ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

On Goldberg q^{th} Order and Goldberg q^{th} Type of an Entire Function Represented by Multiple Dirichlet Series

Research Article

Udai Veer Singh¹ and Anupma Rastogi¹²*

1 Department of Mathematics and Astronomy, University of Lucknow, Lucknow, India.

Abstract: In this paper we consider entire function represented by multiple Dirichlet series in several complex variables. Also consider product of the class of entire function, we then characterized the q^{th} order and q^{th} type of an entire function represented and express in terms of its coefficient and exponent.

Keywords: Entire function, Multiple Dirichlet series, Gol'dberg order, Gol'dberg type.

© JS Publication.

1. Introduction

In this paper we denote complex and real n-space by C^n and R^n respectively. We denote this $(s_1, s_2, ..., s_n)$ (Re s_1 , Re $s_2, ..., Re$ s_n) with their corresponding unsuffixed symbols s, Re(s) etc. respectively. We define $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$.

$$xy = (x_1y_1, x_2y_2, \dots, x_ny_n)$$

$$||x|| = x_1 + x_2 + \dots + x_n$$

$$x + r = (x_1 + r, x_2 + r, \dots, x_n + r), r \in R \text{ and } x, y \in C.$$

For some $k \in I$, integers f^k denote the $\frac{\partial^{||k||}f}{\partial s_1^{k_1}...\partial s_n^{k_n}}$. We denote the n-tuple $(\lambda_{1m_1}, \lambda_{2m_2}, ..., \lambda_{nm_n})$ by $\lambda_{n,m}$ and consider the multiple Dirichlet series

$$f(s_1, s_2, \dots, s_n) = \sum_{m=1}^{\infty} a_m \exp\{s\lambda_{n,m}\}$$

$$\tag{1}$$

where $a_m \in C$ $s_j = \sigma_j + it_j \in C$, j = 1, 2, 3, ..., N and $\lambda_{n,m}$ satisfies the conditions.

$$0 < \lambda_{p_1} < \lambda_{p_2} < \lambda_{p_3} < \dots < \lambda_{pn} \to \infty, \tag{2}$$

as $k \to \infty$, where p = 1, 2, ..., n. Also

$$\lim_{m_j \to \infty} \frac{\log m_j}{\lambda_j m_j} = 0, \quad j = 1, 2, 3, \dots, n$$
(3)

 $^{^*}$ E-mail: anupmarastogi13121993@gmail.com

then the domain of absolute convergence of the series (1) coincides with its domain of convergence for two entire functions f & g, their product is defined by Alam [2]

$$f \star g = \sum_{m=1}^{\infty} a_m b_m exp\{s\lambda_{n,m}\},\,$$

where

$$f(s) = \sum_{m=1}^{\infty} a_m exp\{s\lambda_{n,m}\},\tag{4}$$

and

$$g(s) = \sum_{m=1}^{\infty} b_m exp\{s\lambda_{n,m}\},\tag{5}$$

for $k \in I$, where I is the set of positive integers, and also defined by Hadamard [2]

$$f^{k}(s) = \sum_{m=1}^{\infty} \lambda_{n,m}^{k} a_{m} exp\{s\lambda_{n,m}\},\tag{6}$$

$$f^{k}(s) \star g^{k}(s) = \sum_{m=1}^{\infty} \lambda_{n,m}^{2k} a_{m} b_{m} exp\{s\lambda_{n,m}\}.$$

$$(7)$$

Definition 1.1. Poly half plane D as $D = \{s : s \in C^n, Re(s) = \sigma \le l\}$. Then the region D + r depending on the parameter $r \in R$ is defined as $D + r = \{s + r : s \in D\}$. For any $f \in F$, where F stands for the family of multiple Dirichlet series. We define the maximum modulus

$$M_{f,D}(\sigma) = \sup\{f(s) : s \in D + r\}.$$

Also the maximum term

$$\mu_f = \mu_f(\sigma)$$

at $\sigma \in \mathbb{R}^n$, is defined by

$$\mu_{f,D}(\sigma) = \sup_{m \in I^n} \{ |a_m| exp| |\sigma \lambda_{n,m}| \}. \tag{8}$$

