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Abstract: This paper advocates the problem of estimating the finite population mean using auxiliary information in sample surveys.
We have suggested a new chain ratio-ratio- type exponential estimator and its properties are studied up to first degree

of approximation. It has been shown that the proposed estimator is more efficient than the usual unbiased estimator,
classical ratio estimator, Bahl and Tuteja [1] ratio-type exponential estimator and Kadilar and Cingi [3] chain ratio-type
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1. Introduction

In survey sampling, the use of auxiliary information at the estimation stage has been discussed by various statisticians

in order to improve the efficiency of their formulated estimators for estimating the population mean. Out of many ratio,

product and regression methods of estimation are good examples in this context. The use of auxiliary information dates back

to the year (1934), when Neyman used it for stratification of the finite population. Cochran [2] used auxiliary information in

estimation procedure and envisaged ratio method of estimation to provide more efficient estimator of the population mean

or total compared to the simple mean per unit estimator under certain conditions when the correlation between the study

variable and the auxiliary variable is positive (high). On the other hand, if the correlation is negative (high), Robson [6] and

Murthy [5] suggested the use of product method of estimation. Recent developments in ratio and product methods of esti-

mation alongwith their variety of modified forms are lucidly described in detail by Singh [19], Singh [9] and Solanki et al. [20].

Let U = {U1, . . . , UN} be finite population of size N. To each unit Ui (i = 1, . . . , N) in the population paired values (yi, xi)

corresponding to the study variable y and an auxiliary variable x, correlated with the study variable y are attached. Let

(Ȳ , X̄) be the population means of the study variable y and the auxiliary variable x respectively. Let there be a positive

(high) correlation between y and x. It is assumed that the population mean X̄ of the auxiliary variable x is known.For

estimating the population mean Ȳ the study variable y, a simple random sample of size n is drawn without replacement.
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Let (ȳ, x̄) be the sample means of (y, x) respectively. It is well known that sample mean ȳ is an unbiased estimator of the

population mean Ȳ and its variance under simple random sampling without replacement (SRSWOR) is given by

MSE(ȳ) = V ar(ȳ) =
(1− f)

n
S2
y =

(1− f)

n
Ȳ 2C2

y , (1)

where f = n
N

is the sampling fraction, S2
y = 1

N−1

N∑
i=1

(yi − Ȳ )2 and Cy = Sy/Ȳ . The classical ratio estimator of the

population mean Ȳ using auxiliary information on the auxiliary variable x is given by

ȳR = ȳ

(
X̄

x̄

)
, x̄ 6= 0. (2)

The bias and mean squared error of the ratio estimator ȳR to the first degree of approximation are respectively given by

B(ȳR) =
(1− f)

n
Ȳ C2

x(1− C), (3)

MSE(ȳR) =
(1− f)

n
Ȳ 2[C2

y + C2
x(1− 2C)], (4)

where C = ρ
(
Cy

Cx

)
, ρ =

(
Syx

SySx

)
, Cx =

(
Sx
X̄

)
, Syx = 1

N−1

N∑
i=1

(yi − Ȳ )(xi − X̄) and S2
x = 1

N−1

N∑
i=1

(xi − X̄)2.

It follows from (1) and (4) that the ratio estimator ȳR is more efficient than the sample mean ȳ if

C >
1

2
. (5)

Kadilar and Cingi [3] suggested a chain ratio estimator for estimating the population mean Ȳ as

ȳCR = ȳ

(
X̄2

x̄2

)
. (6)

To the first degree of approximation, the bias and MSE of ȳCR are respectively given by

B(ȳCR) =
(1− f)

n
Ȳ C2

x(3− 2C), (7)

MSE(ȳCR) =
(1− f)

n
Ȳ 2[C2

y + 4C2
x(1− C)]. (8)

It can be easily shown that the chain ratio estimator ȳCR is more efficient than the usual unbiased estimator ȳ and the usual

ratio estimator ȳR as long as the conditions

C > 1 (9)

and

C >
3

2
= 1.5 (10)

are respectively satisfied. Bahl and Tuteja [1] have suggested a ratio type exponential estimator for population mean Ȳ as

