

International Journal of Mathematics And its Applications

$(1,2)^{\star}$ -ğ-Homeomorphisms

A. Ponmalar¹, R. Asokan¹ and O. Nethaji^{2,*}

- 1 Department of Mathematics, School of Mathematics, Madurai Kamaraj University, Madurai, Tamil Nadu, India.
 - 2 PG and Research Department of Mathematics, Kamaraj College, Thoothukudi, Tamil Nadu, India.
- Abstract: The purpose of this paper, we introduce the new types of functions called $(1,2)^*$ - \check{g} -homeomorphisms and strongly $(1,2)^*$ - \check{g} -homeomorphisms by using $(1,2)^*$ - \check{g} -closed set prove that the collection of strongly $(1,2)^*$ - \check{g} -homeomorphisms forms a group under the operations of composition functions.
- **MSC:** 54A05, 54A10, 54C08, 54C10.
- Keywords: $(1,2)^*$ - \check{g} -closed functions, strongly $(1,2)^*$ - \check{g} -closed, $(1,2)^*$ - \check{g} -homeomorphisms and strongly $(1,2)^*$ - \check{g} -homeomorphisms. © JS Publication.

1. Introduction

J.C.Kelly [1] was uttered the geometrical continuation of bitopological space that is a non empty set X together with two arbitrary topologies defined on X at the stage of significant study the shapes of objects. N. Levine [2] was initiated the study of generalizations of closed sets in topological spaces. In this paper, we introduce the concepts $(1,2)^*$ - \check{g} -homeomorphisms and strongly $(1,2)^*$ - \check{g} -homeomorphisms. Also basic properties of these two functions are studied and the relation between these types and other existing ones are established.

2. Preliminaries

Throughout this paper (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) represents the non-empty bitopological spaces on which no separation axiom are assumed, unless otherwise mentioned. For a subset A of X, $\tau_{1,2}$ -cl(A) and $\tau_{1,2}$ -int(A) represents the closure of A and interior of A respectively.

In the following fundamentals are holds.

Definition 2.1 ([3]). A subset A of a bitopological space (X, τ_1, τ_2) or X is said to be a $(1, 2)^*$ -semi open set if $A \subseteq \tau_{1,2}$ cl $(\tau_{1,2}$ -int(A)).

The complement of the above mentioned set is called a closed set.

Definition 2.2. A subset A of a bitopological space (X, τ_1, τ_2) or X is said to be

(1). a $(1,2)^*$ -generalized closed set (briefly, $(1,2)^*$ -g-closed) [10] if $\tau_{1,2}$ -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open.

^{*} E-mail: jionetha@yahoo.com

- (2). a $(1,2)^*$ -sg-closed set [9] if $(1,2)^*$ -scl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -semi-open.
- (3). a $(1,2)^*$ - \hat{g} -closed set [7] if $\tau_{1,2}$ -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -sg-open.
- (4). $a (1,2)^* \hat{g}_1$ -closed set [6] if $\tau_{1,2}$ -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^* \hat{g}$ -open.
- (5). $a (1,2)^* \mathcal{G}$ -closed set [6] if $(1,2)^* scl(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^* \hat{g}_1$ -open.

(6). a $(1,2)^*$ - \check{g} -closed set [6] if $\tau_{1,2}$ -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ - \mathcal{G} -open.

The complements of the above mentioned closed sets are called their respective open sets.

Definition 2.3. A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be

- (1). a $(1,2)^*$ -continuous [4] if the inverse image of every $\sigma_{1,2}$ -closed set of (Y,σ_1,σ_2) is $\tau_{1,2}$ -closed set in (X,τ_1,τ_2) .
- (2). a $(1,2)^*$ - \check{g} -continuous [8] if the inverse image of every $\tau_{1,2}$ -closed set in (Y,σ_1,σ_2) is $(1,2)^*$ - \check{g} -closed set in (X,τ_1,τ_2) .
- (3). a $(1,2)^*$ - \mathcal{G} -irresolute [8] if the inverse image of every $(1,2)^*$ - \mathcal{G} -closed in (Y,σ_1,σ_2) is $(1,2)^*$ - \mathcal{G} -closed set in (X,τ_1,τ_2) .

