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1. Introduction

In this paper we denote complex and real n-space by C™ and R™ respectively. We denote this (si1, s2,... sn) (Re s1, Re

S2,...,Re s, ) with their corresponding unsuffixed symbols s, Re(s) etc. respectively. We define z = (z1,22,...,z,) and

y=(Y,y2.,Un)-

Ty = (x1y171:2y27 C ,xny’n)
llz|]| =21 + 22+ + 20

z+r=(xi+rze+r...,2n,+7), r€R and z,y € C.

k
For some k € I, integers f’c denote the %. We denote the n-tuple (Aim,, A2ms, - - - Anmn ) DY An,m and consider the
51 .. v

.Osy,

multiple Dirichlet series
[o o]
f(s1,82,...,8n) = Z am exp{sAn,m} (1)
m=1

where ap, € C s; =05 +it; € C, j=1,2,3,...,N and A\, satisfies the conditions.
0<Ap; < Apy < Apy < o0 < Apn = 00, (2)

as k — oo, where p=1,2,...,n. Also

. log m;
lim 08 My
mj — 00 /\]mj

=0, j=1,2,3,....n (3)
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then the domain of absolute convergence of the series (1) coincides with its domain of convergence for two entire functions

f & g, their product is defined by Alam [2]

f *xg = Z ambme:rp{S/\n,m},

m=1

where

F5)= 3 amerplshum). (4)
and "

g(s)—-ﬁf;bmexp{sAnﬂn}, (5)

for k € I, where I is the set of positive integers, and also defined by Hadamard [2]

fk(s) = i )\ﬁmamea:p{s)\n,m}, (6)
m=1
) * gk (s) = i )\i’fmambmexp{s)\n,m}. (7)
m=1

Definition 1.1. Poly half plane D as D = {s: s € C", Re(s) = o <1}. Then the region D +r depending on the parameter
r € R is defined as D+r ={s+r:s &€ D}. For any f € F, where F stands for the family of multiple Dirichlet series. We
define the mazimum modulus

My,p(o) =sup{f(s) : s € D+r}.
Also the mazimum term

s = py(o)

at o € R"™, is defined by

ps,o(0) = slel?n{\amle-’vMIUAn,mII} (8)
Definition 1.2. Let f be an entire function and D be the fundamental domain. Also let Uy be the set of all points o € R

such that for every a € Uy then there exist real number i.e. 0, € R s.t.
log my p(o) <% for o> oo.

The infimum of the set Uy is called the Gol’dberg order p(D) of f with respect to the region D. We say that f(s) is of infinite
or finite Gol’dberg order according as Uy is empty or nonempty. Next for the Gol’dberg order p(D) > 0, let K¢(p) be the
set of all k € R such that log My p(c) < k(0)? for 0 > 0,. The infimum of the set K¢(p) is called Gol'dberg type T'(D)
of f corresponding to p(D). As before we say that f(s) is infinite or finite Gol’dberg type according as K¢(p) is empty or
nonempty. Form the definition it follows easily that

p(D) = lim sup loglogM.p(0)

o—o0 log g

and

. logM¢ p (o
T(D) = i sup O

These were defined by Gol’dberg [1]. We define ¢'" Gol’dberg order and ¢'" Gol'dberg type T%(D) of entire function f in

corresponding domain D.
log!") M;, (o)
logo

9)

p1(D) = lim sup
O —>r 00

and

, loglg — 1]My,p (o)
q _ ,
TY(D) = glz_zvgo sup 74 (D) .

(10)
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2. Main Results

Lemma 2.1. The function f*(s)*¢"(s) as defined (7) is an entire function.
Result is already proved by Alam [2].
Theorem 2.2. Let f be an entire function defined in domain D and k € R then
(1) p*(D + k) = p*(D)
(i1) p?(D) > 0, then T?(D + k) = T(D).
Proof.
(i) Let k € R, then from definition (9)

log "My p (0 +k) logo

=i .
R log o log(o + k)
=p1(D+k).
(ii) By definition (10)
. loglg — 1]My,p(o + k)
q _ s
(D) = lim sup (o + k)p"(D+E)
= lim su loglg — 1My p(o +k)  (0)”'")
S oo ¥ (0)r? (D) (o + k)pI(DFF)

