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Abstract: A transportation decision problem is considered. The existence of solution and characterization of solution space are

established. The dual behavior of transportation problem is studied. The step by step procedure is described and an
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numerical example.
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1. Introduction

Transportation problem is the special form of linear programming model. There are numerous papers in the area of

transportation problem. Important among of these for solving transportation problem are Arsham H. and A.B. Kahn [5],

Balinski M.L and R.E. Gomory [6], Charnes A. and W.W. Cooper [1], Ford, L. R. and D.R. Fulkerson [7], Shafaat and

S.K. Goyal [9], Ping J.I. and K.F CHU [2]. Ping and CHU [2] have developed dual-matrix approach to solve transportation

problem. They have suggested that if the original transportation problem is converted into corresponding dual transportation

problem then a better starting basic feasible solution can be obtained. They further mentioned that time and space can be

saved while going through the initial simplex table to the optimal simplex table. It is difficult to observe the existence of

solution and characterization of solution space mathematically, in their paper. Further, converging behavior of the solution

is also missing.

In the present paper we have developed mathematical background (existence, characterization and convergence) of the

algorithm given by [2].

2. The Problem and its Dual

The transportation problem can be expressed as a linear programming model as follows:

LP(1) Maximize Z =
m∑
i=1

n∑
j=1

cijxij
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Subject to

n∑
j=1

xij ≤ ai (i = i, . . . ,m)

m∑
i=1

xij ≥ bi (j = i, . . . , n) (1)

xij ≥ 0 (i = 1, . . . ,m; j = 1, dots, n)

Here ai and bj are assumed to be positive, ai and bj are called supplies and demands. The cost cij are all nonnegative.

Dual of the L.P(1) is as follows:

LP(2) Maximize ψ =
n∑

j=1

bjvj −
m∑
i=1

aiui

Subject to

vj − ui ≤ cij (i = 1, . . . ,m; j = 1, dots, n)

ui, vj ≥ 0 (i = 1, . . . ,m; j = 1, dots, n) (2)

3. Mathematical Analysis of the Solution and Characterization of the
Solution Space

Our approach to find the good solution is the dual approach. So from L.P(2) ui = 0, vj = crj = min
i
cij gives the basic

solution. ie., minimum cost variable is selected from every column of the problem. These variables are called basic variables.

In this way we have n basic variables corresponding to their respective cells.

Since L.P (1) has total supply available at each origin is greater than or equal to the required demand. ie.,
m∑
i=1

ai ≥
n∑

j=1

bj ,

we can create an additional destination D0 with demand
m∑
i=1

ai−
n∑

j=1

bj , with shipping cost zero from each origin. Or we can

say that, to make the problem balance we need to add m virtual cells having transporting cost zero. These cells are denoted

as (1, 0)(2, 0) . . . (m, 0) and treated as basic cells. Actually these cells do not exist in the original problem so called virtual

cells.

In this manner total (m+n) basic cells are (i1, 1)(i2, 2) . . . (in, n)(1, 0)(2, 0) . . . (m, 0) and corresponding variables are xi1,

xi2,. . . , xij , xin, x10, x20,. . . , xm0 rest variables are non-basic variables.

Next L.P (1) is converted into standard L.P form then converted into matrix form. According to basic and non-basic data

matrices and variables are partitioned into basic and non-basic respectively. To make the problem (1) in standard linear

programming form by introducing only surplus variables we rewrite the problem as follows.

Maximize Z =
m∑
i=1

n∑
j=1

cijxij

Subject to

m∑
i=1

xij = bj

−
m∑

j=1

xij − xi0 = −ai

xij , x0j ≥ 0
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Min Z = CX

AX =

 b

−a

 (3)

X ≥ 0

Partition the set of variables xij into xBij and xNB
ij and cij into cBij and cNB

ij . Where NB and B is defined as the set of

indices for the non-basic and basic variables. A is partition in B and N matrices where B contains those columns of A which

are associated with basic variables and N contains those columns which are associated with non-basic variables. Here B is

square matrix of order (m+n) and N is of order (m+ n)×mn then problem (3) can be written as

 1 −cBij −cNB
ij

0 B N




z

xBij

xNB
ij

 =


0

b

−a

 (4)

Initially all non-basic variables are at zero level therefore the standard problem is reduced to

 z

xBij

 =

 1 −cBij

0 B




0

b

−a



If T =

 1 −cBij

0 B

 then (T )−1 is calculated using (A-2-7) page no.822 from Taha [4].

