semi-open and $\mathcal{I}_{\tilde{g}}$ -closed subset of X, then A is \tilde{g} -closed.

Proof. By Lemma 1.6, A is \star -dense in itself. By Theorem 2.14, A is \tilde{g} -closed.

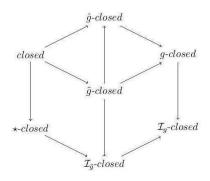
Example 2.17. In Example 2.13, it is clear that $\{b\}$ is g-closed but not $\mathcal{I}_{\tilde{g}}$ -closed.

Example 2.18. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}\}$ and $\mathcal{I} = \{\phi, \{a\}, \{b\}, \{a, b\}\}$. It is clear that $\{b\}$ is $\mathcal{I}_{\tilde{g}}$ -closed but not g-closed.

Example 2.19. Let $X = \{a, b, c\}$ with $\tau = \{\phi, X, \{c\}, \{a, b\}\}$. It is clear that $\{a\}$ is \hat{g} -closed but not \tilde{g} -closed.

Remark 2.20. We see that from Examples 2.17 and 2.18, g-closedness and $\mathcal{I}_{\bar{q}}$ -closedness are independent.

Remark 2.21. We have the following implications for the subsets stated above.



Theorem 2.22. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. If $A \subseteq B \subseteq A^*$, then $A^* = B^*$ and B is \star -dense in itself. *Proof.* Since $A \subseteq B$, then $A^* \subseteq B^*$ and since $B \subseteq A^*$, then $B^* \subseteq (A^*)^* \subseteq A^*$. Therefore $A^* = B^*$ and $B \subseteq A^* \subseteq B^*$. Hence proved.

Theorem 2.23. Let (X, τ, \mathcal{I}) be an ideal topological space. Then every subset of X is $\mathcal{I}_{\tilde{g}}$ -closed if and only if every #gs-open set is \star -closed.

Proof. Suppose every subset of X is $\mathcal{I}_{\tilde{g}}$ -closed. Let U be #gs-open in X. Then U \subseteq U \subseteq X and U is $\mathcal{I}_{\tilde{g}}$ -closed by assumption. It implies U^{*} \subseteq U. Hence U is *-closed.

Conversely, let $A \subseteq X$ and U be #gs-open such that $A \subseteq U$. Since U is \star -closed by assumption, we have $A^{\star} \subseteq U^{\star} \subseteq U$. Thus A is $\mathcal{I}_{\tilde{g}}$ -closed.

Theorem 2.24. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. Then A is $\mathcal{I}_{\tilde{g}}$ -open if and only if $F \subseteq int^*(A)$ whenever F is #gs-closed and $F \subseteq A$.

Proof. Suppose A is $\mathcal{I}_{\tilde{g}}$ -open. If F is #gs-closed and $F \subseteq A$, then $X - A \subseteq X - F$ and so $cl^{*}(X - A) \subseteq X - F$ by Theorem 2.4(2). Therefore $F \subseteq X - cl^{*}(X - A) = int^{*}(A)$. Hence $F \subseteq int^{*}(A)$.

Conversely, suppose the condition holds. Let U be an #gs-open set such that $X-A \subseteq U$. Then $X-U \subseteq A$ and so $X-U \subseteq int^*(A)$. Therefore $cl^*(X-A) \subseteq U$. By Theorem 2.4(2), X-A is $\mathcal{I}_{\tilde{g}}$ -closed. Hence A is $\mathcal{I}_{\tilde{g}}$ -open.

The following Theorem gives a characterization of normal spaces in terms of $\mathcal{I}_{\tilde{g}}$ -open sets.

Theorem 2.25. Let (X, τ, \mathcal{I}) be an ideal topological space where \mathcal{I} is completely codense. Then the following are equivalent.