O
Here we may write p? instead of p?(D). It is also know by Sarkar [3] that
1
p= lim sup [[An,m || 1og [[An,m||
m— 0o —log |am|
and
: [[An,m [ 10g [[An,ml
=1 : .
Pk mE:ﬂoo sup — IOg |am/\ﬁ,m|
¢"" order and type defined by Bajpai, Kapoor, juneja [4] as
logla—1
b~ i sup L=l 0E" Y ]
n— oo log |an|
and
T = lim sup \an|% logl?~? o, (11)
m— o0 ep
We can prove in similar way for the ¢** Gol’dberg order
i sup PRl 108 ]
ko —log [an]
and
. An,m|[logla™ ||\
ot = T sup Pl 1087 [l 12)
mieo —log [am Ak |
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Theorem 2.3. Let f and g be entire function, where
Fs) = Z )\]fhmam exp{sin,m}
m=1

and

g (s) = Z AL b exp{sAn,m}
m=1

having ¢" Gol’dberg order pi (0< pgf < 0) and pgg (0< ng < o0) respectively. Then f*(s)*g"(s) is an entire function
1

with ¢'" Gol’dberg order pl such that pf < (pif ng) ® provided that

-

1 71 l 1 1 :
B ambn] L N bl |

RECHN
Proof.  We have f¥(s) x g*(s) is an entire function by lemma (2.1). Now

—log amAr,m|

— = lim inf -
Py Mo [ An ]| 1ogl ™ ([ A |
and
1 —log |bmAE ..
—— = lim inf °g|[_1]’ L for >0
Pry ™7 |[Anm][1og ™ [[An,ml]
1
1 e 18 FamA k1
P 27 [l 1ogl 1 A |
1
1« log TS
Py 27 [[Anmlllogl [ X ]|
1 1
8 T 1 B T (1 e\ [ e
(Al logl [ Xn D>~ \ Pk, 2] \ Pk, 2
1 1 1 1
{log ‘a7rz>\§;,7n| log |b'm>\$,,’»m‘}2 > 1 € 1 € 2
(IPAnmlllogle=Anmll) = | \ Pk, 2) \pPk, 2 '
Now if
1
1 ! 1 LI 1 :
og ————— v (0] O
© A2 st BN ] B bl [
then
1 1
8 il (1 e\ ()
(PAnmlllogle=[Anml]) = | \ Pk, 2/ \ Pk, 2 '
Therefore
1 1
log o] 1 1 |°2
lim sup Y[q—l] 2 < a .
m=e0 " (|| An,ml|log [[An,m|]) Pi; Ph,
Then
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Theorem 2.4. Let f* and g* be an entire function with ¢t" Gol’dberg order pgf (0 < /’Zf < o0) and ng (0< ng < o0)

respectively and also ¢ Gol’dberg type Tgf and T,gg. Then
Pi < Pi, + Pk, and also T < T (D)T} (D).

Proof. We have from (9)

and

9 o=r00 log o ’
we know that
aq q
1 Pt Ay
(P, PR,)2 < ——5—= < pi, + 1,

from theorem (2.3)

Again from (10)
logla—1] Mgk p(o)

4 (D
apkf( )

< T,gf (D) +e
logla—1 My p(o)

q
Py (D) < T, (D) +e

g

logle—1 Mgi p(o)

{log[q’” My p(o)
Upzf (D)

Py (D)

} < (T3, (D) + (T, (D) + ¢)

{10g[q71] Mfk,D(U)}{IOg[qil] Mg’c,D(U)} ~ IOg[qil] M‘f’“*gk,D(U)
then

logla—1] Mk, ge p(o)
Jpi (D)+pi,, (D)

< (T, (D) + &)(Ty (D) +¢).

Thus if

Pr = Pr; T Pi,
logla—1 Mg p(o)

lim sup 7
T—00 oPk

< TY (D)IL, (D)

T < T} (D)TE (D).

fq] Y
Theorem 2.5. If p?(D) = lim sup % then
) g

la]
lim sup log® piy.o(l+0)

<
o—00 log g P

and

la]
lim sup log " s.p(l+ 0 +¢)

> P
g—00 IOgO' ~ k

where k is positive constant.
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Proof. Let f be an entire function defined in domain D and k € R then
ps(l+0) < Mjp(o) < kps(l+o+e)

where k is positive constant. This result is proved by Sarkar [3]. By above result

log! is.p(1+ o) log!’! My, p (o)

lim sup < lim sup

o300 log o ~ o—oo log o
ld]

Jim sup %8 pro(l+0o)

o—00 log o

Again
la] la]
lim sup log® ps.o(l + 0 +€) > 1 lim sup log® My.p(0)
o—00 10g o ko—oo lOg g
la]
lim sup log ’LLfiD(l+U+E) > P
o—00 ogo k
O
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