(T )−1 =

 1 cBijB

0 B

 and

 z

xBij

 =


cBijB

 b

−a


B

 b

−a





Note that B−1 = B. Pre multiply both sides by

 1 cBijB

0 B

 in equation (4) we get

 1 −cBij + cBijB −cNB
ij + cBijBN

0 B N




z

xBij

xNB
ij

 =


cBijB

 b

−a


B

 b

−a




(5)

3.1. Analysis of Step by Step Procedure

For the convenience we are presenting the steps of algorithm in tabular form in detail. According to the set of equations (5)

we form the simplex table as follows:

It is well known that the optimality condition for primal simplex method is (zij − cij) ≤ 0, b ≥ 0. But here we see that

all b are not greater than or equal to zero therefore applying dual simplex algorithm. From the simplex table-1 we have

constraint equation as

BxBij +BNxNB
ij = B

 b

−a
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Basic xB
ij xNB

ij Solution

Z cBijB − cBij cBijBN − cNB
ij cBijB

[
b

−a

]

xB
ij B BN B

[
b

−a

]

Table 1. Simplex

PNB
ij and PB

ij are the column vectors corresponding to matrix N and B. The constraint equation is associated with the lth

basic variable can be written as

(
BxBij

)
l
+

∑
i,j∈NB

(
BPNB

ij

)
l
xNB
ij =

B
 b

−a




l

(6)

Because we are solving transportation problem using dual simplex algorithm first we select leaving variable. Suppose rth

basic variable is the leaving variable therefore corresponding constraint equation is written as:

(
BxBij

)
r

+
∑

i,j∈NB

(
BPNB

ij

)
r
xNB
ij =

B
 b

−a




r

(7)

If PNB
st is a vector corresponding to the entering variable xNB

st then the rth constraint equation can be written as follows.

(
BxBij

)
r

+
∑

i,j∈NB−st

(
BPNB

ij

)
r
xNB
ij +

(
BPNB

st

)
r
xNB
st =

B
 b

−a




r

Thus entering variable xNB
st is completed as

xNB
st =

B
 b

−a




r

(BPNB
st )r

−
(
BxBij

)
r

(BPNB
st )r

−

∑
i,j∈NB−st

(
BPNB

ij

)
r
xNB
ij

(BPNB
st )r

(8)

Substituting the value of xNB
st in equation (6) we have

(
BxBij

)
l
+

∑
i,j∈NB−st

[(
BPNB

ij

)
l
−
(
BPNB

st

)
l

(
BPNB

ij

)
r

(BPNB
st )r

]
xNB
ij −

(
BPNB

st

)
l

(
BPB

ij

)
r

(BPNB
st )r

=

B
 b

−a




l

−
(
BPNB

st

)
l

B
 b

−a




r

(BPNB
st )r

(9)

From the general matrix table, the z-equation coefficient associated with the variable xNB
ij is zij − cij = cijBN − cNB

ij .

Nothing that (zij − cij) is always zero for all basic variables xBij .

z +
∑

i,j∈NB

(zij − cij)xNB
ij = cBijB

 b

−a

 (10)

i.e., z +
∑

i,j∈NB−st

(
cBijBP

NB
ij − cNB

ij

)
xNB
st = cBijB

 b

−a

 .
12



Vijay Sharma and Dr.Chandra Bhusan Sharma

Substituting the value of xNB
st (entering variable) from equation (8)

z +
∑

i,j∈NB−st

[(
cBijBP

NB
ij − cNB

ij

)
−
(
cBijBP

NB
st − cNB

st

) (BPNB
ij

)
r

(BPNB
st )r

]
xNB
ij −

(
cBijBP

NB
st − cNB

st

) (
BxBij

)
r

(BPNB
st )r

= cBijB

 b

−a

− (cBijBPNB
st − cNB

st

)
B

 b

−a




r

(BPNB
st )r

(11)

Now we claim that
(
BPNB

st

)
r

is equal to -1. Substituting the value in equation (8), (9), (11) the equations are reduces.

With the help of the equations (8), (9), (11) transformed simplex table is given below

Basic xB
ij xNB

ij Solution

Z
(
cBijP

NB
st − cNB

st

)
(B)r

∑
i,j∈NB−(s,t)

 (cBijBPNB
ij − cNB

ij

)
+
(
cBijBPNB

st − cNB
st

)(
BPNB

ij

)
r

 cBijB

[
b

−a

]
+
(
cBijBPNB

st − cNB
st

)
(B)r

[
b

−a

]

(xB
ij)l (B)l +

(
BPN

st

)
l
(B)r

∑
(i,j)∈N−(s,t)

 (BPNB
st

)
l
+
(
BPNB

st

)
l(

BPNB
ij

)
r

 ([
b

−a

])
l

+ (B)r

[
b

−a

]

xN
st −(B)r −

∑
(i,j)∈NB−(s,t)

(
BPNB

st

)
r

−(B)r

[
b

−a

]

Table 2. Simplex

With the help of simplex Table 1 and 2 we can solve the transportation problems.