Definition 1.2. Let f be an entire function and D be the fundamental domain. Also let U_f be the set of all points $\alpha \in R$ such that for every $\alpha \in U_f$ then there exist real number i.e. $\sigma_o \in R$ s.t.

$$\log m_{f,D}(\sigma) \leq \sigma^{\alpha} \text{ for } \sigma \geq \sigma_o.$$

The infimum of the set U_f is called the Gol'dberg order $\rho(D)$ of f with respect to the region D. We say that f(s) is of infinite or finite Gol'dberg order according as U_f is empty or nonempty. Next for the Gol'dberg order $\rho(D) > 0$, let $K_f(\rho)$ be the set of all $k \in R$ such that $\log M_{f,D}(\sigma) \leq k(\sigma)^{\rho}$ for $\sigma \geq \sigma_o$. The infimum of the set $K_f(\rho)$ is called Gol'dberg type T(D) of f corresponding to $\rho(D)$. As before we say that f(s) is infinite or finite Gol'dberg type according as $K_f(\rho)$ is empty or nonempty. Form the definition it follows easily that

$$\rho(D) = \lim_{\sigma \to \infty} \sup \frac{loglog M_{f,D}(\sigma)}{\log \sigma}$$

and

$$T(D) = \lim_{\sigma \to \infty} \sup \frac{log M_{f,D}(\sigma)}{\sigma^{\rho(D)}}.$$

These were defined by Gol'dberg [1]. We define q^{th} Gol'dberg order and q^{th} Gol'dberg type $T^q(D)$ of entire function f in corresponding domain D.

$$\rho^{q}(D) = \lim_{\sigma \to \infty} \sup \frac{\log^{[q]} M_{f,D}(\sigma)}{\log \sigma}$$
(9)

and

$$T^{q}(D) = \lim_{\sigma \to \infty} \sup \frac{\log[q-1]M_{f,D}(\sigma)}{\sigma^{\rho^{q}(D)}}.$$
 (10)

2. Main Results

Lemma 2.1. The function $f^k(s) \star g^k(s)$ as defined (7) is an entire function.

Result is already proved by Alam [2].

Theorem 2.2. Let f be an entire function defined in domain D and $k \in R$ then

(i)
$$\rho^q(D+k) = \rho^q(D)$$

(ii)
$$\rho^{q}(D) > 0$$
, then $T^{q}(D+k) = T^{q}(D)$.

Proof.

(i) Let $k \in \mathbb{R}$, then from definition (9)

$$= \lim_{\sigma \to \infty} \sup \frac{\log^{[q]} M_{f,D} (\sigma + k)}{\log \sigma} \cdot \frac{\log \sigma}{\log(\sigma + k)}$$
$$= \rho^{q} (D + k).$$

(ii) By definition (10)

$$T^{q}(D) = \lim_{\sigma \to \infty} \sup \frac{\log[q-1]M_{f,D}(\sigma+k)}{(\sigma+k)^{\rho^{q}(D+k)}}$$
$$= \lim_{\sigma \to \infty} \sup \frac{\log[q-1]M_{f,D}(\sigma+k)}{(\sigma)^{\rho^{q}(D)}} \frac{(\sigma)^{\rho^{q}(D)}}{(\sigma+k)^{\rho^{q}(D+k)}}$$
$$= T^{q}(D+k).$$

Here we may write ρ^q instead of $\rho^q(D)$. It is also know by Sarkar [3] that

$$\rho = \lim_{m \to \infty} \sup \frac{||\lambda_{n,m}|| \log ||\lambda_{n,m}||}{-\log |a_m|}$$

and

$$\rho_k = \lim_{m \to \infty} \sup \frac{||\lambda_{n,m}|| \log ||\lambda_{n,m}||}{-\log |a_m \lambda_{n,m}^k|}.$$