ȳRe = ȳ exp

(
X̄ − x̄
X̄ + x̄

)
. (11)

To the first degree of approximation, the bias and MSE of ȳRe are respectively given by

B(ȳRe) =
(1− f)

8n
Ȳ C2

x(3− 4C) (12)
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and

MSE(ȳRe) =
(1− f)

n
Ȳ 2[C2

y +
C2
x

4
(1− 4C)]. (13)

Recently using square root transformation Swain [14] suggested a ratio type estimator for population mean Ȳ as

ȳSQR = ȳ

(
X̄

x̄

) 1
2

(14)

whose bias and MSE to the first degree of approximation are same as given by (12) and (13) respectively i.e. B(ȳSQR) =

B(ȳRe) and MSE(ȳSQR) = MSE(ȳRe). It can be easily shown from (1), (4) and (13) that the ratio type exponential

estimator ȲRe due to Bahl and Tuteja [1] is more efficient than the usual unbiased estimator ȳ and the ordinary ratio

estimator ȳR if

1

4
< C <

3

4
(15)

Again from (8) and (13) we have

MSE(ȳRe)−MSE(ȳCR) =
3(1− f)

4n
Ȳ 2C2

x(4C − 5)

which is positive if

C >
5

4
= 1.25 (16)

Thus, the chain ratio estimator ȳCR due to Kadilar and Cingi [3] is more efficient than the ratio type exponential estimator

ȳRe if the condition (15) is satisfied. It is observed from (9), (10) and (15) that the condition (10) is sufficient for the chain

ratio estimator ȳCR due to Kadilar and Cingi [3] to be more efficient than the sample mean estimator ȳ, the classical ratio

estimator ȳR and the ratio type exponential estimator ȳRe due to Bahl and Tuteja [1].

In this paper we have made an effort towards developing new chain ratio-type exponential and ratio-ratio-type exponential

estimators and the study their properties. Numerical illustration is given in support of the present study.

2. The Proposed Chain Estimator

Adopting the same procedure as outlined in Kadilar and Cingi [3], if sample mean ȳ in (11) is replaced with ȳRe, the chain

ratio-type exponential is obtained as

ȳCRe = ȳRe exp

(
X̄ − x̄
X̄ + x̄

)
(17)

We can re-write (17) using (11) as

ȳCRe = ȳ exp

{
2(X̄ − x̄)

(X̄ + x̄)

}
(18)

If we replace ȳ in (11) by ȳR = ȳ
(
X̄
x̄

)
, then we get another chain ratio-ratio type exponential estimator for population mean

ȳ as

ȳCRRe = ȳR exp

(
X̄ − x̄
X̄ + x̄

)
or

ȳCRRe = ȳ

(
X̄

x̄

)
exp

(
X̄ − x̄
X̄ + x̄

)
(19)
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To the first degree of approximation, the biases and mean squared errors (MSEs) of the proposed estimators ȳCRe and ȳCRRe

are respectively given by

B(ȳCRe) =
(1− f)

n
Ȳ C2

x(1− C) (20)

= B(ȳR),

B(ȳCRRe) =
3(1− f)

8n
Ȳ C2

x(5− 4C), (21)

MSE(ȳCRe) =
(1− f)

n
Ȳ 2[C2

y + C2
x(1− 2C)], (22)

= MSE(ȳR),

MSE(ȳCRRe) =
(1− f)

n
Ȳ 2[C2

y +
3

4
C2
x(3− 4C)]. (23)

where B(ȳR) and MSE(ȳR) are given by (3) and (4) respectively. It is to be noted from (3), (4), (20) and (22) that

B(ȳCRe) = B(ȳR) and MSE(ȳCRe) = MSE(ȳR). So the comparison of classical ratio estimator ȳR and the chain ratio-type

exponential estimator ȳCRe with the chain ratio estimator ȳCR due to Kadilar and Cingi [3] are same as given by (10). Now,

from (1) and (23) we have

MSE(ȳCRRe)−MSE(ȳ) =
(1− f)

n
Ȳ 2C2

x(3− 4C) (24)

which is negative if (3− 4C) < 0. i.e if

C >
3

4
= 0.75. (25)