3.2. Algorithm

Step 1: Rewrite the problem as L.P form.

Step 2: Write the standard form of the problem by adding surplus variables.

Step 3: Generate the table and find basic feasible solution.

Step 4: Generate the initial dual simplex table.

Step 5: Find leaving variable from table in step 4.

Step 6: Find entering variable from table in step 4.

Step 7: Generate the optimal dual simplex table described in the procedure.

Step 8: Write the optimal solution from table generated in step7.

4. Illustration

We consider a numerical example and give complete illustration of our algorithm. Consider the following transportation

problem.
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Destination

Origin D1 D2 Supply

O1 3 6 400

O2 4 5 300

O3 7 3 400

Demand 450 350

Step 1 : Rewriting the problem in the following form Maximize Z′ = −(3x11 + 6x12 + 4x21 + 5x22 + 7x31 + 3x32)

subject to

x11 + x21 + x31 ≥ 450

x12 + x22 + x32 ≥ 350

−x11 − x12 ≥ −400

−x21 − x22 ≥ −300

−x31 − x32 ≥ −400

Step 2 : Adding the surplus variables in each constraint

x11 + x21 + x31 − x01 = 450

x12 + x22 + x32 − x02 = 350

−x11 − x12 − x10 = −400

−x21 − x22 − x20 = −300

−x31 − x32 − x30 = −400

These equations can be written in matrix form as



1 0 1 0 1 0 0 0 0 −1 0

0 1 0 1 0 1 0 0 0 0 −1

−1 −1 0 0 0 0 −1 0 0 0 0

0 0 −1 −1 0 0 0 −1 0 0 0

0 0 0 0 −1 −1 0 0 −1 0 0





x11

x12

x21

x22

x31

x32

x10

x20

x30

x01

x021



=



450

350

−400

−300

−400



Step 3 : Selecting the basic variable from table given below
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D1 D2 supply

O1 3 6 400

x11 x12

O2 4 5 300

x21 x22

O3 7 3 400

x31 x32

Demand 450 350

crj = min
i=1,2,3

{cij}, j = 1, 2. cr1 = min{cil} = min{c11, c21, c31} = min{3, 4, 7} = 3 for c11, So x11 is the first basic variable,

similarly x32 is another basic variable and other are surplus variables corresponding to supply constraints x10, x20, x30.

Hence basic variables are x11, x32, x10, x20, x30.

Step 4 : Now we construct the initial simplex table with the help of simplex table -1 as follows:

Basic x11 x32 x10 x20 x30 x12 x21 x22 x31 x01 x02 Solution

Z 0 0 0 0 0 -3 -1 -2 -4 -3 -3 2400

x11 1 0 0 0 0 0 1 0 1 -1 0 450

x32 0 1 0 0 0 1 0 1 0 0 -1 350

x10 -1 0 -1 0 0 1 -1 0 -1 1 0 -50

x20 0 0 0 -1 0 0 1 1 0 0 0 300

x30 0 -1 0 0 -1 -1 0 -1 1 0 1 50

Step 5 : To find leaving vector, (xBij)r = min[(xBij)l, (x
B
ij)l < 0] = −50. Here r = 3 indicates that the third basic variable

x10 is the leaving variable so we remove x10 from the basis matrix.

Step 6 : To find the entering variable, min

{
(cBijBN−cNB

ij )
(BN)r

, (BN)r < 0

}
= min

{
−1
−1
, −4
−1

}
= 1. So x21 is the entering

variable.

Step 7 : Using the procedure we get final(optimal) transformed Simplex Table 2 as follows:

Basic x11 x32 x10 x20 x30 x12 x21 x22 x31 x01 x02 Solution

Z 1 0 1 0 0 -4 0 -2 -3 -4 -3 2400

x11 0 0 -1 0 0 1 0 0 0 0 0 450

x32 0 1 0 0 0 1 0 1 0 0 -1 350

x21 1 0 1 0 0 -1 1 0 1 -1 0 -50

x20 -1 0 -1 -1 0 1 0 1 -1 1 0 300

x30 0 -1 0 0 -1 -1 0 -1 1 0 1 50

Step 8 : All b are greater than zero so the optimal solution is obtained with the objective Z= 2450 with x11 = 400,

x32 = 350, x21 = 50, x20 = 250, x30 = 50.

5. Conclusion

Explanation gives us complete idea of the dual matrix approach by which the algorithm can be extended for various types of

transportation problems. It can help us to develop the algorithm for the transportation problem having demand more than

the supply as well as the supply more than the demand. It may be useful for developing the algorithm for multi objective

transportation problems.
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