

International Journal of Mathematics And its Applications

$\pi g \alpha$ Closed Mappings in Intuitionistic Fuzzy Topological Spaces

Research Article

N.Seenivasagan¹, O.Ravi² and S.Satheesh Kanna^{2*}

1 Department of Mathematics, Government Arts College, Kumbakonam, Tamil Nadu, India.

2 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai, Tamil Nadu, India.

3 Department of Mathematics, Bharathidasan University, Thiruchirapalli, Tamil Nadu, India.

Abstract: In this paper, we introduce the concepts of intuitionistic fuzzy $\pi g \alpha$ closed mappings and intuitionistic fuzzy i- $\pi g \alpha$ closed mappings. Further, we study some of their properties.

MSC: 54A40, 03F55.

Keywords: Intuitionistic fuzzy topology, Intuitionistic fuzzy $\pi g \alpha$ closed set, Intuitionistic fuzzy $\pi g \alpha$ closed mapping and Intuitionistic fuzzy i- $\pi g \alpha$ closed mapping.

© JS Publication.

1. Introduction

The concept of fuzzy set was introduced by Zadeh [14] and later Atanassov [1] generalized this idea to intuitionistic fuzzy set using the notion of fuzzy sets. On the other hand Coker [3] introduced intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. The concept of generalized closed sets in topological spaces was introduced by Levine [6]. In this paper we introduce intuitionistic fuzzy $\pi g \alpha$ closed mappings and intuitionistic fuzzy i- $\pi g \alpha$ closed mappings. The relations between intuitionistic fuzzy $\pi g \alpha$ closed mappings and other intuitionistic fuzzy closed mappings are given.

2. Preliminaries

Definition 2.1 ([1]). Let X be a non empty set. An intuitionistic fuzzy set (IFS in short) A in X can be described in the form

$$A = \{ \langle x, \, \mu_A(x), \, \nu_A(x) \rangle \mid x \in X \}$$

where the functions $\mu_A : X \to [0, 1]$ is called the membership function and $\mu_A(x)$ denotes the degree to which $x \in A$ and the function $\nu_A : X \to [0, 1]$ is called the non-membership function and $\nu_A(x)$ denotes the degree to which $x \notin A$ and $0 \leq \mu_A(x) + \nu_A(x) \leq 1$ for each $x \in X$.

Denote by IFS(X), the set of all intuitionistic fuzzy sets in X. Throughout this paper, X denotes a non empty set.

^{*} E-mail: satheesh_kanna@yahoo.co.in

Definition 2.2 ([1]). Let A and B be any two IFSs of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X\}$ and $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle \mid x \in X\}$. $|x \in X\}$. Then

- (i) $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x)$ for all $x \in X$,
- (ii) A = B if and only if $A \subseteq B$ and $B \subseteq A$,
- (iii) $A^c = \{ \langle x, \nu_A(x), \mu_A(x) \rangle \mid x \in X \},\$
- (iv) $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle \mid x \in X \},\$
- (v) $A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle \mid x \in X \}.$

Definition 2.3 ([1]). The intuitionistic fuzzy sets $0_{\sim} = \{\langle x, 0, 1 \rangle \mid x \in X\}$ and $1_{\sim} = \{\langle x, 1, 0 \rangle \mid x \in X\}$ are the empty set and the whole set of X respectively.

Definition 2.4 ([1]). Let A and B be any two IFSs of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X\}$ and $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle \mid x \in X\}$. Then

- (i) $A \subseteq B$ and $A \subseteq C \Rightarrow A \subseteq B \cap C$,
- (ii) $A \subseteq C$ and $B \subseteq C \Rightarrow A \cup B \subseteq C$,
- (iii) $A \subseteq B$ and $B \subseteq C \Rightarrow A \subseteq C$,
- (iv) $(A \cup B)^c = A^c \cap B^c$ and $(A \cap B)^c = A^c \cup B^c$,
- $(v) ((A)^{c})^{c} = A,$
- (vi) $(1_{\sim})^c = 0_{\sim} \text{ and } (0_{\sim})^c = 1_{\sim}.$

Definition 2.5 ([3]). An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms :

- (i) $\theta_{\sim}, \ 1_{\sim} \in \tau$,
- (ii) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$,
- (iii) $\cup G_i \in \tau$ for any family $\{G_i \mid i \in J\} \subseteq \tau$.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X.