Definition 2.4 ([5]). A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called

- (1). a $(1,2)^*$ - \check{g} -closed if the image of every $\tau_{1,2}$ -closed set in (X,τ_1,τ_2) is $(1,2)^*$ - \check{g} -closed in (Y,σ_1,σ_2) .
- (2). a $(1,2)^*$ - \check{g} -open function if the image f(A) is $(1,2)^*$ - \check{g} -open in (Y,σ_1,σ_2) for each $\tau_{1,2}$ -open set A in (X,τ_1,τ_2) .

Definition 2.5 ([11]). A bijective function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be

- (1). $a(1,2)^*$ -homeomorphism if f is both $(1,2)^*$ -continuous and $(1,2)^*$ -open.
- (2). a generalized $(1,2)^*$ -g-homeomorphism if f is both $(1,2)^*$ -g-continuous and $(1,2)^*$ -g-open.
- (3). a $(1,2)^*$ -gc-homeomorphism if f and f^{-1} are $(1,2)^*$ -gc-irresolute function.

3. $(1,2)^*$ - \check{g} -Homeomorphisms

Definition 3.1. A bijection $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called a

(1). $(1,2)^*$ - \check{g} -homeomorphism if f is both $(1,2)^*$ - \check{g} -continuous and $(1,2)^*$ - \check{g} -open.

(2). strongly $(1,2)^*$ - \check{g} -homeomorphism if both f and f^{-1} are $(1,2)^*$ - \check{g} -irresolute.

We denote the family of all $(1,2)^*$ - \check{g} -homeomorphisms (resp. strongly $(1,2)^*$ - \check{g} -homeomorphisms and $(1,2)^*$ -homeomorphisms) of a bitopological space (X,τ_1,τ_2) onto itself by $(1,2)^*$ - \check{g} -h (X,τ_1,τ_2) (resp. strongly $(1,2)^*$ - \check{g} -h (X,τ_1,τ_2) and $h(X,\tau_1,\tau_2)$)

Theorem 3.2. Every $(1,2)^*$ -homeomorphism is a $(1,2)^*$ - \check{g} -homeomorphism.

Proof. It follows from Definitions 3.1.

Remark 3.3. The converse part of Theorem 3.2 is not true as seen from the following Example.

Example 3.4. Let $X = Y = \{a, b, c, d\}$, $\tau_1 = \{\phi, \{a, b\}, X\}$ and $\tau_2 = \{\phi, X\}$ then $\tau_{1,2} = \{\phi, \{a, b\}, X\}$ with $\sigma_1 = \{\phi, \{a\}, Y\}$ and $\sigma_2 = \{\phi, \{a, b\}, Y\}$ then $\sigma_{1,2} = \{\phi, \{a\}, \{a, b\}, Y\}$. We have $(1, 2)^* - \check{g} - C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $(1, 2)^* - \check{g} - O(Y) = \{\phi, \{a\}, \{a, b\}, Y\}$. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be the identity function. Then f is $(1, 2)^* - \check{g}$ -homeomorphism but it is not $(1, 2)^*$ -homeomorphism because it is not $(1, 2)^*$ -continuous. **Theorem 3.5.** Every $(1,2)^*$ - \check{g} -homeomorphism is a $(1,2)^*$ -g-homeomorphism.

Proof. Since every $(1,2)^*$ - \check{g} -continuous function is $(1,2)^*$ -g-continuous and every $(1,2)^*$ - \check{g} -open function is $(1,2)^*$ -g-open.

Remark 3.6. The converse part of Theorem 3.5 is not true as seen from the following Example.