 \boldsymbol{q}^{th} order and type defined by Bajpai, Kapoor, juneja[4]as

$$\rho = \lim_{n \to \infty} \sup \frac{||\lambda_n|| \log^{[q-1]} ||\lambda_n||}{\log |a_n|}$$

and

$$T = \lim_{m \to \infty} \sup |a_n|^{\frac{\rho}{n}} \log^{[q-2]} \frac{n}{e\rho}.$$
 (11)

We can prove in similar way for the q^{th} Gol'dberg order

$$\rho^{q} = \lim_{m \to \infty} \sup \frac{||\lambda_{n,m}|| \log^{[q-1]} ||\lambda_{n,m}||}{-\log |a_{m}|}$$

and

$$\rho_k^q = \lim_{m \to \infty} \sup \frac{||\lambda_{n,m}|| \log^{[q-1]}||\lambda_{n,m}||}{-\log|a_m \lambda_{n,m}^k|}.$$
 (12)

Theorem 2.3. Let f and g be entire function, where

$$f^{k}(s) = \sum_{m=1}^{\infty} \lambda_{n,m}^{k} a_{m} \exp\{s\lambda_{n,m}\}\$$

and

$$g^{k}(s) = \sum_{m=1}^{\infty} \lambda_{n,m}^{k} b_{m} \exp\{s\lambda_{n,m}\}\$$

having q^{th} Gol'dberg order $\rho_{k_f}^q$ $(0 < \rho_{k_f}^q < \infty)$ and $\rho_{k_g}^q$ $(0 < \rho_{k_g}^q < \infty)$ respectively. Then $f^k(s) \star g^k(s)$ is an entire function with q^{th} Gol'dberg order ρ_k^q such that $\rho_k^q \leq \left(\rho_{k_f}^q \rho_{k_g}^q\right)^{\frac{1}{2}}$ provided that

$$\log \frac{1}{|\lambda_{n,m}^{2k} a_m b_m|} \sim \left\{ \log \frac{1}{|\lambda_{n,m}^{2k} a_m|} \log \frac{1}{|\lambda_{n,m}^{2k} b_m|} \right\}^{\frac{1}{2}}.$$

Proof. We have $f^k(s) \star g^k(s)$ is an entire function by lemma (2.1). Now

$$\frac{1}{\rho_{k_f}^q} = \lim_{m \to \infty} \inf \frac{-\log|a_m \lambda_{n,m}^k|}{||\lambda_{n,m}|| \log^{[q-1]}||\lambda_{n,m}||}$$

and

$$\begin{split} \frac{1}{\rho_{k_g}^q} &= \lim_{m \to \infty} \inf \frac{-\log |b_m \lambda_{n,m}^k|}{||\lambda_{n,m}|| \log^{[q-1]} ||\lambda_{n,m}||} \ \text{ for } \ \epsilon > 0 \\ & \frac{1}{\rho_{k_f}^q} - \frac{\epsilon}{2} \leq \frac{\log \frac{1}{|a_m \lambda_{n,m}^k|}}{||\lambda_{n,m}|| \log^{[q-1]} ||\lambda_{n,m}||} \\ & \frac{1}{\rho_{k_g}^q} - \frac{\epsilon}{2} \leq \frac{\log \frac{1}{|b_m \lambda_{n,m}^k|}}{||\lambda_{n,m}|| \log^{[q-1]} ||\lambda_{n,m}||} \\ & \frac{\log \frac{1}{|a_m \lambda_{n,m}^k|} \log \frac{1}{|b_m \lambda_{n,m}^k|}}{(||\lambda_{n,m}|| \log^{[q-1]} ||\lambda_{n,m}||)^2} \geq \left(\frac{1}{\rho_{k_f}^q} - \frac{\epsilon}{2}\right) \left(\frac{1}{\rho_{k_g}^q} - \frac{\epsilon}{2}\right) \\ & \frac{\{\log \frac{1}{|a_m \lambda_{n,m}^k|} \log \frac{1}{|b_m \lambda_{n,m}^k|}\}^{\frac{1}{2}}}{(||\lambda_{n,m}|| \log^{[q-1]} ||\lambda_{n,m}||)} \geq \left\{\left(\frac{1}{\rho_{k_f}^q} - \frac{\epsilon}{2}\right) \left(\frac{1}{\rho_{k_g}^q} - \frac{\epsilon}{2}\right)\right\}^{\frac{1}{2}}. \end{split}$$

