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1. Introduction

In [11], Lupas and Miller defined and studied the Gamma operators G, (f;x) as

Gulfio) = [t (%) au

where

$n+1
e ™", x>0.
n!

gn(T,u) =

In [12], Mazhar gives an important modifications of the Gamma operators using the same g, (z, u)
oo} o0
Fufie) = [ onlou)gn (u,t)f(0)dud
o Jo
B (Qn)!xn+l /oo tnfl
a (

nl(n — 1)! T 1 )2t

f@®)dt, n>1, = >0.

Recently, Karsli [7] considered a modification and obtain the rate of convergence of these operators for functions with

derivatives of bounded variation.

Lo(fiz) = / h / " gnsa s w) g (s ) £ (8 dudt

(2n + 3)lz"*3 /oo i
t)dt .
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Karsli and Ozarslan obtained local and global approximation results for L,(f;z) in [10]. Also, Voronovskaja type

asymptotic formula for L, (f;z) were proved in [3] and [5].

In the year 2007, Mao [13] define the following generalized Gamma type linear and positive operators

M (fiz) = / / Gn (@, w)gn—k (u, t) f(t)dudt

(2n — k4 1)1zt /°° ok
nl(n —k)! o (z+4t)2n—hkt2

f)dt, = >0,

which includes the operators Fy,(f;x) for k = 1 and Ln,—2(f;x) for K = 2. Some approximation properties of M, ; were
studied in [6] and [8].

We can rewrite the operators M, »(f;z) as

Tbkfy / Knkmt ()d (1)

where

(2n — k4 1)lg™H! ok
nl(n — k)! (z + t)2n—k+2’

Ko k(z,t) = x,t € (0,00).

The main goal of this paper is to obtain a Voronovskaja type asymptotic formula and an error estimates for the operators

(1).

2. Auxiliary Results

In this section, we give some lemmas which are necessary to prove our main results.

Lemma 2.1 ([8]). For any m € No(the set of non-negative integers), m <n —k

Mp i (t™;z) = Wzm.

where n,k € N and [z]m = z(z — 1)...(x —m + 1), [z]o = 1,z € R.

In particular for m = 0, 1, 2... in (2.1) we get

(1) M (1;2) = 1;

() My ,(t;x) = %]Hlx;
2. v (n—k+2)n—k+1) ,
(4ii) My (t%;2) = n(n—1) z°.

Lemma 2.2 ([8]). Following equalities holds:

(i) Mup((t - 2);) = ~= %0

n

(k* — 5k + 2n + 4) 2.
n(n —1) ’

(it) Mni((t —2)*;2) =

(ii) My 1 ((t —2)™;2) = O (n7[<m+1)/2l).

2n —k+1)!

For simplicity, put B, =
or simplicity, put B, nlln — B!
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Lemma 2.3. If r'" derivative £ (r=0,1,2...) ezists continuously, then we get

tn7k+'r

M) (f;2) = ﬁna:"“”/ ( FOydt, x> 0.
0

T+ t)Qn—k+2

Proof. Using the substitution ¢ = vz in (1), we obtain

oo n—k
Mn,k(f;x) = ﬂn/o (vif(vx)dv

1 + U)2n7k+2

Using Leibniz’s rule r(r = 0, 1,2...) times, we obtain

r o] n—k
MfLTl)c(f7x) = ﬂni/ (Uif(wc)dv
0

dxr 1 + v)2n7k+2

0o ,Unfk o"
= ﬁn/o (ETEEE fvz)dv

[+ 0272 agr

B oo ,Un—k-H‘ -
= 5n/0 Aoz Fie 7 (vz)do.

1 + v)2n7k+2

Using v = %7 we get

(r) n+l—r oo tn7k+'r (r)
Mnk(f,x) = Bnx / £ (t)de.

o (:C + t)2n—k+2

Next, we define

M ﬁ xn«klfr [e’s) tn7k+'r d
* . _ Pn dt
n,k,r(g7 ZC) b(n,k,r) /0 (LE + t)2n7k+2 g( ) ’

where

[e%s) n—k+r _ | _ |
b(n, k,r) = ﬁnx”“""/ t B k) e )

o (z+t)m—hktzT nl(n —k)!

Let us define
em() =t", pam(t)=(0E—2)™, m€E No, z,t€ (0,00).

