

International Journal of Mathematics And its Applications

$$(1,2)^{\star}$$
-g^{\star}-Closed Sets

Research Article

O. Ravi^{1*}, M. Jeyaraman², M. Sajan Joseph³ and R. Muthuraj⁴

- 1 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai Dt, Tamil Nadu, India.
- 2 PG and Research Department of Mathematics, Raja Dorai Singam Govt.Arts College, Sivagangai, Tamil Nadu, India.
- 3 Department of Mathematics, Arul Anandar College, Karumathur, Madurai Dt, Tamil Nadu, India.
- 4 PG and Research Department of Mathematics, H. H. The Rajah's College, Pudukottai, Tamil Nadu, India.

Abstract: The aim of this paper is to introduce a new class of sets namely $(1, 2)^*$ - g^* -closed sets in bitopological spaces. This class lies between the class of $\tau_{1,2}$ -closed sets and the class of $(1, 2)^*$ -g-closed sets. The complement of an $(1, 2)^*$ - g^* -closed set is called an $(1, 2)^*$ - g^* -open set. Moreover we introduce two new spaces namely, $(1, 2)^*$ - T_g^* -spaces and $(1, 2)^*$ - g^* -grades sets.

MSC: 54E55.

Keywords: $(1,2)^* - g^*$ -closed set, $(1,2)^* - g^{\#}$ -closed set, $(1,2)^* - \alpha g$ -closed set, $(1,2)^* - T_{1/2}^*$ -space, $(1,2)^* - T_g^*$ -space, $(1,2)^* - g^* T_g^*$ -space, $(1,2)^* -$

1. Introduction

In 1963 Levine [17] introduced the notion of semi-open sets. According to Cameron [7] this notion was Levine's most important contribution to the field of topology. The motivation behind the introduction of semi-open sets was a problem of Kelley which Levine has considered in [18], i.e., to show that $cl(U) = cl(U \cap D)$ for all open sets U and dense sets D. He proved that U is semi-open if and only if $cl(U) = cl(U \cap D)$ for all dense sets D and D is dense if and only if $cl(U) = cl(U \cap D)$ for all semi-open sets U. Since the advent of the notion of semi-open sets, many mathematicians worked on such sets and also introduced some other notions, among others, preopen sets [19], α -open sets [20] and β -open sets [1] (Andrijevic [2] called them semi-pre open sets). It has been shown in [10] recently that the notion of preopen sets and semi-open sets are important with respect to the digital plane.

Levine [16] also introduced the notion of g-closed sets and investigated its fundamental properties. This notion was shown to be productive and very useful. For example it is shown that g-closed sets can be used to characterize the extremally disconnected spaces and the submaximal spaces (see [8] and [9]). Moreover the study of g-closed sets led to some separation axioms between T_0 and T_1 which proved to be useful in computer science and digital topology.

Bhattacharyya and Lahiri [6], Arya and Nour [5], Sheik John [32], Veera Kumar [33] and Rajamani and Viswanathan [21] introduced sg-closed sets, gs-closed sets, ω -closed sets, $g^{\#}$ -closed sets and αg s-closed sets respectively. Levine [16] introduced the notion of $T_{1/2}$ -spaces which properly lie between T_1 -spaces and T_0 -spaces. Many authors studied properties of $T_{1/2}$ -spaces: Dunham [11], Arenas et al. [4] etc.

^{*} E-mail: siingam@yahoo.com

In this paper, we introduce a new class of sets namely $(1,2)^*-g^*$ -closed sets in bitopological spaces. This class lies between the class of $\tau_{1,2}$ -closed sets and the class of $(1,2)^*$ -g-closed sets. The complement of an $(1,2)^*-g^*$ -closed set is called an $(1,2)^*-g^*$ -open set. Moreover, we introduce two new spaces namely, $(1,2)^*-T_g^*$ -spaces and $(1,2)^*-g^*$ -spaces.

2. Preliminaries

Throughout this paper, X, Y and Z denote bitopological spaces (X, τ_1 , τ_2), (Y, σ_1 , σ_2) and (Z, η_1 , η_2) respectively.

Definition 2.1. Let A be a subset of a bitopological space X. Then A is called $\tau_{1,2}$ -open [15] if $A = P \cup Q$, for some $P \in \tau_1$ and $Q \in \tau_2$. The complement of $\tau_{1,2}$ -open set is called $\tau_{1,2}$ -closed. The family of all $\tau_{1,2}$ -open (resp. $\tau_{1,2}$ -closed) sets of X is denoted by $(1,2)^*$ -O(X) (resp. $(1,2)^*$ -C(X)).

Definition 2.2 ([15]). Let A be a subset of a bitopological space X. Then

- 1. the $\tau_{1,2}$ -interior of A, denoted by $\tau_{1,2}$ -int(A), is defined by $\cup \{ U : U \subseteq A \text{ and } U \text{ is } \tau_{1,2}$ -open};
- 2. the $\tau_{1,2}$ -closure of A, denoted by $\tau_{1,2}$ -cl(A), is defined by $\cap \{ U : A \subseteq U \text{ and } U \text{ is } \tau_{1,2}\text{-closed} \}.$

Remark 2.3 ([15]). Notice that $\tau_{1,2}$ -open subsets of X need not necessarily form a topology.

Definition 2.4. Let A be a subset of a bitopological space X. Then A is called

- 1. $(1,2)^*$ -semi-open set [15] if $A \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)).
- 2. $(1,2)^*$ -preopen set [15] if $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)).
- 3. $(1,2)^*$ - α -open set [15] if $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A))).
- 4. $(1,2)^*$ - β -open set [27] if $A \subseteq \tau_{1,2}$ -cl($\tau_{1,2}$ -int($\tau_{1,2}$ -cl(A))).
- 5. $(1,2)^*$ -regular open set [25] if $A = \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)).

The complements of the above mentioned open sets are called their respective closed sets.