- 1. X is normal,
- 2. For any disjoint closed sets A and B, there exist disjoint $\mathcal{I}_{\bar{a}}$ -open sets U and V such that $A \subseteq U$ and $B \subseteq V$,
- 3. For any closed set A and open set V containing A, there exists an $\mathcal{I}_{\bar{q}}$ -open set U such that $A \subseteq U \subseteq cl^*(U) \subseteq V$.

Proof.

(1) \Rightarrow (2) The proof follows from the fact that every open set is $\mathcal{I}_{\tilde{g}}$ -open.

 $(2)\Rightarrow(3)$ Suppose A is closed and V is an open set containing A. Since A and X–V are disjoint closed sets, there exist disjoint $\mathcal{I}_{\tilde{g}}$ -open sets U and W such that A \subseteq U and X–V \subseteq W. Since X–V is #gs-closed and W is $\mathcal{I}_{\tilde{g}}$ -open, X–V \subseteq int^{*}(W). Then X–int^{*}(W) \subseteq V. Again U \cap W= ϕ which implies that U \cap int^{*}(W)= ϕ and so U \subseteq X–int^{*}(W). Then cl^{*}(U) \subseteq X–int^{*}(W) \subseteq V and thus U is the required $\mathcal{I}_{\tilde{g}}$ -open sets with A \subseteq U \subseteq cl^{*}(U) \subseteq V.

 $(3) \Rightarrow (1)$ Let A and B be two disjoint closed subsets of X. Then A is a closed set and X – B an open set containing A. By hypothesis, there exists an $\mathcal{I}_{\tilde{g}}$ -open set U such that $A \subseteq U \subseteq cl^{*}(U) \subseteq X-B$. Since U is $\mathcal{I}_{\tilde{g}}$ -open and A is #gs-closed we have, by

Theorem 2.24, $A \subseteq int^{*}(U)$. Since \mathcal{I} is completely codense, by Lemma 1.7, $\tau^{*} \subseteq \tau^{\alpha}$ and so $int^{*}(U)$ and $X-cl^{*}(U) \in \tau^{\alpha}$. Hence $A \subseteq int^{*}(U) \subseteq int(cl(int(int^{*}(U)))) = G$ and $B \subseteq X-cl^{*}(U) \subseteq int(cl(int(X-cl^{*}(U)))) = H$. G and H are the required disjoint open sets containing A and B respectively, which proves (1).

Definition 2.26 ([13]). A subset A of a topological space (X, τ) is said to be an \tilde{g}_{α} -closed set if $cl_{\alpha}(A) \subseteq U$ whenever $A \subseteq U$ and U is [#]gs-open. The complement of \tilde{g}_{α} -closed set is said to be an \tilde{g}_{α} -open set.

If $\mathcal{I}=\mathcal{N}$, it is not difficult to see that $\mathcal{I}_{\tilde{q}}$ -closed sets coincide with \tilde{g}_{α} -closed sets and so we have the following Corollary.

Corollary 2.27. Let (X, τ, \mathcal{I}) be an ideal topological space where $\mathcal{I}=\mathcal{N}$. Then the following are equivalent.

- 1. X is normal,
- 2. For any disjoint closed sets A and B, there exist disjoint \tilde{g}_{α} -open sets U and V such that $A \subseteq U$ and $B \subseteq V$,
- 3. For any closed set A and open set V containing A, there exists an \tilde{g}_{α} -open set U such that $A \subseteq U \subseteq cl_{\alpha}(U) \subseteq V$.

Definition 2.28. A subset A of an ideal topological space is said to be \mathcal{I} -compact [9] or compact modulo \mathcal{I} [25] if for every open cover $\{U_{\alpha} \mid \alpha \in \Delta\}$ of A, there exists a finite subset Δ_0 of Δ such that $A - \cup \{U_{\alpha} \mid \alpha \in \Delta_0\} \in \mathcal{I}$. The space (X, τ, \mathcal{I}) is \mathcal{I} -compact if X is \mathcal{I} -compact as a subset.

Theorem 2.29. Let (X, τ, \mathcal{I}) be an ideal topological space. If A is an \mathcal{I}_g -closed subset of X, then A is \mathcal{I} -compact [[23], Theorem 2.17].