The complement A^{c} of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

Definition 2.6 ([3]). Let (X, τ) be an IFTS and $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X\}$ be an IFS in X. Then the intuitionistic fuzzy interior and the intuitionistic fuzzy closure are defined as follows:

 $int(A) = \bigcup \{G \mid G \text{ is an IFOS in } X \text{ and } G \subseteq A\},$ $cl(A) = \cap \{K \mid K \text{ is an IFCS in } X \text{ and } A \subseteq K\}.$

Proposition 2.7 ([3]). For any two IFSs A and B in (X, τ) , we have

(i) $int(A) \subseteq A$,

- (ii) $A \subseteq cl(A)$,
- (iii) $A \subseteq B \Rightarrow int(A) \subseteq int(B)$ and $cl(A) \subseteq cl(B)$,
- (iv) int(int(A)) = int(A),
- $(v) \ cl(cl(A)) = cl(A),$
- $(vi) \ cl(A \cup B) = cl(A) \cup cl(B),$
- (vii) $int(A \cap B) = int(A) \cap int(B)$.
- **Proposition 2.8** ([3]). For any IFS A in (X, τ) , we have
 - (i) $int(0_{\sim}) = 0_{\sim}$ and $cl(0_{\sim}) = 0_{\sim}$,
- (*ii*) $int(1_{\sim}) = 1_{\sim}$ and $cl(1_{\sim}) = 1_{\sim}$,
- $(iii) \ (int(A))^c = cl(A^c),$
- $(iv) (cl(A))^c = int(A^c).$

Proposition 2.9 ([3]). If A is an IFCS in (X, τ) then cl(A) = A and if A is an IFOS in (X, τ) then int(A) = A. The arbitrary union of IFCSs is an IFCS in (X, τ) .

Definition 2.10. An IFS A in an IFTS (X, τ) is said to be an

- (i) intuitionistic fuzzy regular closed set (IFRCS in short) if A = cl(int(A)), [4]
- (ii) intuitionistic fuzzy α -closed set (IF α CS in short) if cl(int(cl(A))) $\subseteq A$, [5]
- (iii) intuitionistic fuzzy semi closed set (IFSCS in short) if $int(cl(A)) \subseteq A$, [4]
- (iv) intuitionistic fuzzy pre closed set (IFPCS in short) if $cl(int(A)) \subseteq A$, [4]
- (v) intuitionistic fuzzy generalized closed set (IFGCS in short) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in (X, τ) , [13]
- (vi) intuitionistic fuzzy generalized semi closed set (IFGSCS in short) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in $(X, \tau), [10]$

The complements of the above mentioned intuitionistic fuzzy closed sets are called their respective intuitionistic fuzzy open sets.

Definition 2.11 ([7]). An IFS A in an IFTS (X, τ) is said to be an

- (i) intuitionistic fuzzy π open set (IF π OS in short) if A is a finite union of fuzzy regular open sets,
- (ii) intuitionistic fuzzy π closed set (IF π CS in short) if A^c is an intuitionistic fuzzy π open set.

Definition 2.12 ([8]). Let A be an IFS in an IFTS (X, τ) . Then the α -interior of A (α int(A) in short) and the α -closure of A (α cl(A) in short) are defined as

$$\alpha int(A) = \bigcup \{ G \mid G \text{ is an } IF\alpha OS \text{ in } (X, \tau) \text{ and } G \subseteq A \},$$
$$\alpha cl(A) = \cap \{ K \mid K \text{ is an } IF\alpha CS \text{ in } (X, \tau) \text{ and } A \subseteq K \}.$$

67

sint(A), scl(A), pint(A) and pcl(A) are similarly defined. For any IFS A in (X, τ) , we have $\alpha cl(A^c) = (\alpha int(A))^c$ and $\alpha int(A^c) = (\alpha cl(A))^c$.

Remark 2.13 ([8]). Let A be an IFS in an IFTS (X, τ) . Then

(i) $\alpha cl(A) = A \cup cl(int(cl(A))),$

(ii) $\alpha int(A) = A \cap int(cl(int(A))).$

Remark 2.14.