From (4), (22) and (23) we have

MSE(ȳCRRe)−MSE(ȳR){= MSE(ȳCRe)} =
(1− f)

n
Ȳ 2C2

x

(
5

4
− C

)

which is negative if 5
4
− C < 0. i.e if

C >
5

4
= 1.25 (26)

From (13) and (23) we have

MSE(ȳCRRe)−MSE(ȳRe){= MSE(ȳSQR)} =
2(1− f)

n
Ȳ 2C2

x (1− C) (27)

which is negative if (1− C) < 0. i.e if

C > 1. (28)

Further from (8) and (23) we have

MSE(ȳCRRe)−MSE(ȳCR) =
(1− f)

n
Ȳ 2C2

x

(
C − 7

4

)
(29)

which is negative if
(
C − 7

4

)
< 0. i.e if

C <
7

4
= 1.75 (30)

It is observed from (25), (26), (27) and (30) that the proposed chain ratio- ratio-type estimator exponential estimator

MSE(ȳCRRe) is better than:

(i) the usual unbiased estimator ȳ if C > 3
4

= 0.75.
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(ii) the classical ratio estimator ȳR and the proposed chain ratio-type exponential estimator MSE(ȳCRe) if C > 5
4

= 1.25.

(iii) the ratio-type exponential estimator ȳRe due to Bahl and Tuteja [1] and the ratio-type estimator ȳSQR based on square

root transformation due to Swain’s [14] if C > 1.

(iv) the chain ratio-type estimator ȳCR due to Kadilar and Cingi [3] if C > 7
4

= 1.75.

Thus from (i) to (iv) we conclude that the proposed chain ratio-ratio- type exponential estimator ȳCRRe is more efficient than

the usual unbiased estimator ȳ, classical ratio type estimator ȳR, Bahl and Tuteja [1] ratio-type exponential estimator ȳRe

and Swain’s [14] ratio-type estimator ȳSQR, chain ratio-type exponential estimator ȳCRe and the chain ratio-type estimator

ȳCR due to Kadilar and Cingi [3] if

1.25 =
5

4
< C <

7

4
= 1.75 (31)

3. A Generalized Chain Ratio-Ratio-Type Exponential Estimator

Keeping the estimators due to Sisodia and Dwivedi [18], Upadhyaya and Singh [16], Singh [9], Singh and Tailor [8], Singh

[19], Kadilar and Cingi [4], Subramani and Kumarapandiyan [10–12] and Yan and Tian [17] in view , we define a general

class of chain ratio-ratio-type exponential estimator for population mean ȳ as

ȳgCRRe = ȳ

(
aX̄ + b

ax̄+ b

)
exp

{
a(X̄ − x̄)

a(X̄ + x̄) + 2b

}
, (32)

where (a, b) are real constants or the functions the parameters such as coefficient of variation Cx, coefficient of skewness

β1(x), coefficients of kurtosis β2(x), standard deviation Sx, ∆ = β2(x)β1(x) − 1, quartiles Qi (i = 1, 2, 3) and deciles Di

(i = 1 . . . 10) of the auxiliary variable x, coefficient of variation Cy, and coefficients of kurtosis β2(y), of the auxiliary variable

x and ρ, the correlation coefficient between the auxiliary variable y and the auxiliary variable x. Some estimators belonging

to the class of estimators ȳgCRRe for the convenience to the readers are given in the Table 3.1.