The $(1, 2)^*$ -preclosure [23] (resp. $(1, 2)^*$ -semi-closure [23], $(1, 2)^*$ - α -closure [23], $(1, 2)^*$ - β -closure [27]) of a subset A of X, denoted by $(1, 2)^*$ -pcl(A) (resp. $(1, 2)^*$ -scl(A), $(1, 2)^*$ - α cl(A), $(1, 2)^*$ - β cl(A)) is defined to be the intersection of all $(1, 2)^*$ preclosed (resp. $(1, 2)^*$ -semi-closed, $(1, 2)^*$ - α -closed, $(1, 2)^*$ - β -closed) sets of X containing A. It is known that $(1, 2)^*$ -pcl(A) (resp. $(1, 2)^*$ -scl(A), $(1, 2)^*$ - α cl(A), $(1, 2)^*$ - β cl(A)) is a $(1, 2)^*$ -preclosed (resp. $(1, 2)^*$ -semi-closed, $(1, 2)^*$ - α -closed, $(1, 2)^*$ - β closed) set. For any subset A of an arbitrarily chosen bitopological space, the $(1, 2)^*$ -semi-interior [23] (resp. $(1, 2)^*$ - α -interior [23], $(1, 2)^*$ -preinterior [23]) of A, denoted by $(1, 2)^*$ -sint(A) (resp. $(1, 2)^*$ - α int(A), $(1, 2)^*$ -pint(A)), is defined to be the union of all $(1, 2)^*$ -semi-open (resp. $(1, 2)^*$ - α -open, $(1, 2)^*$ -preopen) sets of X contained in A.

Definition 2.5. Let A be a subset of a bitopological space X. Then A is called

- 1. $a (1,2)^*$ -generalized closed (briefly, $(1,2)^*$ -g-closed) set [30] if $\tau_{1,2}$ -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ -g-closed set is called $(1,2)^*$ -g-open set.
- 2. a $(1,2)^*$ -semi-generalized closed (briefly, $(1,2)^*$ -sg-closed) set [3] if $(1,2)^*$ -scl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -semi-open in X. The complement of $(1,2)^*$ -sg-closed set is called $(1,2)^*$ -sg-open set.
- 3. a $(1,2)^*$ -generalized semi-closed (briefly, $(1,2)^*$ -gs-closed) set [3] if $(1,2)^*$ -scl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ -gs-closed set is called $(1,2)^*$ -gs-open set.

- 4. an $(1,2)^*$ - α -generalized closed (briefly, $(1,2)^*$ - α g-closed) set [12] if $(1,2)^*$ - α cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ - α g-closed set is called $(1,2)^*$ - α g-open set.
- 5. $a (1,2)^*$ -generalized semi-preclosed (briefly, $(1,2)^*$ -gsp-closed) set [12] if $(1,2)^*$ - $\beta cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ -gsp-closed set is called $(1,2)^*$ -gsp-open set.
- 6. $a (1,2)^*$ - $g\alpha$ -closed set [29] if $(1,2)^*$ - $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ - α -open in X. The complement of $(1,2)^*$ - $g\alpha$ -closed set is called $(1,2)^*$ - $g\alpha$ -open set.
- 7. a $(1,2)^*$ -regular generalized closed (briefly, $(1,2)^*$ -r-g-closed) set [26] if $\tau_{1,2}$ -cl(A) \subseteq U whenever A \subseteq U and U is $(1,2)^*$ -regular open in X. The complement of $(1,2)^*$ -r-g-closed set is called $(1,2)^*$ -r-g-open set.
- 8. a (1,2)*-generalized preregular closed (briefly, (1,2)*-gpr-closed) set [31] if (1,2)*-pcl(A) ⊆ U whenever A ⊆ U and U is (1,2)*-regular open in X. The complement of (1,2)*-gpr-closed set is called (1,2)*-gpr-open set.
- 9. a $(1,2)^*$ -generalized preclosed (briefly, $(1,2)^*$ -gp-closed) set [31] if $(1,2)^*$ -pcl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ -gp-closed set is called $(1,2)^*$ -gp-open set.
- 10. an $(1,2)^* \alpha^{**}$ -generalized closed (briefly, $(1,2)^* \alpha^{**}g$ -closed) set [31] if $(1,2)^* \alpha cl(A) \subseteq \tau_{1,2}$ -int $(\tau_{1,2}-cl(U))$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^* \alpha^{**}g$ -closed set is called $(1,2)^* \alpha^{**}g$ -open set.
- 11. an $(1,2)^*$ - $g^\#$ -closed set [22] if $\tau_{1,2}$ -cl(A) \subseteq U whenever $A \subseteq$ U and U is $(1,2)^*$ - αg -open in X. The complement of $(1,2)^*$ - $g^\#$ -closed set is called $(1,2)^*$ - $g^\#$ -open set.
- 12. an $(1,2)^*$ - \ddot{g} -closed set [14] if $\tau_{1,2}$ -cl(A) \subseteq U whenever $A \subseteq U$ and U is $(1,2)^*$ -sg-open in X. The complement of $(1,2)^*$ - \ddot{g} -closed set is called $(1,2)^*$ - \ddot{g} -open set.

Remark 2.6. The collection of all $(1,2)^*$ -gpr-closed (resp. $(1,2)^*$ - \ddot{g} -closed, $(1,2)^*$ -g-closed, $(1,2)^*$ -gs-closed, $(1,2)^*$ -gsp-closed, $(1,2)^*$ - α -closed, $(1,2)^*$ - α -closed, $(1,2)^*$ -semi-closed) sets is denoted by $(1,2)^*$ -GPRC(X) (resp. $(1,2)^*$ - $\ddot{GC}(X)$, $(1,2)^*$ -GC(X), $(1,2)^*$ -GSC(X), $(1,2)^*$ -GSPC(X), $(1,2)^*$ - $\alpha GC(X)$, $(1,2)^*$ -SGC(X), $(1,2)^*$ - $\alpha C(X)$, $(1,2)^*$ -GC(X), $(1,2)^*$ -GSC(X), $(1,2)^*$ -GSPC(X), $(1,2)^*$ - $\alpha GC(X)$, $(1,2)^*$ -SGC(X), $(1,2)^*$ - $\alpha C(X)$, $(1,2)^*$ - $\alpha C(X)$

The collection of all $(1,2)^*$ -gpr-open (resp. $(1,2)^*$ - \ddot{g} -open, $(1,2)^*$ -g-open, $(1,2)^*$ -gs-open, $(1,2)^*$ -gsp-open, $(1,2)^*$ - α -open, $(1,2)^*$ - α -ope

Definition 2.7. A bitopological space X is called:

- 1. $(1,2)^*$ - $T_{1/2}$ -space [28] if every $(1,2)^*$ -g-closed set in it is $\tau_{1,2}$ -closed.
- 2. $(1,2)^*$ -T_b-space [24] if every $(1,2)^*$ -gs-closed set in it is $\tau_{1,2}$ -closed.
- 3. $(1,2)^*$ - α -space [23] if every $(1,2)^*$ - α -closed set in it is $\tau_{1,2}$ -closed.