- (i) Every $IF\pi OS$ in (X, τ) is an IFOS in (X, τ) , [7]
- (ii) Every IFOS in (X, τ) is an IF α OS in (X, τ) , [4]
- (iii) Every $IF\pi OS$ in (X, τ) is an $IF\pi GOS$. [7]

Definition 2.15 ([12]). An IFS A in (X, τ) is said to be an intuituionistic fuzzy $\pi g \alpha$ closed set (IF $\pi G \alpha CS$ in short) if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IF πOS in (X, τ) .

Definition 2.16 ([12]). An IFS A in (X, τ) is said to be an intuituionistic fuzzy $\pi g \alpha$ open set (IF $\pi G \alpha OS$ in short) if the complement A^c is an IF $\pi G \alpha CS$ in (X, τ) .

Remark 2.17 ([12]). Every IFCS, IF α CS, IFRCS, IFGCS is an IF π G α CS, but the converses may not be true in general.

Definition 2.18 ([3]). Let X and Y are two nonempty sets. Let $f: X \to Y$ be a mapping. If $B = \{\langle y, \mu_B(y), \nu_B(y) \rangle \mid y \in Y\}$ is an IFS in Y, then the preimage of B under f, denoted by $f^{-1}(B)$, is the IFS in X defined by $f^{-1}(B) = \{\langle x, f^{-1}(\mu_B)(x), f^{-1}(\nu_B)(x) \rangle \mid x \in X\}$.

Definition 2.19 ([3]). Let X and Y are two nonempty sets. Let $f: X \to Y$ be a mapping. If $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X\}$ is an IFS in X, then the image of A under f, denoted by f(A), is the IFS in Y defined by $f(A) = \{\langle y, f(\mu_A)(y), f_-(\nu_A)(y) \rangle \mid y \in Y\}$, where $f_-(\nu_A)(y) = 1 - f(1 - \nu_A)$.

Definition 2.20 ([4]). Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an intuitionistic fuzzy closed mapping (IF closed map in short) if f(A) is an IFCS in (Y, σ) for every IFCS A of (X, τ) .

Definition 2.21 ([9]). Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an

- (i) intuitionistic fuzzy regular closed mapping (IFR closed map in short) if f(A) is an IFRCS in (Y, σ) for every IFCS A of (X, τ) ,
- (ii) intuitionistic fuzzy α -closed mapping (IF α closed map in short) if f(A) is an IF α CS in (Y, σ) for every IFCS A of (X, τ),
- (iii) intuitionistic fuzzy pre closed mapping (IFP closed map in short) if f(A) is an IFPCS in (Y, σ) for every IFCS A of (X, τ) ,
- (iv) intuitionistic fuzzy generalized closed mapping (IFG closed map in short) if f(A) is an IFGCS in (Y, σ) for every IFCS A of (X, τ) ,
- (v) intuitionistic fuzzy generalized semi closed mapping (IFGS closed map in short) if f(A) is an IFGSCS in (Y, σ) for every IFCS A of (X, τ) ,

Definition 2.22 ([12]). An IFTS (X, τ) is said to be an

(i) intuitionistic fuzzy $_{\pi\alpha\alpha}T_{1/2}$ (IF $_{\pi\alpha\alpha}T_{1/2}$ in short) space if every IF $_{\pi}G\alpha CS$ in X is an IFCS in X,

(ii) intuitionistic fuzzy $_{\pi\alpha b}T_{1/2}$ (IF $_{\pi\alpha b}T_{1/2}$ in short) space if every IF $\pi G\alpha CS$ in X is an IFGCS in X,

3. Intuitionistic Fuzzy $\pi g \alpha$ Closed Mappings

In this section we introduce intuitionistic fuzzy $\pi g \alpha$ closed mappings and study some of their properties.

Definition 3.1. A mapping $f: (X, \tau) \to (Y, \sigma)$ is said to be an intuituionistic fuzzy $\pi g\alpha$ closed mapping (IF $\pi G\alpha$ closed map in short) if f(A) is an IF $\pi G\alpha CS$ in (Y, σ) for every IFCS A in (X, τ) .

