

International Journal of Mathematics And its Applications

On Decompositions of Generalized μ - α -sets

Research Article

M.Jeyaraman¹, S.C.Vasthirani², O.Ravi^{3*} and R.Muthuraj⁴

1 PG and Research Department of Mathematics, Raja Dorai Singam Govt. Arts College, Sivagangai, Tamil Nadu, India.

2 Department of Mathematics, Sree Sevugan Annamalai College, Devakottai, Tamil Nadu, India.

3 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.

4 PG and Research Department of Mathematics, H. H. The Rajah's College, Pudukottai, Tamil Nadu, India.

Abstract: The aim of this paper is to introduce the new notions called μ - α -locally closed sets, $\mu_{\alpha-t}$ -sets and $\mu_{\alpha-B}$ -sets and investigate their properties. Using these concepts we obtained some decompositions.

MSC: 54C05, 54C08, 54D10.

Keywords: μ - α -locally closed set, $\mu_{\alpha}g$ closed set, $\mu_{\alpha-t}$ -set, $\mu_{\alpha-B}$ -set. © JS Publication.

1. Introduction

In the past few years, different forms of open sets have been studied. Recently a significant contribution to the theory of generalized open sets was extended by A. Csàszàr [1, 4]. Especially, Roy has defined some basic operators on generalized topological spaces [12]. On the other hand the notion of decomposition of continuity on topological spaces was introduced by Tong [14]. Recently Roy [13] studied on decomposition of generalized continuity via μ -open sets. The purpose of this paper is to introduce the new notions via μ - α -open sets called μ - α -locally closed sets, $\mu_{\alpha-t}$ -sets and $\mu_{\alpha-B}$ -sets and investigate their properties. Using these concepts we obtained some decompositions.

Recall some generalized topological concepts which are very useful in the sequel. Let X be a non-empty set and μ be a collection of subsets of X. Then μ is called a generalized topology [2] (briefly GT) on X if $\phi \in \mu$, and $G_i \in \mu$ for $i \in I \neq \phi$ implies $G = \bigcup_{i \in I} G_i \in \mu$. We say μ is strong [3] if $X \in \mu$ and we call the pair (X, μ) a generalized topological space (briefly GTS). The elements of μ are called μ -open sets and the complements of μ -open sets are called μ -closed sets. For $A \subseteq X$ we denote, by $c_{\mu}(A)$ the intersection of all μ -closed sets containing A [2] and by $i_{\mu}(A)$ the union of all μ -open sets contained in A.

A subset A of (X, μ) is called μ - α -open [4] iff $A \subseteq i_{\mu}(c_{\mu}(i_{\mu}(A)))$. The complement of a μ - α -open set is called μ - α -closed. We denote the family of μ - α -open sets of X by $\alpha(\mu)$. The intersection of all μ - α -closed sets containing A is called the μ - α -closure of a subset A of X and is denoted by $c_{\alpha}(A)$. The μ - α -interior of a subset A of X is the union of all μ - α -open sets contained in A and is denoted by $i_{\alpha}(A)$ [10].

^{*} E-mail: siingam@yahoo.com

2. Preliminaries

Lemma 2.1 ([4]). Let (X, μ) be a GTS and A, $B \subseteq X$, then the followings hold.

(1). $i_{\mu}(A) \subseteq A \subseteq c_{\mu}(A);$

(2). $A \subseteq B$ implies $i_{\mu}(A) \subseteq i_{\mu}(B)$ and $c_{\mu}(A) \subseteq c_{\mu}(B)$;

(3). $i_{\mu}(i_{\mu}(A)) = i_{\mu}(A)$ and $c_{\mu}(c_{\mu}(A)) = c_{\mu}(A);$

(4). $i_{\mu}(X - A) = X - c_{\mu}(A)$ and $c_{\mu}(X - A) = X - i_{\mu}(A);$

(5). $A \in \mu$ iff $A = i_{\mu}(A)$ and A is μ -closed iff $A = c_{\mu}(A)$.

Lemma 2.2 ([4]). Let (X, μ) be a GTS and $A \subseteq X$, we have $c_{\alpha}(A) = A \cup c_{\mu}(i_{\mu}(c_{\mu}(A)))$ and $i_{\alpha}(A) = A \cap i_{\mu}(c_{\mu}(i_{\mu}(A)))$.

Remark 2.3 ([7]). In a GTS (X, μ) the followings hold:

(1).
$$i_{\mu}(A \cap B) \subseteq i_{\mu}(A) \cap i_{\mu}(B);$$

(2).
$$i_{\mu}(A \cup B) \supseteq i_{\mu}(A) \cup i_{\mu}(B);$$

(3). $c_{\mu}(A \cap B) \subseteq c_{\mu}(A) \cap c_{\mu}(B);$

(4).
$$c_{\mu}(A \cup B) \supseteq c_{\mu}(A) \cup c_{\mu}(B).$$

Definition 2.4 ([7]). A subset A of a GTS (X, μ) is said to be μ -locally closed if $A = U \cap F$ where U is μ -open and F is μ -closed in X.