Corollary 2.30. Let (X, τ, \mathcal{I}) be an ideal topological space. If A is an $\mathcal{I}_{\tilde{g}}$ -closed subset of X, then A is \mathcal{I} -compact.

Proof. The proof follows from the fact that every $\mathcal{I}_{\tilde{g}}$ -closed is \mathcal{I}_{g} -closed.

Remark 2.31. Let (X, τ, \mathcal{I}) be an ideal topological space. By Remark 1.15, Definition 1.19, Definition 2.1 and Theorem 2.2, the following diagram holds for a subset $G \subseteq X$:

$gs_{\mathcal{I}}^{\star}$ -closed	weakly \mathcal{I}_{rg} -closed
↑	\uparrow
$\mathcal{I}_{\widetilde{g}} extsf{-closed} \longrightarrow \mathcal{I}_{g} extsf{-closed} \longrightarrow$	$ ightarrow \mathcal{I}_{rg} extsf{-closed}$

These implications are not reversible.

Example 2.32. In Example 2.13, it is clear that $\{b\}$ is $gs_{\mathcal{I}}^{\star}$ -closed set but not $\mathcal{I}_{\tilde{g}}$ -closed.

Definition 2.33. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be a s^{*} $C_{\mathcal{I}}$ -set if $A = L \cap M$, where $L \in \tau$ and M is a semi^{*}- \mathcal{I} -closed set in X.

Theorem 2.34. Let (X, τ, \mathcal{I}) be an ideal topological space and $V \subseteq X$. Then V is a $s^*C_{\mathcal{I}}$ -set in X if and only if $V = G \cap s^*_{\mathcal{I}}cl(V)$ for an open set G in X.

Proof. If V is a $s^*C_{\mathcal{I}}$ -set, then $V = G \cap M$ for an open set G and a semi^{*}- \mathcal{I} -closed set M. But then $V \subseteq M$ and so $V \subseteq s_{\mathcal{I}}^* cl(V) \subseteq M$. It follows that $V = V \cap s_{\mathcal{I}}^* cl(V) = G \cap M \cap s_{\mathcal{I}}^* cl(V) = G \cap s_{\mathcal{I}}^* cl(V)$. Conversely, it is enough to prove that $s_{\mathcal{I}}^* cl(V)$ is a semi^{*}- \mathcal{I} -closed set. Any semi^{*}- \mathcal{I} -closed set containing V contains $s_{\mathcal{I}}^* cl(V)$ also and any semi^{*}- \mathcal{I} -closed set containing $s_{\mathcal{I}}^* cl(V)$ contains V. Hence $s_{\mathcal{I}}^* cl(S_{\mathcal{I}}^* cl(V)) = s_{\mathcal{I}}^* cl(V) \cup int(cl^*(s_{\mathcal{I}}^* cl(V)))$ and thus $int(cl^*(s_{\mathcal{I}}^* cl(V))) \subseteq s_{\mathcal{I}}^* cl(V)$. Thus $s_{\mathcal{I}}^* cl(V)$ is semi^{*}- \mathcal{I} -closed.

Theorem 2.35. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. The following properties are equivalent.

1. A is a semi^{*}-*I*-closed set in X.

2. A is a $s^* C_{\mathcal{I}}$ -set and a $gs^*_{\mathcal{I}}$ -closed set in X.

Proof.

 $(1) \Rightarrow (2)$: It follows from the fact that any semi^{*}- \mathcal{I} -closed set in X is a s^{*}C_{\mathcal{I}}-set and a gs^{*}_{\mathcal{I}}-closed set in X.