3. $(1,2)^*$ -g*-closed Sets

We introduce the following definitions.

Definition 3.1. Let A be a subset of a bitopological space X. Then A is called

- 1. $(1,2)^*$ - g^* -closed set if $\tau_{1,2}$ -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -g-open in X. The complement of $(1,2)^*$ - g^* -closed set is called $(1,2)^*$ - g^* -open. The family of all $(1,2)^*$ - g^* -closed sets in X is denoted by $(1,2)^*$ - $G^*C(X)$.
- 2. $(1,2)^* g_{\alpha}^*$ -closed set if $(1,2)^* \alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^* g$ -open in X. The family of all $(1,2)^* g_{\alpha}^* closed$ sets in X is denoted by $(1,2)^* G_{\alpha}^* C(X)$.

Proposition 3.2. Every $\tau_{1,2}$ -closed set is $(1,2)^*$ -g*-closed.

Proof. If A is any $\tau_{1,2}$ -closed set in X and G is any $(1,2)^*$ -g-open set containing A, then $G \supseteq A = \tau_{1,2}$ -cl(A). Hence A is $(1,2)^*$ -g*-closed.

The converse of Proposition 3.2 need not be true as seen from the following example.

Example 3.3. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{a, c\}, X\}$. Then the sets in $\{\phi, \{a\}, \{a, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Then $\{a, b\}$ is $(1, 2)^*$ -g*-closed set but not $\tau_{1,2}$ -closed.

Proposition 3.4. Every $(1,2)^*$ - g^* -closed set is $(1,2)^*$ - g^*_{α} -closed.

Proof. If A is a $(1,2)^*-g^*$ -closed subset of X and G is any $(1,2)^*-g$ -open set containing A, then $G \supseteq \tau_{1,2}$ -cl(A) $\supseteq (1,2)^*-\alpha$ cl(A). Hence A is $(1,2)^*-g^*_{\alpha}$ -closed.

The converse of Proposition 3.4 need not be true as seen from the following example.

Example 3.5. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{b\}, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then the sets in $\{\phi, \{b\}, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{a, c\}, X\}$ are called $\tau_{1,2}$ -closed. Then $\{a\}$ is $(1, 2)^* - g_{\alpha}^*$ -closed but not $(1, 2)^* - g^*$ -closed in X.

Remark 3.6. The following examples show that $(1,2)^*$ - g^* -closed sets are independent of $(1,2)^*$ - α -closed sets.

Example 3.7. In Example 3.5, $\{b, c\}$ is $(1, 2)^*$ - g^* -closed but not $(1, 2)^*$ - α -closed and $\{a\}$ is $(1, 2)^*$ - α -closed but not $(1, 2)^*$ - g^* -closed in X.

Remark 3.8. The following examples show that $(1,2)^*$ - g^* -closed sets are independent of $(1,2)^*$ -semi-closed sets.

Example 3.9. In Example 3.5, $\{b, c\}$ is $(1, 2)^* - g^*$ -closed but not $(1, 2)^*$ -semi-closed and $\{a\}$ is $(1, 2)^*$ -semi-closed but not $(1, 2)^* - g^*$ -closed in X.

Remark 3.10. The following examples show that $(1,2)^*$ -g^{*}-closed sets are independent of $(1,2)^*$ -pre-closed sets.

Example 3.11. In Example 3.5, $\{b, c\}$ is $(1, 2)^*$ - g^* -closed but not $(1, 2)^*$ -pre-closed and $\{a\}$ is $(1, 2)^*$ -pre-closed but not $(1, 2)^*$ - g^* -closed in X.

Remark 3.12. The following examples show that $(1, 2)^*$ - g^* -closed sets are independent of $(1, 2)^*$ - β -closed sets.

Example 3.13. In Example 3.5, $\{b, c\}$ is $(1,2)^*-g^*$ -closed but not $(1,2)^*-\beta$ -closed and $\{a\}$ is $(1,2)^*-\beta$ -closed but not $(1,2)^*-g^*$ -closed in X.

Remark 3.14. The following examples show that $(1,2)^*$ -g^{*}-closed sets are independent of $(1,2)^*$ -g α -closed sets.

Example 3.15. In Example 3.5, $\{b, c\}$ is $(1, 2)^* - g^*$ -closed but not $(1, 2)^* - g\alpha$ -closed and $\{a\}$ is $(1, 2)^* - g\alpha$ -closed but not $(1, 2)^* - g^*$ -closed in X.

Remark 3.16. The following examples show that $(1,2)^*$ -g^{*}-closed sets are independent of $(1,2)^*$ -sg-closed sets.

Example 3.17. In Example 3.5, $\{b, c\}$ is $(1,2)^*-g^*$ -closed but not $(1,2)^*-sg$ -closed and $\{a\}$ is $(1,2)^*-sg$ -closed but not $(1,2)^*-g^*$ -closed in X.

Proposition 3.18. Every $(1,2)^*$ - g^* -closed set is $(1,2)^*$ -g-closed.

Proof. If A is a $(1,2)^*-g^*$ -closed subset of X and G is any $\tau_{1,2}$ -open set containing A, since every $\tau_{1,2}$ -open set is $(1,2)^*-g^*$ -open, we have $G \supseteq \tau_{1,2}$ -cl(A). Hence A is $(1,2)^*-g^*$ -closed in X.

The converse of Proposition 3.18 need not be true as seen from the following example.

Example 3.19. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{c\}, X\}$. Then the sets in $\{\phi, \{c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a, b\}, X\}$ are called $\tau_{1,2}$ -closed. Then $\{a\}$ is $(1, 2)^*$ -g-closed but not $(1, 2)^*$ -g*-closed set in X.

Proposition 3.20. Every $(1,2)^*$ -g*-closed set is $(1,2)^*$ -gs-closed.