Definition 2.5 ([7]). Let (X, μ) be a GTS and $A \subseteq X$. Then

(1). A is said to be μ -dense if $c_{\mu}(A) = X$.

(2). (X, μ) is said to be μ -submaximal if each μ -dense subset of (X, μ) is a μ -open set.

Definition 2.6 ([12]). Let (X, μ) be a GTS. Then a subset A of X is called μ -generalized closed set (in short μ g-closed set) iff $c_{\mu}(A) \subseteq U$ whenever $A \subseteq U$ where U is μ -open in X. The complement of a μ g-closed set is called a μ g-open set.

Definition 2.7. Let (X, μ) be a GTS. Then a subset A of X is said to be a

(1). μ_t -set [13] if $i_{\mu}(A) = i_{\mu}(c_{\mu}(A));$

(2). μ_B -set [13] if $A = U \cap V$, $U \in \mu$, V is a μ_t -set;

- (3). μ -semi-open [4] iff $A \subseteq c_{\mu}(i_{\mu}(A));$
- (4). μ -pre-open [4] iff $A \subseteq i_{\mu}(c_{\mu}(A))$.

Definition 2.8 ([10]). A function $f: (X, \mu) \to (Y, \lambda)$ is said to be (α, λ) -continuous if $f^{-1}(U)$ is μ - α -open in X for every λ -open set U of Y.

Definition 2.9 ([11]). A function $f: (X, \mu) \to (Y, \lambda)$ is said to be contra- (α, λ) -continuous if $f^{-1}(V)$ is μ - α -closed in X for every λ -open set V of Y.

3. μ - α -locally Closed Sets and $\mu_{\alpha-t}$ -sets

Definition 3.1. A subset A of a GTS (X, μ) is said to be μ - α -locally closed if $A = U \cap F$ where U is μ - α -open and F is μ - α -closed in X.

Remark 3.2. In a GTS (X, μ) the following properties hold.

(1). Every μ - α -open set is μ - α -locally closed.

(2). If $X \in \mu$ then every μ - α -closed set is μ - α -locally closed.

Remark 3.3. The condition $X \in \mu$ in Remark 3.2(2) cannot be dropped. This is shown by the following Example.

Example 3.4. Let $X = \{a, b, c, d\}$. If we take μ not containing X where $\mu = \{\phi, \{b\}, \{a, b, c\}\}$. Then $\alpha(\mu) = \{\phi, \{b\}, \{b, c\}, \{a, b, c\}\}$; μ - α -closed sets are $\{d\}, \{a, d\}, \{a, d, c\}, X$ and μ - α -locally closed sets are $\phi, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}, \{a, b, c\}$. Clearly every μ - α -open set is μ - α -locally closed. Also we have $\{a, d\}$ is μ - α -closed but it is not μ - α -locally closed.

Remark 3.5. For a GTS (X, μ) we have the following:

(1). the union of two μ - α -locally closed sets need not be a μ - α -locally closed;

(2). the intersection of two μ - α -locally closed sets need not be a μ - α -locally closed.

Example 3.6. Consider $X = \{a, b, c\}$ with $\mu = \{\phi, \{a, b\}, \{b, c\}, X\}$. Then $\alpha(\mu) = \{\phi, \{a, b\}, \{b, c\}, X\}$; μ - α -closed sets are ϕ , $\{a\}, \{c\}, X$ and μ - α -locally closed sets are ϕ , $\{a\}, \{c\}, \{a, b\}, \{b, c\}, X$.

(1). Let $A = \{a\}$ and $B = \{c\}$. Clearly A and B are μ - α -locally closed sets but $A \cup B = \{a, c\}$ is not μ - α -locally closed.

(2). Let $A = \{a, b\}$ and $B = \{b, c\}$. Clearly A and B are μ - α -locally closed sets but $A \cap B = \{b\}$ is not μ - α -locally closed.

Proposition 3.7. Arbitrary union of μ - α -open sets is again μ - α -open.

Proof. Let $G_i \in \alpha(\mu)$ for $i \in I \neq \phi$. Claim $G = \bigcup_{i \in I} G_i \in \alpha(\mu)$. Since $G_i \in \alpha(\mu)$ for $i \in I$, we have $G_i \subseteq i_\mu(c_\mu(i_\mu(G_i)))$ for each $i \in I$. Now consider $i_\mu(c_\mu(i_\mu(\bigcup_{i \in I} G_i))) \supseteq i_\mu(c_\mu(\bigcup_{i \in I} i_\mu(G_i))) \supseteq i_\mu(\bigcup_{i \in I} c_\mu(i_\mu(G_i))) \supseteq \bigcup_{i \in I} i_\mu(c_\mu(i_\mu(G_i))) \supseteq \bigcup_{i \in I} G_i$. Hence $G = \bigcup_{i \in I} G_i \in \alpha(\mu)$.