 $(2) \Rightarrow (1): \text{ Suppose that A is a } s^{\star}C_{\mathcal{I}}\text{-set and a } gs^{\star}_{\mathcal{I}}\text{-closed set in X. Since A is a } s^{\star}C_{\mathcal{I}}\text{-set, then by Theorem 2.34, } A = G \cap s^{\star}_{\mathcal{I}}cl(A) \text{ for an open set G in } (X, \tau, \mathcal{I}). \text{ Since A} \subseteq G \text{ and A is } gs^{\star}_{\mathcal{I}}\text{-closed in X, we have } s^{\star}_{\mathcal{I}}cl(A) \subseteq G. \text{ It follows that } s^{\star}_{\mathcal{I}}cl(A) = A \text{ and hence A is semi}^{\star}\mathcal{I}\text{-closed.}$

3. $#gs-\mathcal{I}$ -locally closed sets

Definition 3.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is called an $\#gs-\mathcal{I}$ -locally closed set (briefly, $\#gs-\mathcal{I}-LC$) if $A=U\cap V$ where U is #gs-open and V is \star -closed.

Definition 3.2 ([15]). A subset A of an ideal topological space (X, τ, \mathcal{I}) is called a weakly \mathcal{I} -locally closed set (briefly, weakly \mathcal{I} -LC) if $A = U \cap V$ where U is open and V is \star -closed.

Proposition 3.3. Let (X, τ, \mathcal{I}) be an ideal topological space and A a subset of X. Then the following hold.

- 1. If A is #gs-open, then A is #gs- \mathcal{I} -LC-set.
- 2. If A is \star -closed, then A is #gs-*I*-LC-set.
- 3. If A is a weakly \mathcal{I} -LC-set, then A is an $^{\#}gs$ - \mathcal{I} -LC-set.

The converses of the above Proposition 3.3 need not be true as shown in the following examples.

Example 3.4. 1. In Example 2.13, it is clear that $\{b\}$ is an $\#gs-\mathcal{I}-LC$ -set but not \star -closed.

2. In Example 2.18, it is clear that $\{a\}$ is an #gs-I-LC-set but not #gs-open.

Example 3.5. In Example 2.13, it is clear that $\{b\}$ is an ${}^{\#}gs$ - \mathcal{I} -LC-set but not a weakly \mathcal{I} -LC-set.

Theorem 3.6. Let (X, τ, \mathcal{I}) be an ideal topological space. If A is an $\#gs-\mathcal{I}-LC$ -set and B is a \star -closed set, then $A \cap B$ is an $\#gs-\mathcal{I}-LC$ -set.

Proof. Let B be *-closed, then $A \cap B = (U \cap V) \cap B = U \cap (V \cap B)$, where $V \cap B$ is *-closed. Hence $A \cap B$ is an #gs- \mathcal{I} -LC-set. \Box

Theorem 3.7. A subset of an ideal topological space (X, τ, \mathcal{I}) is \star -closed if and only if it is

- 1. weakly \mathcal{I} -LC and \mathcal{I}_g -closed. [11]
- 2. $\#gs-\mathcal{I}-LC$ and $\mathcal{I}_{\tilde{g}}$ -closed.

Proof. (2) Necessity is trivial. We prove only sufficiency. Let A be ${}^{\#}gs{}^{-}\mathcal{I}{}^{-}LC{}^{-}set$ and $\mathcal{I}_{\tilde{g}}{}^{-}closed$ set. Since A is ${}^{\#}gs{}^{-}\mathcal{I}{}^{-}LC{}$, A=U∩V, where U is ${}^{\#}gs{}^{-}open$ and V is $\star{}^{-}closed$. So, we have A=U∩V⊆U. Since A is $\mathcal{I}_{\tilde{g}}{}^{-}closed$, A $^{\star} \subseteq$ U. Also since A = U∩V⊆V and V is $\star{}^{-}closed$, we have A $^{\star} \subseteq$ V. Consequently, A $^{\star} \subseteq U \cap V = A$ and hence A is $\star{}^{-}closed$.

Remark 3.8.