Proof. If A is a $(1,2)^*$ - g^* -closed subset of X and G is any $\tau_{1,2}$ -open set containing A, since every $\tau_{1,2}$ -open set is $(1,2)^*$ -g-open, we have $G \supseteq \tau_{1,2}$ -cl(A) $\supseteq (1,2)^*$ -scl(A). Hence A is $(1,2)^*$ -gs-closed in X.

The converse of Proposition 3.20 need not be true as seen from the following example.

Example 3.21. In Example 3.19, $\{a\}$ is $(1,2)^*$ -gs-closed but not $(1,2)^*$ -g*-closed set in X.

Proposition 3.22. Every $(1,2)^*$ -g^{*}-closed set is $(1,2)^*$ -r-g-closed.

Example 3.23. In Example 3.5, $\{a\}$ is $(1,2)^*$ -r-g-closed but not $(1,2)^*$ -g*-closed set in X.

Proposition 3.24. Every $(1,2)^*$ - g^* -closed set is $(1,2)^*$ - αg -closed.

Proof. If A is a $(1,2)^*$ - g^* -closed subset of X and G is any $\tau_{1,2}$ -open set containing A, since every $\tau_{1,2}$ -open set is $(1,2)^*$ -g-open, we have $G \supseteq \tau_{1,2}$ -cl(A) $\supseteq (1,2)^*$ - α cl(A). Hence A is $(1,2)^*$ - αg -closed in X.

The converse of Proposition 3.24 need not be true as seen from the following example.

Example 3.25. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{c\}, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then the sets in $\{\phi, \{c\}, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and $\tau_{1,2}$ -closed. Then $\{a, c\}$ is $(1, 2)^*$ - αg -closed but not $(1, 2)^*$ - g^* -closed set in X.

Proposition 3.26. Every $(1,2)^*$ - g^* -closed set is $(1,2)^*$ -gsp-closed.

Proof. If A is a $(1,2)^*$ - g^* -closed subset of X and G is any $(1,2)^*$ -regular open set containing A, since every $(1,2)^*$ -regular set is $(1,2)^*$ -g-open, we have $G \supseteq \tau_{1,2}$ -cl(A) $\supseteq (1,2)^*$ - β cl(A). Hence A is $(1,2)^*$ -gsp-closed in X.

The converse of Proposition 3.26 need not be true as seen from the following example.

Example 3.27. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a, c\}, X\}$ are called $\tau_{1,2}$ -closed. Then $\{c\}$ is $(1, 2)^*$ -gsp-closed but not $(1, 2)^*$ -g^{*}-closed set in X.

Proposition 3.28. Every $(1,2)^*$ -g^{*}-closed set is $(1,2)^*$ -gp-closed.

Proof. If A is a $(1,2)^*$ - g^* -closed subset of X and G is any $\tau_{1,2}$ -open set containing A, since every $\tau_{1,2}$ -open set is $(1,2)^*$ -g-open, we have $G \supseteq \tau_{1,2}$ -cl(A) $\supseteq (1,2)^*$ -pcl(A). Hence A is $(1,2)^*$ -g-closed in X.

The converse of Proposition 3.28 need not be true as seen from the following example.

Example 3.29. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{b\}, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then the sets in $\{\phi, \{b\}, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{a, c\}, X\}$ are called $\tau_{1,2}$ -closed. Then $\{a\}$ is $(1, 2)^*$ -gp-closed but not $(1, 2)^*$ -g*-closed in X.

Proposition 3.30. Every $(1, 2)^*$ -g^{*}-closed set is $(1, 2)^*$ -gpr-closed.

Proof. If A is a $(1,2)^*$ - g^* -closed subset of X and G is any $(1,2)^*$ -regular open set containing A, since every $(1,2)^*$ -regular open set is $(1,2)^*$ -g-open, we have $G \supseteq \tau_{1,2}$ -cl(A) $\supseteq (1,2)^*$ -pcl(A). Hence A is $(1,2)^*$ -gpr-closed in X.

The converse of Proposition 3.30 need not be true as seen from the following example.

Example 3.31. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{b\}, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then the sets in $\{\phi, \{b\}, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{a, c\}, X\}$ are called $\tau_{1,2}$ -closed. Then $\{a\}$ is $(1,2)^*$ -gpr-closed but not $(1,2)^*$ -g*-closed in X.

Proposition 3.32. Every $(1,2)^*$ - g^* -closed set is $(1,2)^*$ - $\alpha^{**}g$ -closed.

Proof. If A is a $(1,2)^*$ - g^* -closed subset of X and G is any $\tau_{1,2}$ -open set containing A, since every $\tau_{1,2}$ -open set is $(1,2)^*$ -g-open, we have $G \supseteq \tau_{1,2}$ -cl(A) $\supseteq \tau_{1,2}$ -int($\tau_{1,2}$ -cl(A)). Hence A is $(1,2)^*$ - $\alpha^{**}g$ -closed in X.

The converse of Proposition 3.32 need not be true as seen from the following example.

Example 3.33. In Example 3.31, $\{a\}$ is $(1, 2)^* - \alpha^{**}g$ -closed but not $(1, 2)^* - g^*$ -closed in X.

Proposition 3.34. Every $(1,2)^*$ - $g^{\#}$ -closed set is $(1,2)^*$ - g^* -closed but not conversely.

Proof. If A is (1,2)- $g^{\#}$ -closed subset of X and G is $(1,2)^*$ -g-open set containing A, since every $(1,2)^*$ -g-open set is $(1,2)^*$ - αg -open, we have $G \supseteq \tau_{1,2}$ -cl(A). Hence A is $(1,2)^*$ -g*-closed in X.

Example 3.35. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{a, c\}, X\}$. Then $\{a, b\}$ is $(1, 2)^* - g^*$ -closed set but not $(1, 2) - g^{\#}$ -closed.

Remark 3.36. From the above discussions and known results in [3, 12, 15, 22, 23, 25], we obtain the following diagrams, where $A \rightarrow B$ (resp. $A \not\leftrightarrow B$) represents A implies B but not conversely (resp. A and B are independent of each other).

Diagram - I

Diagram - II

 $\begin{array}{c} (1,2)^{\star}\text{-}semi\text{-}closed \not\leftrightarrow (1,2)^{\star}\text{-}g^{\star}\text{-}closed \longrightarrow (1,2)^{\star}\text{-}g\text{-}closed \\ \downarrow \\ (1,2)^{\star}\text{-}gs\text{-}closed \end{array}$

4. Properties of $(1, 2)^*$ -g*-closed Sets

Definition 4.1. The intersection of all $(1,2)^*$ -g-open subsets of X containing A is called the $(1,2)^*$ -g-kernel of A and denoted by $(1,2)^*$ -g-ker(A).