Theorem 3.8. If A is a μ - α -locally closed set in a GTS (X, μ) , then there exists a μ - α -closed set K in X such that $A \cap K = \phi$.

Proof. Let A be a μ - α -locally closed set in (X, μ) such that $A = U \cap F$, where U is μ - α -open and F is μ - α -closed. Claim $A \cap K = \phi$ where K is any μ - α -closed. Let $K = F \cap (X - U)$ and $X - K = (X - F) \cup U$. By Proposition 3.7, X - K is μ - α -open in X and K is μ - α -closed in X. Also $A \cap K = (U \cap F) \cap (F \cap (X - U)) = F \cap (U \cap (X - U)) = \phi$.

Lemma 3.9. Let (X, μ) be a GTS and $A, B \subseteq X$, then the followings hold.

- (1). $i_{\alpha}(A) \subseteq A \subseteq c_{\alpha}(A);$
- (2). $A \subseteq B$ implies $i_{\alpha}(A) \subseteq i_{\alpha}(B)$ and $c_{\alpha}(A) \subseteq c_{\alpha}(B)$;
- (3). $A \in \alpha(\mu)$ iff $A = i_{\alpha}(A)$ and A is μ - α -closed iff $A = c_{\alpha}(A)$;
- (4). $i_{\alpha}(i_{\alpha}(A)) = i_{\alpha}(A)$ and $c_{\alpha}(c_{\alpha}(A)) = c_{\alpha}(A);$

(5). $i_{\alpha}(X - A) = X - c_{\alpha}(A)$ and $c_{\alpha}(X - A) = X - i_{\alpha}(A)$.

Proof.

(1) By Lemma 2.2, we have $i_{\alpha}(A) \subseteq A$, and $A \subseteq c_{\alpha}(A)$. Hence $i_{\alpha}(A) \subseteq A \subseteq c_{\alpha}(A)$

(2) Let $A \subseteq B$. By Lemma 2.1 (2), we have $i_{\mu}(c_{\mu}(i_{\mu}(A))) \subseteq i_{\mu}(c_{\mu}(i_{\mu}(B)))$. Also $A \cap i_{\mu}(c_{\mu}(i_{\mu}(A))) \subseteq B \cap i_{\mu}(c_{\mu}(i_{\mu}(B)))$. This implies $i_{\alpha}(A) \subseteq i_{\alpha}(B)$. By the same way we can prove $c_{\alpha}(A) \subseteq c_{\alpha}(B)$.

(3) Let $A \in \alpha(\mu)$. Also $i_{\alpha}(A) = \{ \cup G : G \subseteq A \text{ and } G \in \alpha(\mu) \}$. Always $A \subseteq A$, if $A \in \alpha(\mu)$ then we have $i_{\alpha}(A) = A$. Conversely if $A = i_{\alpha}(A) = \{ \cup G : G \subseteq A \text{ and } G \in \alpha(\mu) \}$, then by Proposition 3.7, we have $A \in \alpha(\mu)$. Similarly we can prove A is μ - α -closed iff $A = c_{\alpha}(A)$.

- (4) As $i_{\alpha}(A) \in \alpha(\mu)$, by (3), we have $i_{\alpha}(i_{\alpha}(A)) = i_{\alpha}(A)$. Similarly we can prove $c_{\alpha}(c_{\alpha}(A)) = c_{\alpha}(A)$.
- (5) Now $i_{\alpha}(X A) = (X A) \cap i_{\mu}(c_{\mu}(i_{\mu}(X A))) = (X A) \cap (X c_{\mu}(i_{\mu}(c_{\mu}(A)))) = X (A \cup c_{\mu}(i_{\mu}(c_{\mu}(A)))) = X c_{\alpha}(A)$.

Theorem 3.10. For a subset A of a GTS (X, μ) , the following properties are equivalent:

- (1). A is μ - α -locally closed;
- (2). $A = U \cap c_{\alpha}(A)$ for some $U \in \alpha(\mu)$;
- (3). $c_{\alpha}(A) A$ is μ - α -closed;
- (4). $A \cup (X c_{\alpha}(A))$ is μ - α -open;
- (5). $A \subseteq i_{\alpha}(A \cup (X c_{\alpha}(A))).$

Proof. (1) \Rightarrow (2): Let A be a μ - α -locally closed subset of X. Claim $A = U \cap c_{\alpha}(A)$ for some $U \in \alpha(\mu)$. Since A is μ - α -locally closed, $A = U \cap F$ where U is μ - α -open and F is μ - α -closed. Then $A \subseteq F$ implies $c_{\alpha}(A) \subseteq F$. So $A = U \cap F \supseteq U \cap c_{\alpha}(A)$. Again $A \subseteq U$ and $A \subseteq c_{\alpha}(A)$ implies that $A = U \cap F \subseteq U \cap c_{\alpha}(A)$. Thus $A = U \cap c_{\alpha}(A)$.