Example 3.7. Let $X = Y = \{a, b, c, d, e\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, X\}$ then $\tau_{1,2} = \{\phi, \{a\}, X\}$ with $\sigma_1 = \{\phi, \{b\}, Y\}$ and $\sigma_2 = \{\phi, Y\}$ then $\sigma_{1,2} = \{\phi, \{b\}, Y\}$. We have $(1, 2)^* \cdot \check{g} \cdot C(X) = \{\phi, \{b, c\}, X\}$ and $(1, 2)^* \cdot g \cdot C(X) = \{\phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}, (1, 2)^* \cdot \check{g} \cdot O(Y) = \{\phi, \{b\}, Y\}$ and $(1, 2)^* \cdot g \cdot O(Y) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{c\}, \{a, b\}, \{b, c\}, Y\}$. Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be defined by $f(\{a\}) = \{c\}, f(\{b\}) = \{a\}$ and $f(\{c\}) = \{b\}$. Then f is $(1, 2)^* \cdot g \cdot homeomorphism$ but it is not $(1, 2)^* \cdot \check{g} \cdot homeomorphism$.

Theorem 3.8. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a bijective $(1, 2)^*$ - \check{g} -continuous function. Then the following are equivalent:

- (1). f is an $(1,2)^*$ -ğ-open function.
- (2). f is $(1,2)^*$ - \check{g} -homeomorphism.
- (3). f is $(1,2)^*$ - \check{g} -closed function.

Remark 3.9. The composition of two $(1,2)^*$ - \check{g} -homeomorphism functions need not be a $(1,2)^*$ - \check{g} -homeomorphism function as shown in the following Example.

Example 3.10. Let $X = Y = Z = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{a\}, X\}$ then $\tau_{1,2} = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, \sigma_1 = \{\phi, \{a, b\}, Y\}$ and $\sigma_2 = \{\phi, Y\}$ then $\sigma_{1,2} = \{\phi, \{a, b\}, Y\}$ with $\eta_1 = \{\phi, \{a\}, Z\}$ and $\eta_2 = \{\phi, \{a, b\}, Z\}$ then $\eta_{1,2} = \{\phi, \{a\}, \{a, b\}, Z\}$. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ and $g : (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2)$ be the identity functions. Then f and g are $(1, 2)^*$ - \check{g} -homeomorphisms but their $g \circ f : (X, \tau_1, \tau_2) \to (Z, \eta_1, \eta_2)$ is not $(1, 2)^*$ - \check{g} -homeomorphism, since for the set $S = \{b\}$ is $(1, 2)^*$ -open in $(X, \tau_1, \tau_2), (g \circ f)(S) = f(g(S)) = f(g(\{b\}) = f(\{b\}) = \{b\}$ is not $(1, 2)^*$ - \check{g} -homeomorphism.

Theorem 3.11. Every strongly $(1,2)^*$ - \check{g} -homeomorphism is a $(1,2)^*$ - \check{g} -homeomorphism. i.e., for any space (X,τ_1,τ_2) , strongly $(1,2)^*$ - \check{g} -h $(X,\tau_1,\tau_2) \subseteq (1,2)^*$ - \check{g} -h (X,τ_1,τ_2) .

Proof. Since every strongly $(1, 2)^*$ - \check{g} -open function is $(1, 2)^*$ - \check{g} -open.

Remark 3.12. The converse part of Theorem 3.11 is not true as seen from the following Example.

Example 3.13. The function g in Example 3.10 is a $(1,2)^*$ - \check{g} -homeomorphism but not a strongly $(1,2)^*$ - \check{g} -homeomorphism, since for the $(1,2)^*$ - \check{g} -closed set $\{a,c\}$ in $(Y,\sigma_1,\sigma_2), (g^{-1})^{-1}(\{a,c\}) = g(\{a,c\}) = \{a,c\}$ which is not $(1,2)^*$ - \check{g} -closed in (Z,η_1,η_2) . Therefore, g^{-1} is not $(1,2)^*$ - \check{g} -irresolute and so g is not a strongly $(1,2)^*$ - \check{g} -homeomorphism.

Theorem 3.14. Every strongly $(1,2)^*$ - \check{g} -homeomorphism is a $(1,2)^*$ -g-homeomorphism.

Proof. It follows from Theorem 3.5.

Proposition 3.15. The function f in Example 3.7 is a $(1,2)^*$ -g-homeomorphism but not a strongly $(1,2)^*$ - \check{g} -homeomorphism.

Theorem 3.16. Every $(1,2)^*$ - \check{g} -homeomorphism is a $(1,2)^*$ -gc-homeomorphism.