Example 3.2. Let $X = \{a, b\}$ and $Y = \{u, v\}$. Let $T_1 = \langle x, (0.4, 0.5), (0.5, 0.4) \rangle$ and $T_2 = \langle y, (0.4, 0.3), (0.5, 0.6) \rangle$. Then $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IF $\pi G \alpha$ closed mapping.

Definition 3.3. A mapping $f: (X, \tau) \to (Y, \sigma)$ is said to be an intuituionistic fuzzy $\pi g \alpha$ open mapping (IF $\pi G \alpha$ open map in short) if f(A) is an IF $\pi G \alpha OS$ in (Y, σ) for every IFOS A in (X, τ) .

Example 3.4. Let $X = \{a, b\}$ and $Y = \{u, v\}$. Let $T_1 = \langle x, (0.6, 0.5), (0.3, 0.4) \rangle$ and $T_2 = \langle y, (0.2, 0.3), (0.7, 0.6) \rangle$. Then $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IF $\pi G \alpha$ open mapping.

Theorem 3.5. Every IF closed mapping is an $IF\pi G\alpha$ closed mapping, but not conversely.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be an IF closed mapping. Let A be an IFCS in X. Since f is an IF closed mapping, f(A) is an IFCS in Y. Since every IFCS is an IF π G α CS, f(A) is an IF π G α CS in Y. Hence f is an IF π G α closed mapping.

Example 3.6. Let $X = \{a, b\}$ and $Y = \{u, v\}$. Let $T_1 = \langle x, (0.2, 0.1), (0.7, 0.8) \rangle$ and $T_2 = \langle y, (0.3, 0.2), (0.6, 0.7) \rangle$. Then $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Consider an IFS $A = \langle x, (0.7, 0.8), (0.2, 0.1) \rangle$ is an IFCS in X. Then f(A) is an IF π G α CS in Y. But f(A) is not an IFCS in Y. Therefore f is an IF π G α closed mapping but not an IF closed mapping.

Theorem 3.7. Every IFG closed mapping is an $IF\pi G\alpha$ closed mapping, but not conversely.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be an IFG closed mapping. Let A be an IFCS in X. By hypothesis f(A) is an IFGCS in Y. Since every IFGCS is an IF π G α CS, f(A) is an IF π G α CS in Y. Hence f is an IF π G α closed mapping.

Example 3.8. Let $X = \{a, b\}$ and $Y = \{u, v\}$. Let $T_1 = \langle x, (0.5, 0.6), (0.4, 0.3) \rangle$ and $T_2 = \langle y, (0.6, 0.7), (0.3, 0.2) \rangle$. Then $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Consider an IFS $A = \langle x, (0.4, 0.3), (0.5, 0.6) \rangle$ is an IFCS in X. Then f(A) is an IF $\pi G \alpha CS$ in Y. But f(A) is not an IFGCS in Y. Therefore f is an IF $\pi G \alpha$ closed mapping but not an IFG closed mapping.

Theorem 3.9. Every IF α closed mapping is an IF π G α closed mapping, but not conversely.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be an IF α closed mapping. Let A be an IFCS in X. By hypothesis f(A) is an IF α CS in Y. Since every IF α CS is an IF π G α CS, f(A) is an IF π G α CS in Y. Hence f is an IF π G α closed mapping.

Example 3.10. Let $X = \{a, b\}$ and $Y = \{u, v\}$. Let $T_1 = \langle x, (0.4, 0.5), (0.5, 0.4) \rangle$ and $T_2 = \langle y, (0.4, 0.3), (0.5, 0.6) \rangle$. Then $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Consider an IFS $A = \langle x, (0.5, 0.4), (0.4, 0.5) \rangle$ is an IFCS in X. Then f(A) is an IF π G α CS in Y. But f(A) is not an IF α CS in Y. Therefore f is an IF π G α closed mapping but not an IF α closed mapping.

Remark 3.11. An $IF\pi G\alpha$ closed mapping is independent of an IFP closed mapping.