Lemma 2.4. Foranym € No,n>r+m andr <n

(n—r—m)!(n—k—i—r—&—m)!xm'
(n—r)(n—k+r)! ’

M;:,k,r (6771; l‘) =

and

it = (S0 ([ e )

J=0

for each x € (0,00).
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Proof.  The proof of (3) is follows from Lemma 2.1. On the other hand, we have the following identity,

(t—ao)™ =Y (~1) (’:) @I

Jj=0

Then, we have

Mo (t—2)™; ) = / T Kur(a,t)(t - z)"dt

/ Kni(z,t) S (=) [ " )27 t™ 7 dt
0 — J

J

> (-1 (m) @l My g (1775 ).

=0 J

Using (3), we get (4). O
Lemma 2.5. Form =0,1,2,3,4, one has

(Z) M;,k,r(ﬂozmx) = 17

. 2r—k+1
M}, 1} T) = —————,

(”) n,k,r(so ,1 {l?) n—r x

_ Ar® +4r(2— k) +2n+ k® — 5k + 4

N (n=r)(n—r-1)

2
z

(iii) My - (9z,2;T)

. * Cn,k,r 3
M, x,35 = — ’
(7,’[)) n,k,r(‘p )3 m) (n — T)(?’L —r_ 1)(n —r— 2) x

* cx) = dn,k:,’r‘ CL‘4
(V) My (245 ) (mn—r)n—r—1)n-r—2)(n—r—3)" "’

where ¢ = 8 4+ 12(36 — 2k) 4 (51 + 14n — 42k + 6k?) — k* + 12k — 34k — n? + n(17 — 6k — 6k? 4 2kr) + 21 and
dp ir = 167 4+ 73(128 — 32k) + r?(348 + 48n — 216k + 24k?) 4 (366 4+ 177n + k(6n> — 54n — 440) + 120k* — 8k%) + k* +
K (4n — 22) + 139k% — k(245 + 116n) + 24n® + 131n + 100.

3. Voronovskaja Type Theorem

In this section we obtain the Voronovskaja type theorem for the operators M T(LT,)C
Let Cg[0,00) be the space of all real valued continuous and bounded functions on [0, c0) endowed with the usual supremum

norm. By C’g+2) [0,00)(r € No), we denote the space of all functions f € Cg[0,00) such that f', f”, L fUtD e op [0, 0).
Theorem 3.1. Let f be integrable in (0,00) and admits its (r + 1) and (r +2)*" derivatives, which are bounded at a fized
point x € (0,00) and f(t) = O(t*), as t — oo for some a > 0, then

i, (% MO (fi2) — £ (w)) = @2r —k+1)zf" @) + 27 (@)

holds.

Proof. Using Taylor’s theorem, we get

1

1O = @) = (=)D @) 4 5= 2 @) + (- @)%k ),
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where £(t,x) is the peano form of the remainder and tlim &(t,z) =0.
—x

Then, we have

s ML (fr2) — £ ()

t'n k+r

b(nkzr " T/O (z + t)2n—h+2 (f(T() f(r)(fv)>dt
[e ] n—k+r
= b(n k 7« n+1 T/O t ((t — ﬂC)f(’“+1)(x) + %(t _ x)zf(r+2)(x) + (t _ $)2§(t,x)> dt

$+t2" k+2

= f(TJrl)( )Mn k r(t —z,z) + f(r+2>( )Mn,k,r((t - I)Za x) + M;,k,r((t - $)2‘£(t7m)§ T).

Using Lemma 2.5, we get

1 , n@2r—k+1) (a1 n(4r? 4+ 4r(2 — k) + 2n + k* — 5k + 4)
(e ki) = 170 ) = ML E a4 + oy

2 FUD (@) + b (= 2)E( 2); ).

By using Cauchy-Schwarz inequality, we have

n (M k(= 2)%E(t 0);2)) <\ 0203 (foai) /M (82(E )5 ).

()

We observe that ¢2(z,2) = 0 and £2(.,x) is continuous at ¢ € (0, 00) and bounded as t — co. Then from Korovkin theorem

that

lim M; . (& (t,2);2) = € (z,2) = 0,

n—00

n2

in view of fact that M, ;. ,.(pz4;2) = O<i> Now, from (5) and (6) we obtain

lim nM; ., ((t - :10)25(157 x); x) =0.

n—oo

Using (7), we have

Jin (G M) = £0@)) = @r = ke Daf @) 42 ),

This completes the proof.