1. The notions of weakly \mathcal{I} -LC-set and \mathcal{I}_g -closed set are independent [11].

2. The notions of ${}^{\#}gs$ - \mathcal{I} -LC-set and $\mathcal{I}_{\tilde{g}}$ -closed set are independent.

Example 3.9. In Example 2.13, it is clear that $\{b\}$ is ${}^{\#}gs$ - \mathcal{I} -LC-set but not $\mathcal{I}_{\tilde{g}}$ -closed.

Example 3.10. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$ and $\mathcal{I} = \{\phi\}$. It is clear that $\{a, c, d\}$ is $\mathcal{I}_{\tilde{g}}$ -closed set but not #gs- \mathcal{I} -LC-set.

Definition 3.11. Let A be a subset of a topological space (X, τ) . Then the #gs-kernel of the set A, denoted by #gs-ker(A), is the intersection of all #gs-open supersets of A.

Definition 3.12. A subset A of a topological space (X, τ) is called $\Lambda_{\#gs}$ -set if A = #gs-ker(A).

Definition 3.13. A subset A of an ideal topological space (X, τ, \mathcal{I}) is called $\lambda_{\#_{gs}}$ - \mathcal{I} -closed if $A = L \cap F$ where L is a $\Lambda_{\#_{gs}}$ -set and F is \star -closed.

Lemma 3.14. 1. Every \star -closed set is $\lambda_{\#_{gs}}$ - \mathcal{I} -closed but not conversely.

2. Every $\Lambda_{\#_{qs}}$ -set is $\lambda_{\#_{qs}}$ - \mathcal{I} -closed but not conversely.

Example 3.15. In Example 2.13, it is clear that $\{b\}$ is $\lambda_{\#_{qs}}$ - \mathcal{I} -closed but not \star -closed.

Example 3.16. In Example 2.18, it is clear that $\{a\}$ is $\lambda_{\#_{qs}}$ - \mathcal{I} -closed but not a $\Lambda_{\#_{qs}}$ -set.

Remark 3.17. It is easily observed from Examples 3.15 and 3.16, that the concepts of $\Lambda_{\#_{gs}}$ -set and \star -closed set are independent for $\{b\}$ is a $\Lambda_{\#_{gs}}$ -set but not a \star -closed set whereas $\{a\}$ is \star -closed but not a $\Lambda_{\#_{gs}}$ -set.

Lemma 3.18. For a subset A of an ideal topological space (X, τ, \mathcal{I}) , the following are equivalent.

- 1. A is $\lambda_{\#_{qs}}$ - \mathcal{I} -closed.
- 2. $A = L \cap cl^{\star}(A)$ where L is a $\Lambda_{\#_{qs}}$ -set.
- 3. $A = \#gs ker(A) \cap cl^{\star}(A)$.

Lemma 3.19. A subset $A \subseteq (X, \tau, \mathcal{I})$ is $\mathcal{I}_{\tilde{g}}$ -closed if and only if $cl^{\star}(A) \subseteq {}^{\#}gs\text{-ker}(A)$.

Proof. Suppose that $A \subseteq X$ is an $\mathcal{I}_{\tilde{g}}$ -closed set. Suppose $x \notin {}^{\#}gs$ -ker(A). Then there exists an ${}^{\#}gs$ -open set U containing A such that $x \notin U$. Since A is an $\mathcal{I}_{\tilde{g}}$ -closed set, $A \subseteq U$ and U is ${}^{\#}gs$ -open implies that $cl^{*}(A) \subseteq U$ and so $x \notin cl^{*}(A)$. Therefore $cl^{*}(A) \subseteq {}^{\#}gs$ -ker(A).

Conversely, suppose $cl^{\star}(A) \subseteq {}^{\#}gs\text{-ker}(A)$. If $A \subseteq U$ and U is ${}^{\#}gs\text{-open}$, then $cl^{\star}(A) \subseteq {}^{\#}gs\text{-ker}(A) \subseteq U$. Therefore, A is $\mathcal{I}_{\tilde{g}}\text{-closed}$.

Theorem 3.20. For a subset A of an ideal topological space (X, τ, \mathcal{I}) , the following are equivalent.