Example 3.12. Let $X = \{a, b\}$ and $Y = \{u, v\}$. Let $T_1 = \langle x, (0.1, 0.2), (0.8, 0.7) \rangle$ and $T_2 = \langle y, (0.7, 0.6), (0.2, 0.3) \rangle$. Then $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Consider an IFS $A = \langle x, (0.8, 0.7), (0.1, 0.2) \rangle$ is an IFCS in X. Then f(A) is an IF π G α CS in Y. But f(A) is not an IFPCS in Y. Therefore f is an IF π G α closed mapping but not an IFP closed mapping.

Example 3.13. Let $X = \{a, b\}$ and $Y = \{u, v\}$. Let $T_1 = \langle x, (0.7, 0.6), (0.3, 0.4) \rangle$ and $T_2 = \langle y, (0.4, 0.5), (0.6, 0.5) \rangle$. Then $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Consider an IFS $A = \langle x, (0.3, 0.4), (0.7, 0.6) \rangle$ is an IFCS in X. Then f(A) is an IFPCS in Y. But f(A) is not an IF π G α CS in Y. Therefore f is an IFP closed mapping but not an IF π G α closed mapping.

Remark 3.14. An $IF\pi G\alpha$ closed mapping is independent of an IFGS closed mapping.

Example 3.15. Let $X = \{a, b\}$ and $Y = \{u, v\}$. Let $T_1 = \langle x, (0.45, 0.5), (0.45, 0.4) \rangle$ and $T_2 = \langle y, (0.5, 0.6), (0.4, 0.3) \rangle$. Then $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Consider an IFS $A = \langle x, (0.45, 0.4), (0.45, 0.5) \rangle$ is an IFCS in X. Then f(A) is an IF π G α CS in Y. But f(A) is not an IFGSCS in Y. Therefore f is an IF π G α closed mapping but not an IFGS closed mapping.

Example 3.16. Let $X = \{a, b\}$ and $Y = \{u, v\}$. Let $T_1 = \langle x, (0.8, 0.7), (0.1, 0.2) \rangle$ and $T_2 = \langle y, (0.2, 0.3), (0.7, 0.6) \rangle$. Then $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Consider an IFS $A = \langle x, (0.1, 0.2), (0.8, 0.7) \rangle$ is an IFCS in X. Then f(A) is an IFGSCS in Y. But f(A) is not an IF π G α CS in Y. Therefore f is an IFGS closed mapping but not an IF π G α closed mapping.

The above relations are given in the following diagram.

The reverse implications are not true in genereal.

Theorem 3.17. Let $f: (X, \tau) \to (Y, \sigma)$ be a mapping. Let f(A) be an IFRCS in Y for every IFCS A in X. Then f is an IF $\pi g\alpha$ closed mapping.

Proof. Let A be an IFCS in X. Then f(A) is an IFRCS in Y. Since every IFRCS is an IF π G α CS, f(A) is an IF π G α CS in Y. Hence f is an IF π G α closed mapping.

Theorem 3.18. Let $f: (X, \tau) \to (Y, \sigma)$ be an $IF\pi G\alpha$ closed mapping. Then f is an IF closed mapping if Y is an $IF_{\pi\alpha a} T_{1/2}$ space.

Proof. Let A be an IFCS in X. By hypothesis, f(A) is an IF $\pi G\alpha CS$ in Y. Since Y is an IF $_{\pi\alpha a}T_{1/2}$ space, f(A) is an IFCS in Y. Hence f is an IF closed mapping.

Theorem 3.19. Let $f: (X, \tau) \to (Y, \sigma)$ be a mapping from an IFTS X into an IFTS Y. Then the following conditions are equivalent if Y is an $IF_{\pi\alpha a}T_{1/2}$ space.

- (i) f is an $IF\pi G\alpha$ open mapping,
- (ii) If A is an IFOS in X then f(A) is an $IF\pi G\alpha OS$ in Y,
- (iii) $f(int(A)) \subseteq int(cl(int(f(A))))$ for every IFS A in X.

Proof. (i) \Rightarrow (ii) : It is obviously true.

(ii) \Rightarrow (iii) : Let A be an IFS in X. Then int(A) is an IFOS in X. Then f(int(A)) is an IF π G α OS in Y. Since Y is an IF $_{\pi\alpha a}T_{1/2}$ space, f(int(A)) is an IFOS in Y. Therefore $f(int(A)) = int(f(int(A)) \subseteq int(cl(int(f(A))))$.