Now if

$$\log \frac{1}{||\lambda_{n,m}^{2k} a_m b_m|} \sim \left\{\log \frac{1}{|\lambda_{n,m}^{2k} a_m|} \log \frac{1}{|\lambda_{n,m}^{2k} b_m|}\right\}^{\frac{1}{2}},$$

then

$$\frac{\log\frac{1}{|\lambda_{n,m}^{2k}a_mb_m|}}{(||\lambda_{n,m}||log^{[q-1]}||\lambda_{n,m}||)} \geq \left\{\left(\frac{1}{\rho_{k_f}^q} - \frac{\epsilon}{2}\right)\left(\frac{1}{\rho_{k_q}^q} - \frac{\epsilon}{2}\right)\right\}^{\frac{1}{2}}.$$

Therefore

$$\lim_{m \to \infty} \sup \frac{\log \frac{1}{|\lambda_{n,m}^{2k} a_m b_m|}}{(||\lambda_{n,m}|| \log^{[q-1]} ||\lambda_{n,m}||)} \ge \left\{ \frac{1}{\rho_{k_f}^q} \frac{1}{\rho_{k_g}^q} \right\}^{\frac{1}{2}}.$$

Then

$$\begin{split} &\frac{1}{\rho_k^q} \geq \left\{\frac{1}{\rho_{k_f}^q \rho_{k_g}^q}\right\}^{\frac{1}{2}} \\ \Rightarrow & \rho_k^q \leq \left(\rho_{k_f}^q \rho_{k_g}^q\right)^{\frac{1}{2}}. \end{split}$$

Theorem 2.4. Let f^k and g^k be an entire function with q^{th} Gol'dberg order $\rho^q_{k_f}$ $(0 < \rho^q_{k_f} < \infty)$ and $\rho^q_{k_g}$ $(0 < \rho^q_{k_g} < \infty)$ respectively and also q^{th} Gol'dberg type $T^q_{k_f}$ and T^q_{kg} . Then

$$\rho_k^q \leq \rho_{k_f}^q + \rho_{k_g}^q \ \ and \ \ also \ T_k^q \leq T_{k_f}^q(D) T_{k_g}^q(D).$$

Proof. We have from (9)

$$\rho_{k_f}^q(D) = \lim_{\sigma \to \infty} \sup \frac{\log^{[q]} M_{f^k,D}(\sigma)}{\log \sigma}$$

and

$$\rho_{k_g}^q(D) = \lim_{\sigma \to \infty} \sup \frac{\log^{[q]} M_{g^k,D}(\sigma)}{\log \sigma},$$

we know that

$$(\rho_{k_f}^q \rho_{k_g}^q)^{\frac{1}{2}} \leq \frac{\rho_{k_f}^q + \rho_{k_g}^q}{2} \leq \rho_{k_f}^q + \rho_{k_g}^q$$

from theorem (2.3)

$$\rho_k^q \le \rho_{k_f}^q + \rho_{k_q}^q.$$

Again from (10)

$$\frac{\log^{[q-1]} M_{f^k,D}(\sigma)}{\sigma^{\rho_{k_f}^q(D)}} < T_{k_f}^q(D) + \epsilon$$

$$\frac{\log^{[q-1]} M_{g^k, D}(\sigma)}{\sigma^{\rho_{k_g}^q(D)}} < T_{k_g}^q(D) + \epsilon$$