- 1. A is \star -closed.
- 2. A is $\mathcal{I}_{\tilde{g}}$ -closed and #gs- \mathcal{I} -LC.
- 3. A is $\mathcal{I}_{\tilde{g}}$ -closed and $\lambda_{\#_{gs}}$ - \mathcal{I} -closed.

Proof.

 $(1) \Rightarrow (2) \Rightarrow (3)$ Obvious.

(3)⇒(1) Since A is $\mathcal{I}_{\tilde{g}}$ -closed, by Lemma 3.19, cl^{*}(A)⊆[#]gs-ker(A). Since A is $\lambda_{\#_{gs}}$ - \mathcal{I} -closed, by Lemma 3.18, A=[#]gs-ker(A)∩cl^{*}(A)=cl^{*}(A). Hence A is *-closed.

The following two Examples show that the concepts of $\mathcal{I}_{\tilde{g}}$ -closedness and $\lambda_{\#_{gs}}$ - \mathcal{I} -closedness are independent.

Example 3.21. In Example 3.10, it is clear that $\{a, c, d\}$ is $\mathcal{I}_{\tilde{g}}$ -closed but not $\lambda_{\#_{gs}}$ - \mathcal{I} -closed.

Example 3.22. In Example 2.13, it is clear that $\{b\}$ is $\lambda_{\#_{qs}}$ - \mathcal{I} -closed but not $\mathcal{I}_{\tilde{g}}$ -closed.

4. Decompositions of \star -continuity

Definition 4.1. A function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be \star -continuous [11] (resp. \mathcal{I}_g -continuous [11], $\#gs\mathcal{I}$ -LC-continuous, $\lambda_{\#gs}\mathcal{I}$ -continuous, $\mathcal{I}_{\tilde{g}}$ -continuous, weakly \mathcal{I} -LC-continuous [15]) if $f^{-1}(A)$ is \star -closed (resp. \mathcal{I}_g -closed, $\#gs\mathcal{I}$ -LC-set, $\lambda_{\#gs}\mathcal{I}$ -closed, $\mathcal{I}_{\tilde{g}}$ -closed, weakly \mathcal{I} -LC-set) in (X, τ, \mathcal{I}) for every closed set A of (Y, σ) .

Theorem 4.2. A function $f: (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma)$ is \star -continuous if and only if it is

- 1. weakly \mathcal{I} -LC-continuous and \mathcal{I}_{g} -continuous [11].
- 2. $\#gs-\mathcal{I}-LC$ -continuous and $\mathcal{I}_{\tilde{g}}$ -continuous.

Proof. It is an immediate consequence of Theorem 3.7.

Theorem 4.3. For a function $f: (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma)$, the following are equivalent.

- 1. f is \star -continuous.
- 2. f is $\mathcal{I}_{\tilde{g}}$ -continuous and $^{\#}gs$ - \mathcal{I} -LC-continuous.
- 3. f is $\mathcal{I}_{\tilde{g}}$ -continuous and $\lambda_{\#_{gs}}$ - \mathcal{I} -continuous.

Proof. It is an immediate consequence of Theorem 3.20.