Lemma 4.2. A subset A of a bitopological space X is $(1,2)^*$ - g^* -closed if and only if $\tau_{1,2}$ -cl(A) $\subseteq (1,2)^*$ -g-ker(A).

Proof. Suppose that A is $(1,2)^*-g^*$ -closed. Then $\tau_{1,2}$ -cl(A) \subseteq U whenever A \subseteq U and U is $(1,2)^*-g$ -open. Let $x \in \tau_{1,2}$ -cl(A). If $x \notin (1,2)^*-g$ -ker(A), then there is a $(1,2)^*-g$ -open set U containing A such that $x \notin U$. Since U is a $(1,2)^*-g$ -open set containing A, we have $x \notin \tau_{1,2}$ -cl(A) and this is a contradiction.

Conversely, let $\tau_{1,2}$ -cl(A) \subseteq (1,2)*-g-ker(A). If U is any (1,2)*-g-open set containing A, then $\tau_{1,2}$ -cl(A) \subseteq (1,2)*-g-ker(A) \subseteq U. Therefore, A is $(1,2)^*$ -g-closed.

Proposition 4.3. If a set A is $(1,2)^*$ -g^{*}-closed in X, then $\tau_{1,2}$ -cl(A) – A contains no nonempty $(1,2)^*$ -g-closed set in X.

Proof. Suppose that A is $(1,2)^* - g^*$ -closed. Let F be a $(1,2)^* - g$ -closed subset of $\tau_{1,2}$ -cl(A) – A. Then A \subseteq F^c. But A is $(1,2)^* - g^*$ -closed, therefore $\tau_{1,2}$ -cl(A) \subseteq F^c. Consequently, F $\subseteq (\tau_{1,2}$ -cl(A))^c. We already have F $\subseteq \tau_{1,2}$ -cl(A). Thus F $\subseteq \tau_{1,2}$ -cl(A) $\cap (\tau_{1,2}$ -cl(A))^c and hence F is empty.

Proposition 4.4. If A is $(1,2)^*$ -g^{*}-closed in X and $A \subseteq B \subseteq \tau_{1,2}$ -cl(A), then B is $(1,2)^*$ -g^{*}-closed in X.

Proof. Let U be $(1,2)^*$ -g-open set in X such that $B \subseteq U$. Since A is $(1,2)^*$ -g*-closed, $\tau_{1,2}$ -cl(A) $\subseteq U$. Since $\tau_{1,2}$ -cl(B) $\subseteq \tau_{1,2}$ -cl(A), we have $\tau_{1,2}$ -cl(B) $\subseteq U$. Hence B is $(1,2)^*$ -g*-closed set.

Proposition 4.5. If A is both $(1,2)^*$ -g-open and $(1,2)^*$ -g*-closed in X, then A is $\tau_{1,2}$ -closed in X.

Proof. Since A is
$$(1,2)^*$$
-g-open and $(1,2)^*$ -g*-closed, $\tau_{1,2}$ -cl(A) \subseteq A and hence A is $\tau_{1,2}$ -closed in X.

Proposition 4.6. For each $x \in X$, either $\{x\}$ is $(1,2)^*$ -g-closed or $\{x\}^c$ is $(1,2)^*$ -g*-closed in X.

Proof. Suppose that $\{x\}$ is not $(1,2)^*$ -g-closed in X. Then $\{x\}^c$ is not $(1,2)^*$ -g-open and the only $(1,2)^*$ -g-open set containing $\{x\}^c$ is the space X itself. Therefore $\tau_{1,2}$ -cl $(\{x\}^c) \subseteq X$ and so $\{x\}^c$ is $(1,2)^*$ -g*-closed in X.

Theorem 4.7. Let A be a $(1,2)^*$ -g^{*}-closed set of a bitopological space X. Then,

- 1. If A is $(1,2)^*$ -regular open, then $(1,2)^*$ -pint(A) and $(1,2)^*$ -scl(A) are also $(1,2)^*$ -g*-closed sets.
- 2. If A is $(1,2)^*$ -regular closed, then $(1,2)^*$ -pcl(A) is also $(1,2)^*$ -g*-closed set.

Proof. (1) Since A is $(1,2)^*$ -regular open in X, $A = \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)). Then $(1,2)^*$ -scl(A) = $A \cup \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)) = A. Thus, $(1,2)^*$ -scl(A) is $(1,2)^*$ -g*-closed in X. Since $(1,2)^*$ -pint(A) = $A \cap \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)) = A, $(1,2)^*$ -pint(A) is $(1,2)^*$ -g*-closed.

(2) Since A is $(1,2)^*$ -regular closed in X, $A = \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)). Then $(1,2)^*$ -pcl $(A) = A \cup \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)) = A. Thus, $(1,2)^*$ -pcl(A) is $(1,2)^*$ -g*-closed in X.

The converses of the statements in the Theorem 4.7 are not true as we can see in the following examples.

Example 4.8. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{b\}, \{a, c\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Then $(1, 2)^*$ - $G^*C(X) = \{\phi, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$. Then the set $A = \{c\}$ is not $(1, 2)^*$ -regular open. However A is $(1, 2)^*$ - g^* -closed and $(1, 2)^*$ -scl $(A) = \{c\}$ is a $(1, 2)^*$ - g^* -closed and $(1, 2)^*$ -pint $(A) = \phi$ is also $(1, 2)^*$ - g^* -closed.

Example 4.9. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then the sets in $\{\phi, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, X\}$ are called $\tau_{1,2}$ -closed. Then $(1,2)^*$ - $G^*C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$. Then the set $A = \{c\}$ is not $(1,2)^*$ -regular closed. However A is a $(1,2)^*$ - g^* -closed and $(1,2)^*$ -pcl $(A) = \{c\}$ is $(1,2)^*$ - g^* -closed.

5. $(1,2)^*$ -g*-closure

Definition 5.1. For every set $A \subseteq X$, we define the $(1,2)^*$ - g^* -closure of A to be the intersection of all $(1,2)^*$ - g^* -closed sets containing A. That is $(1,2)^*$ - g^* -cl $(A) = \cap \{F : A \subseteq F \in (1,2)^*$ - $G^*C(X)\}$.