Table 1. Some members of the class of estimators ȳgCRRe

S.No. Estimator Values of Constants

a b

1 ȳg1 = ȳ
(
X̄+Cx
x̄+Cx

)
exp

{
(X̄−x̄)

(X̄+x̄+2Cx)

}
1 Cx

2 ȳg2 = ȳ
(
X̄+β2(x)
x̄+β2(x)

)
exp

{
(X̄−x̄)

(X̄+x̄+2β2(x))

}
1 β2(x)

3 ȳg3 = ȳ
(
X̄β2(x)+Cx
x̄β2(x)+Cx

)
exp

{
β2(x)(X̄−x̄)

β2(x)(X̄+x̄)+2Cx

}
β2(x) Cx

4 ȳg4 = ȳ
(
X̄Cx+β2(x)
x̄Cx+β2(x)

)
exp

{
Cx(X̄−x̄)

Cx(X̄+x̄)+2β2(x)

}
Cx β2(x)

5 ȳg5 = ȳ
(
X̄+ρ
x̄+ρ

)
exp

{
(X̄−x̄)

(X̄+x̄+2ρ)

}
1 ρ

6 ȳg6 = ȳ
(
X̄β1(x)+β2(x)
x̄β1(x)+β2(x)

)
exp

{
β1(x)(X̄−x̄)

β1(x)(X̄+x̄)+2β2(x)

}
β1(x) β2(x)

7 ȳg7 = ȳ
(
X̄β2(x)+β1(x)
x̄β2(x)+β1(x)

)
exp

{
β2(x)(X̄−x̄)

β2(x)(X̄+x̄)+2β1(x)

}
β2(x) β1(x)

8 ȳg8 = ȳ
(
X̄+Md
x̄+Md

)
exp

{
(X̄−x̄)

(X̄+x̄+2Md)

}
1 Md

9 ȳg9 = ȳ
(
X̄Cx+ρ
x̄Cx+ρ

)
exp

{
Cx(X̄−x̄)

Cx(X̄+x̄)+2ρ

}
Cx ρ

10 ȳg10 = ȳ
(
X̄ρ+Cx
x̄ρ+Cx

)
exp

{
ρ(X̄−x̄)

ρ(X̄+x̄)+2Cx

}
β2(x) Cx
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S.No. Estimator Values of Constants

a b

11 ȳg11 = ȳ
(
X̄β2(x)+ρ
x̄β2(x)+ρ

)
exp

{
β2(x)(X̄−x̄)

β2(x)(X̄+x̄)+2ρ

}
β2(x) ρ

12 ȳg12 = ȳ
(
X̄ρ+β2(x)
x̄ρ+β2(x)

)
exp

{
ρ(X̄−x̄)

ρ(X̄+x̄)+2β2(x)

}
ρ β2(x)

13 ȳg13 = ȳ
(
X̄Cx+Md
x̄Cx+Md

)
exp

{
Cx(X̄−x̄)

Cx(X̄+x̄)+2Md

}
Cx Md

14 ȳg14 = ȳ
(
X̄β2(x)+Md
x̄β2(x)+Md

)
exp

{
β2(x)(X̄−x̄)

β2(x)(X̄+x̄)+2Md

}
β2(x) Md

15 ȳg15 = ȳ
(
X̄+Sx
x̄+Sx

)
exp

{
(X̄−x̄)

(X̄+x̄)+2Sx

}
1 Sx

16 ȳg16 = ȳ
(
X̄β1(x)+Sx
x̄β1(x)+Sx

)
exp

{
β1(x)(X̄−x̄)

β1(x)(X̄+x̄)+2Sx

}
β1(x) Sx

17 ȳg17 = ȳ
(
X̄β2(x)+Sx
x̄β2(x)+Sx

)
exp

{
β2(x)(X̄−x̄)

β2(x)(X̄+x̄)+2Sx

}
β2(x) Sx

18 ȳg18 = ȳ
(
X̄+D1
x̄+D1

)
exp

{
(X̄−x̄)

(X̄+x̄)+2D1

}
1 D1

19 ȳg19 = ȳ
(
X̄+D2
x̄+D2

)
exp

{
(X̄−x̄)

(X̄+x̄)+2D2

}
1 D2

20 ȳg20 = ȳ
(
X̄+D3
x̄+D3

)
exp

{
(X̄−x̄)

(X̄+x̄)+2D3

}
1 D3

21 ȳg21 = ȳ
(
X̄+D4
x̄+D4

)
exp

{
(X̄−x̄)

(X̄+x̄)+2D4

}
1 D4

22 ȳg22 = ȳ
(
X̄+D5
x̄+D5

)
exp

{
(X̄−x̄)