(iii) \Rightarrow (i) : Let A be an IFOS in X. By hypothesis, $f(int(A)) \subseteq int(cl(int(f(A))))$. This implies $f(A) \subseteq int(cl(int(f(A))))$. Hence f(A) is an IF α OS in Y. Since every IF α OS is an IF π G α OS, f(A) is an IF π G α OS in Y. Hence f is an IF π G α open mapping.

Theorem 3.20. Let $f: (X, \tau) \to (Y, \sigma)$ be an $IF\pi G\alpha$ closed mapping. Then f is an IFG closed mapping if Y is an $IF_{\pi\alpha b} T_{1/2}$ space.

Proof. Let A be an IFCS in X. Then f(A) is an IF π G α CS in Y, by hypothesis. Since Y is an IF $_{\pi\alpha b}$ T_{1/2} space, f(A) is an IFGCS in Y. Hence f is an IFG closed mapping.

Theorem 3.21. Let $f: (X, \tau) \to (Y, \sigma)$ be an IF closed mapping and $g: (Y, \sigma) \to (Z, \delta)$ be an IF $\pi G\alpha$ closed mapping. Then $g \circ f: (X, \tau) \to (Z, \delta)$ is an IF $\pi G\alpha$ closed mapping.

Proof. Let A be an IFCS in X. Then f(A) is an IFCS in Y, by hypothesis. Since g is an IF π G α closed mapping, g(f(A)) is an IF π G α CS in Z. Hence $g \circ f$ is an IF π G α closed mapping.

Theorem 3.22. Let $f: (X, \tau) \to (Y, \sigma)$ be a mapping from an IFTS X into an IFTS Y. Then the following are equivalent if Y is an $IF_{\pi\alpha a} T_{1/2}$ space.

- (i) f is an $IF\pi G\alpha$ closed mapping,
- (ii) $f(int(A)) \subseteq \alpha int(f(A))$ for each IFCS A of X,
- (iii) $int(f^{-1}(B)) \subseteq f^{-1}(\alpha int(B))$ for every IFS B of Y.

Proof. (i) \Rightarrow (ii) : Let f be an IF π G α closed mapping. Let A be any IFS in X. Then int(A) is an IFOS in X. By hypothesis, f(int(A)) is an IF π G α OS in Y. Since Y is an IF $_{\pi\alpha a}$ T_{1/2} space, f(int(A)) is an IF α OS in Y. Therefore α int(f(int(A))) = f(int(A)). Now f(int(A)) = α int(f(int(A))) $\subseteq \alpha$ int(f(A)).

(ii) \Rightarrow (iii) : Let B be an IFS in Y. Then $f^{-1}(B)$ is an IFS in X. By hypothesis, $f(int(f^{-1}(B))) \subseteq \alpha int(f(f^{-1}(B))) \subseteq \alpha int(B)$. Therefore $int(f^{-1}(B)) \subseteq f^{-1}(\alpha int(B))$. (iii) \Rightarrow (i) : Let A be an IFOS in X. Then int(A) = A and f(A) is an IFS in Y. Then $int(f^{-1}(f(A))) \subseteq f^{-1}(\alpha int(f(A)))$, by hypothesis. Now $A = int(A) \subseteq int(f^{-1}(f(A))) \subseteq f^{-1}(\alpha int(f(A)))$. Therefore $f(A) \subseteq f(f^{-1}(\alpha int(f(A)))) = \alpha int(f(A)) \subseteq f(A)$. Therefore $\alpha int(f(A)) = f(A)$ is an IF α OS in Y. Hence f(A) is an IF π G α OS in Y. This implies f is an IF π G α closed mapping. **Theorem 3.23.** Let $f: (X, \tau) \to (Y, \sigma)$ be an $IF\pi G\alpha$ closed mapping and Y is an $IF_{\pi\alpha c} T_{1/2}$ space, then f is an IFGS closed mapping.

Proof. Let A be an IFCS in X. By hypothesis, f(A) is an IF π G α CS in Y. Since Y is an IF $_{\pi\alpha c}$ T_{1/2} space, f(A) is an IFGSCS in Y. This implies f is an IFGS closed mapping.