 $(2) \Rightarrow (3): \text{ Let } A = U \cap c_{\alpha}(A) \text{ for some } U \in \alpha(\mu). \text{ Claim } c_{\alpha}(A) - A \text{ is } \mu - \alpha \text{-closed. Now } c_{\alpha}(A) - A = c_{\alpha}(A) - (U \cap c_{\alpha}(A)) = c_{\alpha}(A) \cap (X - U) \cup (X - c_{\alpha}(A)) = (c_{\alpha}(A) \cap (X - U)) \cup (c_{\alpha}(A) \cap (X - c_{\alpha}(A)) = c_{\alpha}(A) \cap (X - U) \cup (X - c_{\alpha}(A)) = (c_{\alpha}(A) \cap (X - U)) \cup (c_{\alpha}(A) \cap (X - c_{\alpha}(A)) = c_{\alpha}(A) \cap (X - U) \cup (X - C_{\alpha}(A)) = (c_{\alpha}(A) \cap (X - U)) \cup (c_{\alpha}(A) \cap (X - c_{\alpha}(A)) = c_{\alpha}(A) \cap (X - U) \cup (X - C_{\alpha}(A)) = (c_{\alpha}(A) \cap (X - U)) \cup (c_{\alpha}(A) \cap (X - c_{\alpha}(A)) = c_{\alpha}(A) \cap (X - U) \cup (X - C_{\alpha}(A)) = (c_{\alpha}(A) \cap (X - U)) \cup (c_{\alpha}(A) \cap (X - C_{\alpha}(A)) = c_{\alpha}(A) \cap (X - U) \cup (X - C_{\alpha}(A)) = (c_{\alpha}(A) \cap (X - U)) \cup (c_{\alpha}(A) \cap (X - C_{\alpha}(A)) = (c_{\alpha}(A) \cap (X - U)) \cup (C_{\alpha}(A) \cap (X - C_{\alpha}(A)) = (c_{\alpha}(A) \cap (X - U)) \cup (C_{\alpha}(A) \cap (X - C_{\alpha}(A)) = (c_{\alpha}(A) \cap (X - U)) \cup (C_{\alpha}(A) \cap (X - C_{\alpha}(A)) = (c_{\alpha}(A) \cap (X - U)) \cup (C_{\alpha}(A) \cap (X - C_{\alpha}(A)) = (c_{\alpha}(A) \cap (X - U)) \cup (C_{\alpha}(A) \cap (X - C_{\alpha}(A)) = (c_{\alpha}(A) \cap (X - U)) \cup (C_{\alpha}(A) \cap (X - C_{\alpha}(A)) = (c_{\alpha}(A) \cap (X - U)) \cup (C_{\alpha}(A) \cap (X - C_{\alpha}(A)) = (c_{\alpha}(A) \cap (X - U)) \cup (C_{\alpha}(A) \cap (X - C_{\alpha}(A)) = (c_{\alpha}(A) \cap (X - U)) \cup (C_{\alpha}(A) \cap (X - C_{\alpha}(A)) = (c_{\alpha}(A) \cap (X - U)) \cup (C_{\alpha}(A) \cap (X - C_{\alpha}(A)) = (c_{\alpha}(A) \cap (X - U)) \cup (C_{\alpha}(A) \cap (X - C_{\alpha}(A)) = (c_{\alpha}(A) \cap (X - U)) \cup (C_{\alpha}(A) \cap (X - C_{\alpha}(A)) = (c_{\alpha}(A) \cap (X - U)) \cup (C_{\alpha}(A) \cap (X - C_{\alpha}(A)) = (c_{\alpha}(A) \cap (X - U)) \cup (C$