Lemma 5.2. For any $A \subseteq X$, $A \subseteq (1,2)^* - g^* - cl(A) \subseteq \tau_{1,2} - cl(A)$.

Remark 5.3. Both containment relations in Lemma 5.2 may be proper as seen from the following example.

Example 5.4. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then the sets in $\{\phi, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $A = \{a\}$. Then $(1, 2)^*$ - g^* -cl $(A) = \{a, c\}$ and so $A \subseteq (1, 2)^*$ - g^* -cl $(A) \subseteq \tau_{1,2}$ -cl(A).

Lemma 5.5. For any $A \subseteq X$, $(1,2)^* \cdot g^* \cdot cl(A) \subseteq (1,2)^* \cdot \ddot{g} \cdot cl(A)$, where $(1,2)^* \cdot \ddot{g} \cdot cl(A)$ is given by $(1,2)^* \cdot \ddot{g} \cdot cl(A) = \cap \{F : A \subseteq F \in (1,2)^* \cdot \ddot{G}C(X)\}$.

Remark 5.6. Containment relation in the above Lemma 5.5 may be proper as shown from the following example.

Example 5.7. Let $X = \{a, b, c, d\}, \tau_1 = \{\phi, \{a\}, \{a, b, c\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, \{a, b, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{d\}, \{a, d\}, \{b, c, d\}, X\}$ are called $\tau_{1,2}$ -closed. Then $(1, 2)^* - \ddot{G}C(X) = \{\phi, \{d\}, \{a, d\}, \{b, c, d\}, X\}$ and $(1, 2)^* - G^*C(X) = \{\phi, \{d\}, \{a, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Let $A = \{b, d\}$. Then $(1, 2)^* - \ddot{G}-cl(A) = \{b, c, d\}$ and $(1, 2)^* - g^* - cl(A) = \{b, d\}$. So, $(1, 2)^* - g^* - cl(A) \subset (1, 2)^* - \ddot{G}-cl(A)$.

The following two Propositions are easy consequences from definitions.

Proposition 5.8. For any $A \subseteq X$, the following hold:

- 1. $(1,2)^*$ -g^{*}-cl(A) is the smallest $(1,2)^*$ -g^{*}-closed set containing A.
- 2. A is $(1,2)^*$ -g^{*}-closed if and only if $(1,2)^*$ -g^{*}-cl(A) = A.

Proposition 5.9. For any two subsets A and B of X, the following hold:

- 1. If $A \subseteq B$, then $(1,2)^* g^* cl(A) \subseteq (1,2)^* g^* cl(B)$.
- 2. $(1,2)^* g^* cl(A \cap B) \subseteq (1,2)^* g^* cl(A) \cap (1,2)^* g^* cl(B)$.

6. $(1,2)^*$ -g*-open Sets

Definition 6.1. Let A be a subset of a bitopological space X. Then A is called $(1,2)^*-g^*$ -open in X if A^c is $(1,2)^*-g^*$ -closed in X.

The collection of all $(1,2)^*-g^*$ -open sets in X is denoted by $(1,2)^*-G^*O(X)$.

Proposition 6.2. For any bitopological space X, the following assertions hold:

1. Every $\tau_{1,2}$ -open set is $(1,2)^*$ -g*-open but not conversely.

- 2. Every $(1,2)^*$ -g^{*}-open set is $(1,2)^*$ -g^{*}_{α}-open but not conversely.
- 3. Every $(1,2)^*$ -g^{*}-open set is $(1,2)^*$ -g-open but not conversely.
- 4. Every $(1,2)^*$ -g^{*}-open set is $(1,2)^*$ -sg-open but not conversely.
- 5. Every $(1,2)^*$ -g^{*}-open set is $(1,2)^*$ - α g-open but not conversely.
- 6. Every $(1,2)^*$ -g^{*}-open set is $(1,2)^*$ -gs-open but not conversely.
- 7. Every $(1,2)^*$ -g^{*}-open set is $(1,2)^*$ -gsp-open but not conversely.

Theorem 6.3. A subset A of X is $(1,2)^*$ -g^{*}-open if and only if $F \subseteq \tau_{1,2}$ -int(A) whenever F is $(1,2)^*$ -g-closed and $F \subseteq A$.

Proof. Suppose that $F \subseteq \tau_{1,2}$ -int(A) such that F is $(1,2)^*$ -g-closed and $F \subseteq A$. Let $A^c \subseteq U$ where U is $(1,2)^*$ -g-open. Then $U^c \subseteq A$ and U^c is $(1,2)^*$ -g-closed. Therefore $U^c \subseteq \tau_{1,2}$ -int(A) by hypothesis. Since $U^c \subseteq \tau_{1,2}$ -int(A), we have $(\tau_{1,2}$ -int(A))^c \subseteq U. i.e., $\tau_{1,2}$ -cl(A^c) $\subseteq U$, since $\tau_{1,2}$ -cl(A^c) = $(\tau_{1,2}$ -int(A))^c. Thus A^c is $(1,2)^*$ -g*-closed. i.e., A is $(1,2)^*$ -g*-open.

Conversely, suppose that A is $(1,2)^* - g^*$ -open such that $F \subseteq A$ and F is $(1,2)^* - g$ -closed. Then F^c is $(1,2)^* - g$ -open and $A^c \subseteq F^c$. Therefore, $\tau_{1,2}$ -cl $(A^c) \subseteq F^c$ by definition of $(1,2)^* - g^*$ -closedness and so $F \subseteq \tau_{1,2}$ -int(A), since $\tau_{1,2}$ -cl $(A^c) = (\tau_{1,2}$ -int $(A))^c$.

We introduce the following definition.

Definition 6.4. For any $A \subseteq X$, $(1,2)^* \cdot g^* \cdot int(A)$ is defined as the union of all $(1,2)^* \cdot g^* \cdot open$ sets contained in A. i.e., $(1,2)^* \cdot g^* \cdot int(A) = \bigcup \{G : G \subseteq A \text{ and } G \text{ is } (1,2)^* \cdot g^* \cdot open \}.$

Lemma 6.5. For any $A \subseteq X$, $\tau_{1,2}$ -int $(A) \subseteq (1,2)^*$ - g^* -int $(A) \subseteq A$.