Theorem 3.24. A mapping $f: X \to Y$ is an $IF\pi G\alpha$ open mapping if $f(\alpha int(A)) \subseteq \alpha int(f(A))$ for every $A \subseteq X$.

Proof. Let A be an IFOS in X. Then int(A) = A. Now $f(A) = f(int(A)) \subseteq f(\alpha int(A)) \subseteq \alpha int(f(A))$, by hypothesis. But $\alpha intf(A) \subseteq f(A)$. Hence $\alpha int(f(A)) = f(A)$. That is f(A) is an IF α OS in X. This implies f(A) is an IF π G α OS in X. Hence f is an IF π G α open mapping.

Theorem 3.25. Let $f: (X, \tau) \to (Y, \sigma)$ be a mapping. Then the following conditions are equivalent if Y is an $IF_{\pi\alpha a} T_{1/2}$ space.

- (i) f is an $IF\pi G\alpha$ closed mapping,
- (ii) $cl(int(cl(f(A)))) \subseteq f(cl(A))$ for every IFS A in X.

Proof. (i) \Rightarrow (ii) Let A be an IFS in X. Then cl(A) is an IFCS in X. By hypothesis, f(cl(A)) is an IF π G α CS in Y. Since Y is an IF $_{\pi\alpha a}$ T_{1/2} space, f(cl(A)) is an IFCS in Y. Therefore cl(f(cl(A))) = f(cl(A)). Now clearly cl(int(cl(f(A)))) \subseteq cl(f(cl(A))) = f(cl(A)). Hence cl(int(cl(f(A)))) \subseteq f(cl(A)).

(ii) \Rightarrow (i) Let A be an IFCS in X. By hypothesis $cl(int(cl(f(A)))) \subseteq f(cl(A)) = f(A)$. This implies f(A) is an IF α CS in Y and hence f(A) is an IF π G α CS in Y. That is f is an IF π G α closed mapping.

Definition 3.26. A mapping $f: X \to Y$ is said to be an intuitionistic fuzzy $i - \pi g \alpha$ closed mapping (IFi $-\pi G \alpha$ closed mapping in short) if f(A) is an IF $\pi G \alpha CS$ in Y for every IF $\pi G \alpha CS$ A in X.

Example 3.27. Let $X = \{a, b\}$ and $Y = \{u, v\}$. Let $T_1 = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$ and $T_2 = \langle y, (0.2, 0.3), (0.7, 0.6) \rangle$. Then $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IFi $\pi G \alpha$ closed mapping.

Theorem 3.28. Every IFi- $\pi G\alpha$ closed mapping is an $IF\pi G\alpha$ closed mapping but not conversely.

Proof. Let $f: X \to Y$ be an IFi- $\pi G\alpha$ closed mapping. Let A be an IFCS in X. Then A is an IF $\pi G\alpha$ CS in X. By hypothesis, f(A) is an IF $\pi G\alpha$ CS in Y. Hence f is an IF $\pi G\alpha$ closed mapping.

Example 3.29. Let $X = \{a, b\}$ and $Y = \{u, v\}$. Let $T_1 = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$ and $T_2 = \langle y, (0.4, 0.5), (0.5, 0.5) \rangle$. Then $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IF π G α closed mapping. But f is not an IFi π G α closed mapping. Since the IFS $A = \langle x, (0.35, 0.45), (0.55, 0.5) \rangle$ is an IF π G α CS in X, but f(A) is not an IF π G α CS in Y. Hence f is an IF π G α closed mapping, but not an IFi π G α closed mapping.

Theorem 3.30. If $f: X \to Y$ be a bijective mapping then the following are equivalent.

- (i) f is an IFi- $\pi G \alpha$ closed mapping,
- (ii) f(A) is an $IF\pi G\alpha CS$ in Y for every $IF\pi G\alpha CS A$ in X,
- (iii) f(A) is an IFi- $\pi G\alpha OS$ in Y for every IFi- $\pi G\alpha OS$ A in X.

Proof. (i) \Leftrightarrow (ii): It is obviously true.