References

- A.Acikgoz and S.Yuksel, Some new sets and decompositions of A_{I-R}-continuity, α-I-continuity, continuity via idealization, Acta Math. Hungar., 114(1-2)(2007), 79-89.
- J.Dontchev, M.Ganster and T.Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-401.
- [3] J.Dontchev, M.Ganster and D.Rose, *Ideal resolvability*, Topology and its Applications, 93(1999), 1-16.
- [4] E.Ekici, On $\mathcal{AC}_{\mathcal{I}}$ -sets, $\mathcal{BC}_{\mathcal{I}}$ -sets, $\beta_{\mathcal{I}}^*$ -open sets and decompositions of continuity in ideal topological spaces, Creat. Math. Inform, 20(1)(2011), 47-54.
- [5] E.Ekici and S.Ozen, A generalized class of τ^* in ideal spaces, Filomat, 27(4)(2013), 529-535.
- [6] E.Ekici and T.Noiri, *-hyperconnected ideal topological spaces, Analele Stiintifice Ale Universitatii Al I. Cuza Din Iasi -Serie Noua-Matematica, Tomul LVIII, 1(2012), 121-129.
- [7] E.Ekici and T.Noiri, *-extremally disconnected ideal topological spaces, Acta Math. Hungar., 122(1-2)(2009), 81-90.
- [8] E.Ekici, On *R-I-open sets and* $\mathcal{A}_{\mathcal{I}}^{\star}$ -sets in ideal topological spaces, Annals of the University of Craiova, Mathematics and Computer Science Series, 38(2)(2011), 26-31.
- [9] T.R.Hamlett and D.Jankovic, Compactness with respect to an ideal, Boll. U. M. I., 7(4-B)(1990), 849-861.
- [10] E.Hayashi, Topologies defined by local properties, Math.Ann., 156(1964), 205-215.

- [11] V.Inthumathi, S.Krishnaprakash and M.Rajamani, Strongly-I-Locally closed sets and decompositions of *-continuity, Acta Math. Hungar., 130(4)(2011), 358-362.
- [12] S.Jafari, T.Noiri, N.Rajesh and M.L.Thivagar, Another generalization of closed sets, Kochi J. Math, 3(2008), 25-38.
- [13] S.Jafari, M.L.Thivagar and Nirmala Rebecca Paul, *Remarks on* \tilde{g}_{α} -closed sets, International Mathematical Forum, 5(2010), 1167-1178.
- [14] D.Jankovic and T.R.Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
- [15] A.Keskin, S.Yuksel and T.Noiri, Decompositions of *I*-continuity and continuity, Commun. Fac. Sci. Univ. Ank. Series A, 53(2004), 67-75.
- [16] M.Khan, T.Noiri and M.Hussain, On s*g-closed sets and s*-normal spaces, J.Natur. Sci. Math., 48(1-2)(2008), 31-41.
- [17] K.Kuratowski, Topology, Vol. I, Academic Press, New York, (1966).
- [18] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [19] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 2(19)(1970), 89-96.
- [20] H.Maki, R.Devi and K.Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 15(1994), 51-63.
- [21] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys.Soc. Egypt, 53(1982), 47-53.
- [22] M.Murugalingam, A study of semi generalized topology, Ph.D. Thesis, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India, (2005).
- [23] M.Navaneethakrishnan and J.Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar., 119(4)(2008), 365-371.
- [24] M.Navaneethakrishnan, J.Paulraj Joseph and D.Sivaraj, \mathcal{I}_g -normal and \mathcal{I}_g -regular spaces, Acta Math. Hungar., 125(2008), 327-340.
- [25] R.L.Newcomb, Topologies which are compact modulo an ideal, Ph.D., Dissertation, Univ. of Cal. at Santa Barbara (1967).
- [26] O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [27] K.C.Rao and K.Joseph, Semi-star generalized closed sets, Bull. Pure Appl. Sci., 19(E)(2)(2002), 281-290.
- [28] V.Renuka Devi, D.Sivaraj and T.Tamizh Chelvam, Codense and Completely codense ideals, Acta Math. Hungar., 108(2005), 197-205.
- [29] M.Sheik John, A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph. D, Thesis, Bharathiar University, Coimbatore, (2002).
- [30] M.H.Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 375-481.
- [31] R.Vaidyanathaswamy, Set Topology, Chelsea Publishing Company (1946).
- [32] M.K.R.S.Veerakumar, *ĝ-closed sets in topological spaces*, Bull. Allah. Math. Soc., 18(2003), 99-112.
- [33] M.K.R.S.Veerakumar, Between g^* -closed sets and g-closed sets, Antartica J. Math., Reprint.
- [34] M.K.R.S.Veerakumar, #g-semi-closed sets in topological spaces, Antartica J. Math., 2(2)(2005), 201-222.