 $(3) \Rightarrow (4): \text{Let } c_{\alpha}(A) - A \text{ be } \mu - \alpha \text{-closed. Claim } A \cup (X - c_{\alpha}(A)) \text{ is } \mu - \alpha \text{-open in } X. \text{ Clearly } X - (c_{\alpha}(A) - A) \text{ is } \mu - \alpha \text{-open and } X - (c_{\alpha}(A) - A) = X - (c_{\alpha}(A) \cap (X - A)) = A \cup (X - c_{\alpha}(A)). \text{ Hence } A \cup (X - c_{\alpha}(A)) \in \alpha(\mu).$ $(4) \Rightarrow (5): \text{ Let } A \cup (X - c_{\alpha}(A)) \text{ be } \mu - \alpha \text{-open. This implies } A \subseteq (A \cup (X - c_{\alpha}(A))) = i_{\alpha}(A \cup (X - c_{\alpha}(A))).$ $(5) \Rightarrow (1): \text{ Let } A \subseteq i_{\alpha}(A \cup (X - c_{\alpha}(A))). \text{ Since } A \subseteq c_{\alpha}(A), A \subseteq i_{\alpha}(A \cup (X - c_{\alpha}(A))) \cap c_{\alpha}(A). \text{ As } i_{\alpha}(A \cup (X - c_{\alpha}(A)))$ $\subseteq A \cup (X - c_{\alpha}(A))) \text{ we have } i_{\alpha}(A \cup (X - c_{\alpha}(A))) \cap c_{\alpha}(A) \subseteq (A \cup (X - c_{\alpha}(A))) \cap c_{\alpha}(A) = A. \text{ Hence } A = i_{\alpha}(A \cup (X - c_{\alpha}(A))) \cap c_{\alpha}(A) \text{ where } i_{\alpha}(A \cap (X - c_{\alpha}(A))) \text{ is } \mu - \alpha \text{-open and } c_{\alpha}(A) \text{ is } \mu - \alpha \text{-losed. Hence } A \text{ is } \mu - \alpha \text{-locally closed.} \square$

Theorem 3.11. Let (X, μ) be a GTS. If $A \subseteq B \subseteq X$ and B is μ - α -locally closed, then there exists μ - α -locally closed set C such that $A \subseteq C \subseteq B$.

Proof. Let $A \subseteq B \subseteq X$ and B be μ - α -locally closed. Claim there exists a μ - α -closed set C such that $A \subseteq C \subseteq B$. Since B is μ - α -locally closed by Theorem 3.10, $B = U \cap c_{\alpha}(B)$ for some $U \in \alpha(\mu)$. Now $B \subseteq U$ implies that $A \subseteq B \subseteq U$. Then by Lemma 3.9, $A \subseteq U \cap c_{\alpha}(A) \subseteq U \cap c_{\alpha}(B) = B$. Hence $A \subseteq C \subseteq B$ where $C = U \cap c_{\alpha}(A)$ which is μ - α -locally closed. \Box

Definition 3.12. Let (X, μ) be a GTS. Then a subset A of X is called μ - α -dense if $c_{\alpha}(A) = X$. The space (X, μ) is called μ - α -submaximal if every μ - α -dense subset is μ - α -open in X.

Theorem 3.13. A GTS (X, μ) is μ - α -submaximal if and only if every subset of X is μ - α -locally closed.

Proof. Suppose that (X, μ) is a μ - α -submaximal GTS. Claim every subset of X is μ - α -locally closed. Let $A \subseteq X$. Consider $X - (c_{\alpha}(A) - A)$. To prove that $X - (c_{\alpha}(A) - A)$ is μ - α -dense. Now $c_{\alpha}(X - (c_{\alpha}(A) - A)) = c_{\alpha}(X - (c_{\alpha}(A) \cap (X - A))) = c_{\alpha}(A \cup (X - c_{\alpha}(A))) \supseteq c_{\alpha}(A) \cup c_{\alpha}(X - c_{\alpha}(A)) \supseteq c_{\alpha}(A) \cup (X - i_{\alpha}(c_{\alpha}(A))) \supseteq c_{\alpha}(A) \cup (X - c_{\alpha}(A)) = X$. Therefore $X - (c_{\alpha}(A) - A)$ is μ - α -dense subset of X. Since X is μ - α -submaximal, by definition, $X - (c_{\alpha}(A) - A)$ is μ - α -open set. It follows that $(c_{\alpha}(A) - A)$ is μ - α -closed. Consequently, $X - (c_{\alpha}(A) - A) = (c_{\alpha}(A) - A)^{c} = (c_{\alpha}(A) \cap A^{c})^{c} = A \cup (X - c_{\alpha}(A))$ is μ - α -open. Thus, $A = (A \cup (X - c_{\alpha}(A))) \cap c_{\alpha}(A)$ is μ - α -locally closed.

Conversely, let every subset of X be μ - α -locally closed. Let A be μ - α -dense subset of X. Claim A is μ - α -open in X. Since $A \subseteq X$, A is μ - α -locally closed. Hence $A = U \cap c_{\alpha}(A)$ where U is μ - α -open. By assumption A is μ - α -dense. It becomes that $A = U \cap X = U$. This implies that A is μ - α -open. Hence (X, μ) is μ - α -submaximal.

Definition 3.14. Let (X, μ) be a GTS. If a subset A of X is called μ_{α} -generalized closed set (in short $\mu_{\alpha}g$ -closed set) iff $c_{\alpha}(A) \subseteq U$ whenever $A \subseteq U$ and U is μ - α -open in X. The complement of a $\mu_{\alpha}g$ -closed set is called $\mu_{\alpha}g$ -open set.