The following two Propositions are easy consequences from definitions.

Proposition 6.6. For any $A \subseteq X$, the following hold:

- 1. $(1,2)^*$ -g^{*}-int(A) is the largest $(1,2)^*$ -g^{*}-open set contained in A.
- 2. A is $(1,2)^*$ -g^{*}-open if and only if $(1,2)^*$ -g^{*}-int(A) = A.

Proposition 6.7. For any subsets A and B of X, the following hold:

- 1. $(1,2)^* g^* int(A \cap B) \subseteq (1,2)^* g^* int(A) \cap (1,2)^* g^* int(B)$.
- 2. $(1,2)^* g^* int(A \cup B) \supseteq (1,2)^* g^* int(A) \cup (1,2)^* g^* int(B)$.
- 3. If $A \subseteq B$, then $(1,2)^* g^* int(A) \subseteq (1,2)^* g^* int(B)$.
- 4. $(1,2)^* g^* int(X) = X$ and $(1,2)^* g^* int(\phi) = \phi$.

7. Applications

As applications of $(1,2)^*-g^*$ -closed sets, we introduce the notions called $(1,2)^*-T_g^*$ -spaces and $(1,2)^*-g^*T_g^*$ -spaces and obtain their properties and characterizations.

Definition 7.1. A space X is called a $(1,2)^*$ - T_a^* -space if every $(1,2)^*$ - g^* -closed set in it is $\tau_{1,2}$ -closed.

Example 7.2. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a, c\}, X\}$ are called $\tau_{1,2}$ -closed. Then $(1, 2)^*$ - $G^*C(X) = \{\phi, \{a, c\}, X\}$. Thus X is a $(1, 2)^*$ - T_g^* -space.

Example 7.3. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a, c\}, X\}$. Then the sets in $\{\phi, \{a, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b\}, X\}$ are called $\tau_{1,2}$ -closed. Then $(1,2)^*$ - $G^*C(X) = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$. Thus X is not a $(1,2)^*$ - T_q^* -space.

Proposition 7.4. Every $(1,2)^*$ - $T_{1/2}$ -space is $(1,2)^*$ - T_g^* -space but not conversely.

Proof. Follows from Proposition 3.18.

The converse of Proposition 7.4 need not be true as seen from the following example.

Example 7.5. Let X, τ_1 and τ_2 be as in the Example 7.2. Then we have $(1, 2)^*$ - $GC(X) = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Thus X is not a $(1, 2)^*$ - $T_{1/2}$ -space.

Proposition 7.6. Every $(1,2)^*$ - T_b -space is $(1,2)^*$ - T_g^* -space but not conversely.

Proof. Follows from Proposition 3.20.

The converse of Proposition 7.6 need not be true as seen from the following example.

Example 7.7. Let X, τ_1 and τ_2 be as in the Example 7.2. Then we have $(1,2)^*$ -GSC(X) = { ϕ , {a}, {c}, {a, b}, {a, c}, {b, c}, X}. Thus X is not a $(1,2)^*$ -T_b-space.

Remark 7.8. We conclude from the next two examples that $(1,2)^*$ - T_g^* -spaces and $(1,2)^*$ - α -spaces are independent.

Example 7.9. Let X, τ_1 and τ_2 be as in the Example 7.2. Then we have $(1, 2)^* - \alpha C(X) = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. Thus X is a $(1, 2)^* - T_q^*$ -space but not an $(1, 2)^* - \alpha$ -space.

Example 7.10. Let X, τ_1 and τ_2 be as in the Example 7.3. Then we have $(1,2)^* - \alpha C(X) = \{\phi, \{b\}, X\}$. Thus X is an $(1,2)^* - \alpha$ -space but not a $(1,2)^* - T_q^*$ -space.

Theorem 7.11. For a bitopological space X, the following properties are equivalent:

- 1. X is a $(1,2)^*$ - T_q^* -space.
- 2. Every singleton subset of X is either $(1,2)^*$ -g-closed or $\tau_{1,2}$ -open.

Proof. (1) \Rightarrow (2). Assume that for some $x \in X$, the set $\{x\}$ is not a $(1,2)^*$ -g-closed in X. Then the only $(1,2)^*$ -g-open set containing $\{x\}^c$ is X and so $\{x\}^c$ is $(1,2)^*$ -g*-closed in X. By assumption $\{x\}^c$ is $\tau_{1,2}$ -closed in X or equivalently $\{x\}$ is $\tau_{1,2}$ -open.

(2) \Rightarrow (1). Let A be a (1,2)*-g*-closed subset of X and let $x \in \tau_{1,2}$ -cl(A). By assumption {x} is either (1,2)*-g-closed or $\tau_{1,2}$ -open.

Case (a): Suppose that $\{x\}$ is $(1,2)^*$ -g-closed. If $x \notin A$, then $\tau_{1,2}$ -cl(A) – A contains a nonempty $(1,2)^*$ -g-closed set $\{x\}$, which is a contradiction.

Case (b): Suppose that $\{x\}$ is $\tau_{1,2}$ -open. Since $x \in \tau_{1,2}$ -cl(A), $\{x\} \cap A \neq \phi$ and so $x \in A$. Thus in both case, $x \in A$ and therefore $\tau_{1,2}$ -cl(A) $\subseteq A$ or equivalently A is a $\tau_{1,2}$ -closed set of X.

Definition 7.12. The space X is called a $(1,2)^*$ - $_gT_g^*$ -space if every $(1,2)^*$ -g-closed set in it is $(1,2)^*$ - g^* -closed.

Example 7.13. Let X, τ_1 and τ_2 be as in the Example 7.3. Then X is a $(1,2)^*$ - $_g T_g^*$ -space and the space X in the Example 7.2 is not a $(1,2)^*$ - $_g T_g^*$ -space.

Proposition 7.14. Every $(1,2)^*$ - $T_{1/2}$ -space is $(1,2)^*$ - $_g T_g^*$ -space but not conversely.

The converse of Proposition 7.14 need not be true as seen from the following example.

Example 7.15. Let X, τ_1 and τ_2 be as in the Example 7.3. Then X is a $(1,2)^*$ - qT_q^* -space but not a $(1,2)^*$ - $T_{1/2}$ -space.