(X̄+x̄)+2D5

}
1 D5

23 ȳg23 = ȳ
(
X̄+D6
x̄+D6

)
exp

{
(X̄−x̄)

(X̄+x̄)+2D6

}
1 D6

24 ȳg24 = ȳ
(
X̄+D7
x̄+D7

)
exp

{
(X̄−x̄)

(X̄+x̄)+2D7

}
1 D7

25 ȳg25 = ȳ
(
X̄+D8
x̄+D8

)
exp

{
(X̄−x̄)

(X̄+x̄)+2D8

}
1 D8

26 ȳg26 = ȳ
(
X̄+D9
x̄+D9

)
exp

{
(X̄−x̄)

(X̄+x̄)+2D9

}
1 D9

27 ȳg27 = ȳ
(
X̄+D10
x̄+D10

)
exp

{
(X̄−x̄)

(X̄+x̄)+2D10

}
1 D10

To obtain the bias and MSE of the general chain ratio-ratio-type exponential estimator ȳgCRRe, we write

ȳ = Ȳ (1 + e0)

x̄ = X̄(1 + e1)

E(e0) = E(e1) = 0

and

E(e2
0
) =

(1− f)

n
C2
y ,

E(e2
1
) =

(1− f)

n
C2
x,

E(e0e1) =
(1− f)

n
ρCyCx =

(1− f)

n
CC2

x.

Expressing ȳgCRRe at (32) in term of e’s we have

ȳgCRRe = Ȳ (1 + e0)(1 + τe1)−1 exp

{
−τe1

2

(
1 +

τe1

2

)−1
}
, (33)
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where τ = aX̄
aX̄+b

. We assume that |τe1| < 1 so that (1 + τe1)−1 is expandable. Expanding the right hand side of (33),

multiplying out and neglecting terms of e’s having power greater than two we have

ȳgCRRe ∼= Ȳ

(
1 + e0 −

3

2
τe1 −

3

2
τe0e1 +

15

8
e2

1

)

or

(ȳgCRRe − Ȳ ) ∼= Ȳ

(
e0 −

3

2
τe1 −

3

2
τe0e1 +

15

8
e2

1

)
(34)

Taking expectation of both sides of (34) we get the bias of ȳgCRRe to the first degree of

B(ȳgCRRe) =
3(1− f)

8n
Ȳ C2

x(5− 4τC) (35)

Squaring both sides of (34) and neglecting terms of e’s having power greater than two we have

(ȳgCRRe − Ȳ )2 ∼= Ȳ 2

(
e2
0

+
9

4
τ2e2

1
− 3τe0e1

)
(36)

Taking expectation of both sides of (36) we get the mean squared error of ȳgCRRe to the first degree of approximation as

MSE(ȳgCRRe) =
(1− f)

n
Ȳ 2

[
C2
y +

3

4
τC2

x(3τ − 4C)

]
(37)

We note that the biases and mean squared errors of the estimators listed in Table 1 can be easily obtained from (35) and

(37) just by putting suitable value of constants (a, b). We, now, consider the following estimators for population mean Ȳ :

ȳ∗R = ȳ

(
aX̄ + b

ax̄+ b

)
(38)

and its chained version is given by

ȳ∗CR = ȳ

(
aX̄ + b

ax̄+ b

)2

(39)

which is due Singh and Rathour [7]. Bahl and Tuteja [1] ratio-type exponential estimator for population ȳ as

ȳ∗Re = ȳ exp

{
a(X̄ − x̄)

a(X̄ + x̄) + 2b

}
(40)

To the first degree of approximation, the bias and mean squared error of the estimators ȳ∗R, ȳ∗CR and ȳ∗Re to first degree of

approximation are respectively given by

B(ȳ∗R) =
(1− f)

n
Ȳ C2

xτ(τ − C) (41)

B(ȳ∗
CR

) =
(1− f)

n
Ȳ C2

xτ(3τ − 2C) (42)

B(ȳ∗
Re

) =
(1− f)

8n
Ȳ C2

xτ(3τ − 4C) (43)