Theorem 3.15. Let (X, μ) be a GTS. If A is both $\mu_{\alpha}g$ -closed and μ - α -locally closed, then it is μ - α -closed. The converse is also true if $X \in \mu$.

Proof. Suppose that A is $\mu_{\alpha}g$ -closed and μ - α -locally closed. Thus $A = U \cap F$, where $U \in \alpha(\mu)$ and F is μ - α -closed. So $A \subseteq U$ and $A \subseteq F$. By hypothesis $c_{\alpha}(A) \subseteq U$ and $c_{\alpha}(A) \subseteq c_{\alpha}(F) = F$. Thus $c_{\alpha}(A) \subseteq U \cap F = A$. Thus A is μ - α -closed. Conversely, suppose that A is μ - α -closed in X. Let $A \subseteq U$ where $U \in \alpha(\mu)$. Then $c_{\alpha}(A) = A \subseteq U$. Thus A is $\mu_{\alpha}g$ -closed. Since A is μ - α -closed, by Remark 3.2(2), it is μ - α -locally closed.

Remark 3.16. The following Examples show that μ - α -locally closed sets and $\mu_{\alpha}g$ -closed sets are independent.

Example 3.17. Consider $X = \{a, b, c\}$ with $\mu = \{\phi, \{a, b\}, \{a, c\}, X\}$. Then $\alpha(\mu) = \{\phi, \{a, b\}, \{a, c\}, X\}$; μ - α -locally closed sets are ϕ , $\{b\}, \{c\}, \{a, b\}, \{a, c\}, X$ and $\mu_{\alpha}g$ -closed sets are ϕ , $\{b\}, \{c\}, \{b, c\}, X$. We obtain

(1). $\{a, b\}$ is μ - α -locally closed but not $\mu_{\alpha}g$ -closed.

(2). $\{b, c\}$ is $\mu_{\alpha}g$ -closed but not μ - α -locally closed.

Remark 3.18. Every μ - α -closed set in a GTS (X, μ) is $\mu_{\alpha}g$ -closed. If A is a μ - α -closed set in X such that $A \subseteq U$ and $U \in \alpha(\mu)$. Then $c_{\alpha}(A) = A \subseteq U$. Hence A is $\mu_{\alpha}g$ -closed.

The converse of the remark is not true as seen from the following Example.

Example 3.19. Consider the GTS in Example 3.17. It is clear that $\{b, c\}$ is $\mu_{\alpha}g$ -closed but not μ - α closed.

Definition 3.20. Let (X, μ) be a GTS. Then a subset A of X is said to be a

(1).
$$\mu_{\alpha-t}$$
-set if $i_{\alpha}(A) = i_{\alpha}(c_{\alpha}(A));$

(2). $\mu_{\alpha-B}$ -set if $A = U \cap V$, $U \in \alpha(\mu)$ and V is a $\mu_{\alpha-t}$ -set.

Remark 3.21. For any generalized topological space (X, μ) , X is always $\mu_{\alpha-t}$ -set. By the definition of μ , ϕ is always μ -open and hence μ - α -open. Then $\phi^c = X$ which is always μ - α -closed. Therefore $c_{\alpha}(X) = X$. This implies $i_{\alpha}(c_{\alpha}(X)) = i_{\alpha}(X)$. Hence X is always $\mu_{\alpha-t}$ -set.

Proposition 3.22. Let (X, μ) be a GTS. Then

- (1). If A is a μ - α -closed set then it is a $\mu_{\alpha-t}$ -set;
- (2). If $X \in \mu$, every $\mu_{\alpha-t}$ -set is a $\mu_{\alpha-B}$ -set;
- (3). Every μ - α -locally closed set is a $\mu_{\alpha-B}$ -set.

Proof.

- (1) Let A be a μ - α -closed set. Then $A = c_{\alpha}(A)$. Thus $i_{\alpha}(A) = i_{\alpha}(c_{\alpha}(A))$. Therefore A is a $\mu_{\alpha-t}$ -set.
- (2) Let A be a $\mu_{\alpha-t}$ -set. Then $A = X \cap A$, X is μ - α -open. Hence A is $\mu_{\alpha-B}$ -set.
- (3) Let A be a μ - α -locally closed subset of X. Then $A = U \cap F$, where U is μ - α -open set and F is μ - α -closed set. Then by (1), F is $\mu_{\alpha-t}$ -set and hence A is $\mu_{\alpha-B}$ -set.

Remark 3.23. The condition $X \in \mu$ cannot dropped in Proposition 3.22(2) as shown by the following Example.