Proof. It follows from Definitions 2.5(2) and 3.1(1).

Remark 3.17. The converse part of Theorem 3.16 is not true as seen from the following Example.

Example 3.18. Let $X = Y = \{a, b, c, d\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{a, b\}, X\}$ then $\tau_{1,2} = \{\phi, \{a\}, \{a, b\}, X\}$ with $\sigma_1 = \{\phi, \{b\}, Y\}$ and $\sigma_2 = \{\phi, \{b, c\}, Y\}$ then $\sigma_{1,2} = \{\phi, \{b\}, \{b, c\}, Y\}$. We have $(1, 2)^* - \check{g} - C(X) = \{\phi, \{c\}, \{b, c\}, X\}$ and $(1, 2)^* - g - C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}, (1, 2)^* - \check{g} - O(Y) = \{\phi, \{b\}, \{b, c\}, Y\}$ and $(1, 2)^* - g - C(Y) = \{\phi, \{a\}, \{a, b\}, \{a, c\}, Y\}$. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be defined by $f(\{a\}) = \{c\}, f(\{b\}) = \{b\}$ and $f(\{c\}) = \{a\}$. Then f is $(1, 2)^* - g$ -chomeomorphism but it is not $(1, 2)^* - \check{g}$ -homeomorphism.

Theorem 3.19. If $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2)$ are strongly $(1, 2)^*$ - \check{g} -homeomorphisms, then their composition $g \circ f: (X, \tau_1, \tau_2) \to (Z, \eta_1, \eta_2)$ is also strongly $(1, 2)^*$ - \check{g} -homeomorphism.

Proof. Let F be $(1,2)^*$ - \check{g} -open set in (Z,η_1,η_2) . Now, $(g \circ f)^{-1}(F) = f^{-1}(g^{-1}(F)) = f^{-1}(G)$, where $G = g^{-1}(F)$. By hypothesis, G is $(1,2)^*$ - \check{g} -open in (Y,σ_1,σ_2) and so again by hypothesis, $f^{-1}(G)$ is $(1,2)^*$ - \check{g} -open in (X,τ_1,τ_2) . Therefore, $g \circ f$ is $(1,2)^*$ - \check{g} -irresolute. Also for an $(1,2)^*$ - \check{g} -open set F in (X,τ_1,τ_2) , we have $(g \circ f)(F) = g(f(F)) = g(H)$, where H = f(F). By hypothesis f(F) is $(1,2)^*$ - \check{g} -open in (Y,σ_1,σ_2) and so again by hypothesis, g(f(F)) is $(1,2)^*$ - \check{g} -open in (Z,η_1,η_2) i.e., $(g \circ f)(F)$ is $(1,2)^*$ - \check{g} -open in (Z,η_1,η_2) and therefore $(g \circ f)^{-1}$ is $(1,2)^*$ - \check{g} -irresolute. Hence $g \circ f$ is a strongly $(1,2)^*$ - \check{g} -homeomorphism.

Theorem 3.20. The set strongly $(1,2)^*$ - \check{g} - $h(X,\tau_1,\tau_2)$ is a group under the composition of functions.

Proof. Define a binary operation *: strongly $(1,2)^* - \check{g} - h(X,\tau_1,\tau_2) \times$ strongly $(1,2)^* - \check{g} - h(X,\tau_1,\tau_2) \rightarrow$ strongly $(1,2)^* - \check{g} - h(X,\tau_1,\tau_2)$ by $f * g = g \circ f$ for all $f, g \in$ strongly $(1,2)^* - \check{g} - h(X,\tau_1,\tau_2)$ and \circ is the usual operation of composition of functions. Then by Theorem 3.19, $g \circ f \in$ strongly $(1,2)^* - \check{g} - h(X,\tau_1,\tau_2)$. We know that the composition of functions is associative and the identity function $I: (X,\tau_1,\tau_2) \rightarrow (X,\tau_1,\tau_2)$ belonging to strongly $(1,2)^* - \check{g} - h(X,\tau_1,\tau_2)$ serves as the identity element. If $f \in$ strongly $(1,2)^* - \check{g} - h(X,\tau_1,\tau_2)$, then $f^{-1} \in$ strongly $(1,2)^* - \check{g} - h(X,\tau_1,\tau_2)$ such that $f \circ f^{-1} = f^{-1} \circ f = I$ and so inverse exists for each element of strongly $(1,2)^* - \check{g} - h(X,\tau_1,\tau_2)$. Therefore, (strongly $(1,2)^* - \check{g} - h(X,\tau_1,\tau_2), \circ$) is a group under the operation of composition of functions.