$$\{\frac{\log^{[q-1]} M_{f^k,D}(\sigma)}{\sigma^{\rho_{k_f}^q(D)}}\}\{\frac{\log^{[q-1]} M_{g^k,D}(\sigma)}{\sigma^{\rho_{k_g}^q(D)}}\} < (T_{k_f}^q(D) + \epsilon)(T_{k_g}^q(D) + \epsilon)$$

$$\{\log^{[q-1]} M_{f^k,D}(\sigma)\}\{\log^{[q-1]} M_{g^k,D}(\sigma)\} \sim \log^{[q-1]} M_{f^k \star g^k,D}(\sigma)$$

then

$$\frac{\log^{[q-1]} M_{f^k \star g^k, D}(\sigma)}{\sigma^{\rho_{k_f}^q(D) + \rho_{k_g}^q(D)}} < (T_{k_f}^q(D) + \epsilon)(T_{k_g}^q(D) + \epsilon).$$

Thus if

$$\begin{split} \rho_k^q &= \rho_{k_f}^q + \rho_{k_g}^q \\ \lim_{\sigma \to \infty} \sup \frac{\log^{[q-1]} M_{f^k \star g^k, D}(\sigma)}{\sigma^{\rho_k^q}} &\leq T_{k_f}^q(D) T_{k_g}^q(D) \\ T_k^q &\leq T_{k_f}^q(D) T_{k_g}^q(D). \end{split}$$

Theorem 2.5. If $\rho^q(D) = \lim_{\sigma \to \infty} \sup_{log} \frac{\log^{[q]} M_{f,D}(\sigma)}{\log \sigma}$ then

$$\lim_{\sigma \to \infty} \sup \frac{\log^{[q]} \mu_{f,D}(l+\sigma)}{\log \sigma} \le \rho$$

and

$$\lim_{\sigma \to \infty} \sup \frac{\log^{[q]} \mu_{f,D}(l+\sigma+\epsilon)}{\log \sigma} \geq \frac{\rho}{k},$$

where k is positive constant.

Proof. Let f be an entire function defined in domain D and $k \in R$ then

$$\mu_f(l+\sigma) \le M_{f,D}(\sigma) \le k\mu_f(l+\sigma+\epsilon)$$

where k is positive constant. This result is proved by Sarkar [3]. By above result

$$\begin{split} &\lim_{\sigma \to \infty} \sup \frac{\log^{[q]} \mu_{f,D}(l+\sigma)}{\log \sigma} \leq \lim_{\sigma \to \infty} \sup \frac{\log^{[q]} M_{f,D}(\sigma)}{\log \sigma} \\ &\lim_{\sigma \to \infty} \sup \frac{\log^{[q]} \mu_{f,D}(l+\sigma)}{\log \sigma} \leq \rho. \end{split}$$

Again

$$\lim_{\sigma \to \infty} \sup \frac{\log^{[q]} \mu_{f,D}(l + \sigma + \epsilon)}{\log \sigma} \ge \frac{1}{k} \lim_{\sigma \to \infty} \sup \frac{\log^{[q]} M_{f,D}(\sigma)}{\log \sigma}$$
$$\lim_{\sigma \to \infty} \sup \frac{\log^{[q]} \mu_{f,D}(l + \sigma + \epsilon)}{\log \sigma} \ge \frac{\rho}{k}.$$

Acknowledgement

The author is thankful to the refrees for his helpful suggestion and guidance for preparation of this paper.

References

- [1] A.A.Gold'berg, Elementary remarks on the formula defining order and type of several complex variable, Russian Dokl Akad Nauk.Army SSR, (1959), 145-151.
- [2] Alam Feruj, Gol'dberg order and Gol'dberg type of entire functions represented by multiple Dirichlet series, Ganitj.Bangladesh Math.Soc, 29(2009), 63-70.
- [3] P.K.Sarkar, Gol'dberg order and Gol'dberg type of entire functions of several complex variables represented by multiple Dirichlet series, Indian J.of pure and App.Math, 13(1982), 1221-1229.
- [4] S.K.Bajpai, G.P.Kapoor and O.P.Juneja, On the entire function of fast growth, Transaction of the America Mathematics Society, (1975).