Example 3.24. Let $X = \{a, b, c, d\}$, if we take μ not containing X where $\mu = \{\phi, \{a\}, \{a, b\}, \{a, b, c\}\}$, then $\alpha(\mu) = \{\phi, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$; $\mu_{\alpha-t}$ -sets are ϕ , $\{b\}, \{c\}, \{d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{b, c, d\}, \{a, b, c\}, X$ and $\mu_{\alpha-B}$ -sets are ϕ , $\{a\}, \{b\}, \{c\}, \{a, b\}, \{a, b, c\}$. Clearly $\{b, d\}$ is a $\mu_{\alpha-t}$ -set but not $\mu_{\alpha-B}$ -set.

Remark 3.25. The union of two $\mu_{\alpha-t}$ -sets need not be a $\mu_{\alpha-t}$ -set. This can be shown by the following Example.

Example 3.26. Consider the GTS as in Example 3.6. Then $\mu_{\alpha-t}$ -sets are ϕ , $\{a\}$, $\{b\}$, $\{c\}$. Then $\{a\}$ and $\{b\}$ are two $\mu_{\alpha-t}$ -sets but their union $\{a, b\}$ is not a $\mu_{\alpha-t}$ -set.

Remark 3.27. For a GTS (X, μ) the following properties hold.

(1). μ - α -locally closed sets and $\mu_{\alpha-t}$ -sets are independent;

(2). $\mu_{\alpha-B}$ -set need not be a $\mu_{\alpha-t}$ -set.

Example 3.28. Let $X = \{a, b, c, d\}$ with $\mu = \{\phi, \{a\}, \{a, b\}, \{a, b, c\}\}$. Then $\alpha(\mu) = \{\phi, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\};$ $\mu_{\alpha-t}$ -sets are ϕ , $\{b\}, \{c\}, \{d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{b, c, d\}\}$, X; μ - α -locally closed sets are ϕ , $\{a\}, \{b\}, \{c\}, \{a, b\}, \{c\}, \{a, b, c\}, \{a, b, c\}$.

- (1). $\{c, d\}$ is a $\mu_{\alpha-t}$ -set which is not μ - α -locally closed set.
- (2). $\{a\}$ is a μ - α -locally closed set which is not a $\mu_{\alpha-t}$ -set.
- (3). Let $A = \{a, b\}$. Then $i_{\alpha}(A) \neq i_{\alpha}(c_{\alpha}(A))$. Hence it is not $\mu_{\alpha-t}$ -set but $A = A \cap X$ where X is $\mu_{\alpha-t}$ -set and $A \in \alpha(\mu)$. So it is $\mu_{\alpha-B}$ -set.

4. Decomposition of μ - α -continuity

Definition 4.1. A function $f: (X, \mu) \to (Y, \lambda)$ is said to be $\mu_{\alpha}g$ -continuous (resp. μ_{α} -lc-continuous) if $f^{-1}(F)$ is $\mu_{\alpha}g$ -closed (resp. μ - α -locally closed) in (X, μ) for every λ -closed set F of (Y, λ) .

Theorem 4.2. A function $f: (X, \mu) \to (Y, \lambda)$ is both $\mu_{\alpha}g$ -continuous and μ_{α} -lc-continuous, then it is (α, λ) -continuous. The converse is true if $X \in \mu$.

Proof. Let f be both $\mu_{\alpha}g$ -continuous and μ_{α} -lc-continuous and U be λ -open subset of (Y, λ) , then Y - U is λ -closed subset of Y. Since f is both $\mu_{\alpha}g$ -continuous and μ_{α} -lc-continuous, then $f^{-1}(Y - U) = X - f^{-1}(U)$ is both $\mu_{\alpha}g$ -closed and

 μ - α -loccally closed in X, then by Theorem 3.15, $X - f^{-1}(U)$ is μ - α -closed in X. Hence $f^{-1}(U)$ is μ - α -open in X. Therfore f is (α, λ) -continuous.

Convesely let F be λ -closed subset of Y then Y - F is λ -open in Y, since f is (α, λ) -continuous $f^{-1}(Y - F) = X - f^{-1}(F)$ is μ - α -open in X. Therefore $f^{-1}(F)$ is μ - α -closed in X, by Theorem 3.15 $f^{-1}(F)$ is both $\mu_{\alpha}g$ -closed and μ - α -locally closed, if $X \in \mu$. Hence f is both $\mu_{\alpha}g$ -continuous and μ_{α} -lc-continuous.

Example 4.3. Let $X = \{a, b, c\}, \mu = \{\phi, \{a\}, \{a, b\}, \{b, c\}, X\}$ and $\lambda = \{\phi, \{b\}, \{b, c\}, Y\}$. Then the identity function $f: (X, \mu) \to (Y, \lambda)$ is $\mu_{\alpha}g$ -continuous but not μ_{α} -lc-continuous as $f^{-1}(\{a, c\}) = \{a, c\}$ is not μ - α -locally closed.