Theorem 3.21. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be strongly $(1, 2)^*$ - \check{g} -homeomorphism. Then f induces an isomorphism from the group strongly $(1, 2)^*$ - \check{g} - $h(X, \tau_1, \tau_2)$ on to the group strongly $(1, 2)^*$ - \check{g} - $h(Y, \sigma_1, \sigma_2)$.

Proof. Using the map f, we define a map θ_f : strongly $(1,2)^* - \check{g} - h(X,\tau_1,\tau_2) \to \text{strongly } (1,2)^* - \check{g} - h(Y,\sigma_1,\sigma_2)$ by $\theta_f(h) = f \circ h \circ f^{-1}$ for every $h \in \text{strongly } (1,2)^* - \check{g} - h(X,\tau_1,\tau_2)$. Then θ_f is a bijection. Further, for all $h_1, h_2 \in \text{strongly } (1,2)^* - \check{g} - h(X,\tau_1,\tau_2)$, $\theta_f(h_1 \circ h_2) = f \circ (h_1 \circ h_2) \circ f^{-1} = (f \circ h_1 \circ f^{-1}) \circ (f \circ h_2 \circ f^{-1}) = \theta_f(h_1) \circ \theta_f(h_2)$. Therefore, θ_f is a $(1,2)^*$ -homomorphism and so it is $(1,2)^*$ -isomorphism induced by f.

Theorem 3.22. Strongly $(1,2)^*$ - \check{g} -homeomorphism is an equivalence relation in the collection of all topological spaces.

Proof. Clearly it satisfied reflexivity, symmetry and transitivity.

References

^[1] J. C. Kelly, *Bitopological spaces*, Proc. London. Math. Soc., 3(13)(1963), 71-89.

^[2] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 17(2)(1970), 89-96.

 ^[3] M. Lellis Thivagar and O. Ravi, On stronger forms of (1,2)^{*}-quotient function in bitopological spaces, Int. J. Math. Game theory and Algebra, 14(6)(2004), 481-492.

- [4] M. Lellis Thivagar, O. Ravi and E. Hatir, Decomposition of (1,2)*-continuity and (1,2)*-α-continuity, Miskolc Mathematical Notes, 10(2)(2009), 163-71.
- [5] A. Ponmalar, R. Asokan and O. Nethaji, On $(1,2)^*$ - \check{g} -closed and open functions, (to Appear).
- [6] M. Ramaboopathi and K. M. Dharmalingam, On (1, 2)^{*}-ğ-closed sets in bitopological spaces, Malaya Journal of Matematik, 7(3)(2019), 463-467.
- [7] M. Ramaboopathi and K. M. Dharmalingam, New forms of generalized closed sets in bitopological spaces, Journal of Applied Science and Computations, VI(III)(2019), 712-718.
- [8] M. Ramaboopathi and K. M. Dharmalingam, (1,2)*-ğ-Continuity and it's decompositions, The International Journal of Analytical and Experimental Modal Analysis, XIII(V)(2021), 927-941.
- [9] O. Ravi and M. Lellis Thivagar, A bitopological (1,2)*-semi-generalized continuous maps, Bull. Malaysian Math. Sci. Soc., (2)(29)(1)(2006), 76-88.
- [10] O. Ravi, M. L. Thivagar and Jinjinli, Remarks on extensions of (1,2)*-g-closed functionpings in bitopology, Archimedes J. Math., 1(2)(2011), 177-187.
- [11] O. Ravi, S. Pious Missier and T. Salai Parkunan, On bitopological (1,2)*-generalized homeomorphisms, Int J. Contemp. Math. Sciences., 5(11)(2010), 543-557.