4. Direct Results

In this section we obtain the rate of convergence of the operators M,Sf,)C

Let us consider the following K-functional:

K(f,6) = inf {[[f—gll+5]g" I},
g€C%[0,00)

where 6 > 0. By, p. 177, Theorem 2.4 in [2], there exists an absolute constant C' > 0 such that

K(f,6) < Cuwa(f,V6),
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where

wy(f,V0) = sup  sup | f(z+2h)—2f(z+h)+ f(x)| (10)
0<h<+/6 z€[0,00)

is the second order modulus of smoothness of f. By

w(f,6) = sup sup |[f(z+h)—f(z)],
0<h<é z€[0,00)

we denote the first order modulus of continuity of f and satisfies the following property:

10 - @) < (1415w, ()

where 6 > 0.
Theorem 4.1. Let f € C3[0,00) and r € No. Then for n > r, we have

1

(r)
\W < 2/, Vo),

MOV (f2) — [T ()

where

5 — 4r° +4r(2 — k) +2n+ k*> — 5k +4 2
" (n—r)(n—r—1) '

Proof. By using monotonicity of M, , ., we get

s MU (frw) — £ ()

[e o] n—k+r
B ’z)(ofizrown+l_r/o PR =GOS} (T)(”"))dt‘

= M (£ ) = £ (@) )

< My (17 = f7 (@) 2)
o) n—k+r
< () Bn n+177‘/ t |t—;r\
< (178) sl [ e (1 57
<

(r) 1 ﬂn n+l—r o tn—k+r _
w (r7.9) (1+6b(n,k7r)$ /O (@t e reelt ).

Thus, by applying the Cauchy-Schwarz inequality, we have

1

(r) (. (r)
‘WMn,k(fvw)_f ()

<w (f(r)j) (1 + % (M (¢ — x)z;x))m),

Choosing § = v/dn, we have

1 ™) (. ()
‘WMn,k(f7x)_f (z)

< 2w (f‘”, \/5n) .
Hence, the proof is completed. O

Theorem 4.2. Let f € C;[0,00) and r € No. Then for n > r, we have

M'r(:l)c(fvw) - f<7>(1') < sz (f(r)a'yn) +w (f(r)a Lk_i_ll‘) )

1
n—r

b(n, k,7)

where C' is an absolute constant and

1/2
Ar? 4 4r(2—k)+2n+ k> —5k+4 5  [(2r—k+1 \’
Yn = x” + x .
(n—r)n—r—-1)

n-—r
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Proof. Let us consider the auxiliary operators M - defined by

2r—k+1

W7 (f52) = M (f50) — £ (4 o)+ Ia). (12)

Using Lemma 2.5, we observe that the operators M » k. are linear and reproduce the linear functions.

Hence
M, ((t—x);2) = 0. (13)

Let g € C'5%[0,00) and = € (0,00). By Taylor’s theorem, we have
t

g7 (1) =g (@) = (t —2)g" " (2) +/ (t = v)g" " (v)dv, t € (0,00).

Using (12) and (13), we get
M (97 2) = g ()]

t
@)+ 3 ([ =02 uia )|

t +27‘7k+1
]M::,k,,. ( [ =09 @) x) \ +

x — = _
/ (x + wx _ 1)) g<T+2)(fu)dv ]
® n—r

IN

Observe that

t
|M;z,k,r ( [ - v)g““)(v)dv;x) ] < g M (= 2)%: )
xT

and

n—r

. 2w —k+1 \?
< g (ZEELY

/ e (a: + wm _ 11> g(r+2)(v)d1}
© n—r

Hence by Lemma 2.5, we have

. . , 42 +4r(2 — k) +2n + k% — 5k + 4 2r —k+1 \?
M (975 2) = g7 ()] < [l +2)I( (2 —F) :c2+< x) : (14)

(n—r)n—r—-1) n—r
Now g € C52[0,00), using (14), we obtain

1

< |M2,k,T(f('")—g(r);ér)—(fm—g(r))( N+ nkr(g(r);l‘)—gm(xﬂ
. 2w — k41 .
+ ’f()(x—i-ir ha x)—f()(:c)
n-—r
Id r r T 2T—k+1
< AllFO — g + 421" +2>|I+w(f”77a:).

n-—r

Taking infimum over all g € Czt2[0, 00), we obtain

1 (r) (r) (r) 21— k+1
I < LTET ).
‘b(n,k,r) N2~ @) <K (17, )+w(f T
Using (9), we have
1 ") (") ) m 2r=k+1,
- cx) — < b I
\b(m Ey Mk (fse) = 10 @) < Cen (500 ) e (50,5
Hence, the proof is completed. O
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