MSE(ȳ∗
R

) =
(1− f)

n
Ȳ 2 [C2

y + τC2
x(τ − 2C)

]
(44)

MSE(ȳ∗
CR

) =
(1− f)

n
Ȳ 2 [C2

y + 4τC2
x(1− C)

]
(45)

MSE(ȳ∗
Re

) =
(1− f)

n
Ȳ 2

[
C2
y +

1

4
τC2

x(τ − 4C)

]
(46)

From (1), (44), (45) and (46) can be shown that the proposed general chain ratio-ratio type exponential estimator ȳgCRRe

is more efficient than:
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(a) the usual unbiased estimator ȳ if

either C >
3τ

4
, τ > 0 (47)

or C <
3τ

4
, τ < 0 (48)

(b) ratio-type estimator ȳ∗R if

either C >
5τ

4
, τ > 0 (49)

or C <
5τ

4
, τ < 0 (50)

(c) the chain ratio-type estimator ȳ∗CR due to Singh and Rathour [7] if

either C >
7τ

4
, τ > 0 (51)

or C <
7τ

4
, τ < 0 (52)

(d) ratio-type exponential estimator ȳ∗Re if

either C > τ, τ > 0 (53)

or C < τ, τ < 0 (54)

Combined the inequalities (47), (49), (51) and (53) we get that the proposed class of general chain-ratio-ratio-type estimator

ȳgCRRe is more efficient than ȳ, ȳ∗R, ȳ∗Re, ȳ
∗
CR. If

5τ

4
< C <

7τ

4
, τ > 0 (55)

Further combining the inequalities (48), (50), (52) and (54) we obtained that the proposed general chain ratio-ratio-type

estimator is more efficient than ȳ, ȳ∗R, ȳ∗Re, ȳ
∗
CR. If

7τ

4
< C <

3τ

4
, τ > 0 (56)

Remark 3.1. When the correlation between the study variate y and the auxiliary variate x is negative (high) we define a

chain product-product-type exponential estimator for the population mean ȳ as

ȳgCPPe = ȳ

(
ax̄+ b

aX̄ + b

)
exp

{
a(x̄− X̄)

a(x̄+ X̄) + 2b

}
(57)

where (a, b) are same as defined for general chain ratio-ratio- type exponential estimator ȳgCRRe defined by (32). A large

number of product-product-type exponential estimators can be generated from the proposed general chain product-product-type

exponential estimator given by (55) for suitable values of (a, b). Using the slandered technique the bias and MSE of ȳgCPPe

can be easily defined.
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4. Empirical Study

To judge the performance of the proposed chain-ratio-ratio-type exponential estimator ȳCRRe over ȳ, ȳR, ȳCR, ȳRe and

ȳCRe, we consider some data which is earlier considered by Kadilar and Cingi [3]. Description of the data is given below:

ȳ : the level of apple production

x̄ : the member of apple trees

and the required values are given in following scheme.

Table 2. Data Statistics

N = 100 Sx = 49189.08

n = 20 Sy = 6425.00

ρ = 0.82 Syx = 25777869226

X̄ = 24375.50 Cy = 4.18

Ȳ = 1536.77 Cx = 2.02

We have computed the percent relative efficiencies (PREs) of the estimators ȳR, ȳCR, ȳRe and ȳCRe with respect to usual

unbiased estimator ȳ for data statistics given in Table 2 and the findings are shown in Table 3.

Table 3. PREs of different estimators of the population mean ȳ with respect to ȳ.

Estimator ȳ ȳR ȳCRe ȳCR ȳRe ȳCRRe

PRE(•, ȳ) 100.00 226.76 226.76 286.48 151.03 297.05

Table 3 clearly indicates that the proposed chain ratio-ratio-type exponential estimator ȳCRRe is more efficient than usual

unbiased estimator ȳ, usual ratio estimator ȳR, and proposed chain exponential estimator ȳCRe, Kadilar and Cingi [3] chain

ratio-type estimator ȳCR and Bahl and Tuteja [1] ratio type exponential estimator ȳRe. Thus the procedure outlined in the

paper is justified.
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