Remark 7.16. $(1,2)^*$ - T_g^* -spaces and $(1,2)^*$ - $_g T_g^*$ -spaces are independent.

Example 7.17. The space X in the Example 7.3 is a $(1,2)^*$ - $_g T_g^*$ -space but not a $(1,2)^*$ - T_g^* -space and the space X in the Example 7.2 is a $(1,2)^*$ - T_g^* -space but not a $(1,2)^*$ - $g T_g^*$ -space.

Theorem 7.18. A space X is $(1,2)^*$ - $T_{1/2}$ if and only if it is both $(1,2)^*$ - T_g^* and $(1,2)^*$ - gT_g^* .

Proof. Necessity. Follows from Propositions 7.4 and 7.14.

Sufficiency. Assume that X is both $(1,2)^*$ -T^{*}_g and $(1,2)^*$ - $_gT^*_g$. Let A be a $(1,2)^*$ -g-closed set of X. Then A is $(1,2)^*$ - g^* -closed, since X is a $(1,2)^*$ - $_gT^*_g$. Again since X is a $(1,2)^*$ -T^{*}_g, A is a $\tau_{1,2}$ -closed set in X and so X is a $(1,2)^*$ -T^{*}_{1/2}.

References

- M.E.Abd El-Monsef, S.N.El-Deeb and R.A.Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.
- [2] D.Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1986), 24-32.
- [3] J.Antony Rex Rodrigo, O.Ravi, A.Pandi and C.M.Santhana, On (1, 2)*-s-normal spaces and pre-(1, 2)*-gs-closed functions, International Journal of Algorithms, Computing and Mathematics, 4(1)(2011), 29-42.
- [4] F.G.Arenas, J.Dontchev and M.Ganster, On λ-sets and dual of generalized continuity, Questions Answers Gen. Topology, 15 (1997), 3-13.
- [5] S.P.Arya and T.M.Nour, Characterizations of s-normal spaces, Indian J. Pure. Appl. Math., 21(8)(1990), 717-719.
- [6] P.Bhattacharyya and B.K.Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(3)(1987), 375-382.
- [7] D.E.Cameron, Topology atlas, http://gozips. uakron. deu/.
- [8] J.Cao, M.Ganster and I.Reilly, On sg-closed sets and gα-closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 20(1999), 1-5.
- [9] J.Cao, M.Ganster and I.Reilly, Submaximality, extremal disconnectedness and generalized closed sets, Houston J. Math., 24(1998), 681-688.
- [10] R.Devi, K.Bhuvaneswari and H.Maki, Weak forms of $g\rho$ -closed sets, where $\rho \in \{\alpha, \alpha^*, \alpha^{**}\}$ and digital plane, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 25(2004), 37-54.
- [11] W.Dunham, T_{1/2}-spaces, Kyungpook Math. J., 17(1977), 161-169.
- [12] Z.Duszynski, M.Jeyaraman, M.S.Joseph, O.Ravi and M.L.Thivagar, A new generalization of closed sets in bitopology, South Asian Journal of Mathematics, 4(5)(2014), 215-224.
- [13] J.C.Kelly, Bitopological spaces, Proc. London Math. Soc., 13(1963), 71-89.
- [14] K.Kumaresan, Another generalization of closed sets in bitopological spaces, Ph. D Thesis, Alagappa University, Karaikudi, August (2012).
- [15] M.Lellis Thivagar, O.Ravi and M.E.Abd El-Monsef, Remarks on bitopological (1,2)*-quotient mappings, J. Egypt Math. Soc., 16(1)(2008), 17-25.

- [16] N.Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- [17] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [18] N.Levine, Some remarks on the closure operator in topological spaces, Amer. Math. Monthly, 70(5)(1963), 553.
- [19] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On precontinuous and weak pre continuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- [20] O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [21] M.Rajamani and K.Viswanathan, On ags-closed sets in topological spaces, Acta Ciencia Indica, XXXM(3)(2004), 21-25.
- [22] C.Rajan, Further study of new bitopological generalized continuous functions, Ph. D Thesis, Madurai Kamaraj University, Madurai, (2014).
- [23] O.Ravi, M.L.Thivagar and E.Hatir, Decomposition of (1,2)*-continuity and (1,2)*-α-continuity, Miskolc Mathematical Notes., 10(2)(2009), 163-171.
- [24] O.Ravi and M.L.Thivagar, Remarks on λ -irresolute functions via $(1,2)^*$ -sets, Advances in App. Math. Analysis, 5(1) (2010), 1-15.
- [25] O.Ravi, E.Ekici and M.Lellis Thivagar, On (1,2)*-sets and decompositions of bitopological (1,2)*-continuous mappings, Kochi J. Math., 3(2008), 181-189.
- [26] O.Ravi, K.Kayathri, M.L.Thivagar and M.Joseph Israel, Mildly (1,2)*-normal spaces and some bitopological functions, Mathematica Bohemica, 135(1)(2010), 1-15.
- [27] O.Ravi, A.Pandi and R.Latha, Contra-pre-(1,2)*-semi-continuous functions, Bessel Journal of Mathematics (To appear).
- [28] O.Ravi, S.Pious Missier and T.Salai Parkunan, On bitopological (1,2)*-generalized homeomorphisms, Int J. Contemp. Math. Sciences., 5(11)(2010), 543-557.
- [29] O.Ravi, M.L.Thivagar and E.Ekici, Decomposition of (1,2)*-continuity and complete (1,2)*-continuity in bitopological spaces, Analele Universitatii Din Oradea. Fasc. Matematica Tom XV (2008), 29-37.
- [30] O.Ravi, M.L.Thivagar and Jinjinli, Remarks on extensions of (1,2)*-g-closed maps, Archimedes J. Math., 1(2)(2011), 177-187.
- [31] O.Ravi, A.Pandi, S.Pious Missier and T.Salai Parkunan, Remarks on bitopological (1,2)*-rω-Homeomorphisms, International Journal of Mathematical Archive, 2(4)(2011), 465-475.
- [32] M.Sheik John, A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, September, (2002).
- [33] M.K.R.S.Veera Kumar, $g^{\#}$ -closed sets in topological spaces, Mem. Fac. Sci. Kochi Univ. (Math.)., 24(2003), 1-13.
- [34] M.K.R.S.Veera Kumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 21(2000), 1-19.