(ii) \Rightarrow (iii): Let A be an IF π G α OS in X. By hypothesis, f(A^c) is an IF π G α CS in Y. That is f(A)^c is an IF π G α CS in Y. Hence f(A) is an IF π G α OS in Y. (iii) \Rightarrow (i): Let A be an IF π G α CS in X. Then A^c is an IF π G α OS in X. By hypothesis, f(A^c) is an IF π G α OS in Y. That is f(A)^c is an IF π G α OS in Y. Hence f(A) is an IF π G α CS in Y. Thus f is an IFi- π G α closed mapping.

Theorem 3.31. Let $f: X \to Y$ be a mapping where X and Y are $IF_{\alpha}T_{1/2}$ spaces, then the following are equivalent.

- (i) f is an IFi- $\pi G\alpha$ closed mapping,
- (ii) f(A) is an $IF\pi G\alpha OS$ in Y for every $IF\pi G\alpha OS A$ in X,
- (iii) $f(\alpha int(B)) \subseteq \alpha int(f(B))$ for every IFS B in X,
- (iv) $\alpha cl(f(B)) \subseteq f(\alpha cl(B))$ for every IFS B in X.

Proof. (i) \Rightarrow (ii): It is obviously true.

(ii) \Rightarrow (iii) Let B be any IFS in X. Since α int(B) is an IF α OS, it is an IF π G α OS in X. Then by hypothesis, f(α int(B)) is an IF π G α OS in Y. Since Y is an IF $_{\alpha}$ T_{1/2} space, f(α int(B)) is an IF α OS in Y. Therefore f(α int(B)) = α int(f(α int(B))) \subseteq α int(f(B)). (iii) \Rightarrow (iv): It can be proved by taking complement in (iii).

(iv) \Rightarrow (i): Let A be an IF π G α CS in X. By hypothesis, $\alpha cl(f(A)) \subseteq f(\alpha cl(A))$. Since X is an IF $_{\alpha}T_{1/2}$ space, A is an IF α CS in X. Therefore $\alpha cl(f(A)) \subseteq f(\alpha cl(A)) = f(A) \subseteq \alpha cl(f(A))$. Hence f(A) is an IF α CS in Y. This implies f(A) is an IF π G α CS in Y. Thus f is an IFi- π G α closed mapping.

References

- [1] K.T.Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems, 20(1986), 87-96.
- [2] C.L.Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182-190.
- [3] D.Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and Systems, 88(1997), 81-89.
- [4] H.Gurcay, D.Coker and Es.A.Haydar, On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math., 5(1997), 365-378.
- [5] K.Hur and Y.B.Jun, On intuitionistic fuzzy alpha continuous mappings, Honam Math. Jour., 25(2003), 131-139.
- [6] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89-96.
- [7] S.Maragathavalli and K.Ramesh, Intuitionistic fuzzy π-generalized semi closed sets, Advances in Theoretical and Applied Mathematics, 7(1)(2012), 33-42.
- [8] K.Sakthivel, Studies on alpha generalized continuous mappings in intuitionistic fuzzy topological spaces, Ph. D Thesis, Bharathiar University, Coimabatore, (2011).
- [9] R.Santhi and K.Sakthivel, Alpha generalized closed mappings in intuitionistic fuzzy topological spaces, Far East Journal of Mathematical Sciences, 43(2010), 265-275.
- [10] R.Santhi and K.Sakthivel, Intuitionistic fuzzy generalized semicontinuous mappings, Advances in Theoretical and Applied Mathematics, 5(2009), 73-82.
- [11] R.Santhi and D.Jayanthi, Intuitionistic fuzzy generalized semipreclosed mappings, NIFS, 16(2010), 28-39.
- [12] N.Seenivasagan, O.Ravi and S.Satheesh Kanna, $\pi g \alpha$ Closed sets in intuitionistic fuzzy topological spaces, J. of Advanced Research in Scientific Computing, 6(2014), 1-15.

- [13] S.S.Thakur and Rekha Chaturvedi, Generalized closed sets in intuitionistic fuzzy topology, The Journal of Fuzzy Mathematics, 16(2008), 559-572.
- [14] L.A.Zadeh, Fuzzy sets, Information and Control, 8(1965), 338-353.