Example 4.4. Let $X = \{a, b, c\}, \mu = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, X\}$ and $\lambda = \{\phi, \{b, c\}, \{a, c\}, Y\}$. Then the identity function $f: (X, \mu) \to (Y, \lambda)$ is μ_{α} -lc-continuous but not $\mu_{\alpha}g$ -continuous as $f^{-1}(\{a\} = \{a\} \text{ is not } \mu_{\alpha}g$ -closed in X

Theorem 4.5. A contra- (α, λ) -continuous function f: $(X, \mu) \rightarrow (Y, \lambda)$ is (α, λ) -continuous if and only if it is $\mu_{\alpha}g$ continuous.

Proof. Let f be both contra- (α, λ) -continuous and $\mu_{\alpha}g$ -continuous. Let F be a λ -closed set in Y. Then by contra- (α, λ) -continuity of f, $f^{-1}(F)$ is μ - α -open in X, by Remark 3.2(1) it is μ - α -locally closed. Also since f is $\mu_{\alpha}g$ -continuous, $f^{-1}(F)$ is $\mu_{\alpha}g$ -closed. Thus by Theorem 3.15, $f^{-1}(F)$ is μ - α -closed. Hence f to be (α, λ) -continuous.

Converse part is obvious as every μ - α -closed set is $\mu_{\alpha}g$ -closed set.

Definition 4.6. A mapping $f: (X, \mu) \to (Y, \lambda)$ is said to be contra- $\mu_{\alpha}g$ -continuous (resp. μ_{α} -contra-lc-continuous) if $f^{-1}(V)$ is $\mu_{\alpha}g$ -closed (resp. μ - α -locally closed) in X for each λ -open set V of Y.

Theorem 4.7. If a mapping $(X, \mu) \to (Y, \lambda)$ is μ_{α} -contra-lc-continuous and contra $\mu_{\alpha}g$ -continuous, then it is contra- (α, λ) -continuous. The converse is true if $X \in \mu$.

Proof. Follows from Theorem 3.15.

Example 4.8. Let $X = \{a, b, c\}, \mu = \{\phi, \{a, b\}, \{a, c\}, X\}$ and $\lambda = \{\phi, \{b\}, \{b, c\}, Y\}$. Then the identity function $f: (X, \mu) \rightarrow (Y, \lambda)$ is contra- $\mu_{\alpha}g$ -continuous but not contra- μ_{α} -lc-continuous as the inverse image of the λ -open set $\{b, c\}$ is not μ - α -locally closed.

Example 4.9. Let $X = \{a, b, c, d\}$, $\mu = \{\phi, \{d\}, \{a, b\}, \{a, b, d\}, X\}$ and $\lambda = \{\phi, \{a, b\}, \{a, c\}, \{a, b, c\}, Y\}$. Then the identity function $f: (X, \mu) \rightarrow (Y, \lambda)$ is contra- μ_{α} -lc-continuous but not contra $\mu_{\alpha}g$ -continuous as inverse image of the λ -open set $\{a, b\}$ is not $\mu_{\alpha}g$ -closed.

References

- [1] A.Csàszàr, Generalized open sets, Acta Math. Hungar., 75(1-2)(1997), 65-87.
- [2] A.Csàszàr, Generalized topology, generalized continuity, Acta Math. Hungar., 96(2002), 351-357.
- [3] A.Csàszàr, Extremally disconnected generalized topologies, Annales Univ. Sci. Budapest., 47(2004), 91-96.
- [4] A.Csàszàr, Generalized open sets in generalized topologies, Acta Math. Hungar., 106(1-2)(2005), 53-66.
- [5] A.Csàszàr, δ -and θ -modification of Generalized topologies, Acta Math. Hungar., 120(2008), 275-279.
- [6] E.Ekici, Generalized hypeconnectedness, Acta Math. Hungar., 133(2011), 140-147.
- [7] E.Ekici, Generalized submaximal spaces, Acta Math. Hungar., 134(1-2)(2012), 132-138.
- [8] Z.Li and W.Zhu, Contra Continuity on generalized topological spaces, Acta Math. Hungar., DOI:10.1007/s10474-012-0215-6.

- [9] W.K.Min, Some results on generalized topological spaces and generalized neibouhood systems, Acta Math. Hungar., 108(2005), 171-181.
- [10] W.K.Min, Generalized continuous functions defined by generalized open sets on generalized topological spaces, Acta Math. Hungar., 128(4)(2010), 299-306.
- [11] A.Al-Omari and T.Nori, A unified theory of contra-(μ, λ)-continuous functions in generalized topological spaces, Acta Math. Hungar., 135(1-2)(2012), 31-41.
- [12] B.Roy, On a type of generalized open sets, Applied Gen. Topology, 12(2)(2011), 163-173.
- B.Roy, On decompositions of generalized continuity, Bulletin of the international Mathematical virtual institute, 4(2014), 129-134.
- [14] J.Tong, On decomposition of continuity in topological spaces, Acta Math. Hungar., 54(1989), 51-55.