International Journal of Mathematics And its Applications

# Homogenization of a Nonlinear Fibre-Reinforced Structure with Contact Conditions on the Interface Matrix-Fibres 

Research Article

H.Samadi ${ }^{1 *}$ and M.El Jarroudi ${ }^{2}$<br>1 National School of Applied Science, LABTIC, UAE, Tangier, Morocco.<br>2 Faculty of Science and Technics, Department of Mathematics, UAE, Tangier, Morocco.

Abstract: We study the homogenization of a nonlinear problem posed in a fibre-reinforced composite with matrix-fibres interfacial condition depending on a parameter $\lambda=\lambda(\varepsilon), \varepsilon$ being the size of the basic cell. Using $\Gamma$-convergence methods, three homogenized problems are determined according to the limit of the ratio $\gamma=\frac{\lambda(\varepsilon)}{\varepsilon}$. The main result is that the effective constitutive relations reveal non-local terms associated with the microscopic interactions between the matrix and the fibers.

Keywords: Composite material, periodic fibres, interfacial conditions, $\Gamma$-convergence, homogenized models.
(C) JS Publication.

## 1. Introduction

The nonlinear differential equation:

$$
\begin{equation*}
(-\operatorname{div}(|\nabla u|)=f, p>1) \tag{1}
\end{equation*}
$$

together with appropriate boundary conditions, describes a variety of physical phenomena. This equation appears in some nonlinear diffusion problems [3] as well as in the nonlinear filtration theory of gases and liquids in cracked porous media (see for instance [6]). This equation also occurs in plasticity problems involving a power-hardening stress-strain law given by

$$
e_{i} j(u)=\lambda|\sigma(u)|^{q-2} \sigma_{i j}(u) ; \quad i, j=1,2,3,
$$

linking the stress tensor $\sigma$ to the strain tensor $e(u)=\left(e_{i j}(u)\right)_{i, j=1,2,3}$, with

$$
e_{i j}(u)=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right),
$$

through the Northon-Hoff law, where $q>1$ is the power-harderning parameter and $\lambda$ is a non-dimensional positive constant. For a two-dimensional deformation plasticity under longitudinal shear, if $u(x, y)$ represents the component of displacement in the z direction, then the anti-plane stress component $\sigma_{13}$ and $\sigma_{23}$ are defined as:

$$
\begin{aligned}
\sigma_{13}(u) & =|\nabla u|^{p-1} \frac{\partial u}{\partial x}, \\
\sigma_{13}(u) & =|\nabla u|^{p-1} \frac{\partial u}{\partial y}
\end{aligned}
$$

[^0]and equation (1) represents the equilibrium of a material under external loads of density f. The main purpose of this work is to study of the homogenization of a composite material lying in a bounded domain $\Omega \subset \mathbb{R}^{3}$, which is built with a plastic matrix in contact with plastic circular fibres. We consider a scalar version of a plasticity model obeying a Northon-Hoff's law. Let $\omega a$ bounded open of $I R^{2}$ with lipschitzian continuous boundary $\partial \omega$.
$$
\Omega=\omega \times] 0, L\left[, \omega_{0}=\omega \times\{0\}, \omega_{L}=\omega \times\{L\}, \Gamma=\omega_{0} \times \omega_{L}\right.
$$

The unit cell $Y=]-\frac{1}{2},-\frac{1}{2}\left[{ }^{2}, 0<R<\frac{1}{2}, D(0, R)\right.$ the disc of radius $R$ centred at the origin, $\left.T=D(0, R) \times\right] 0, L[, S=$ $\partial D(0, R) \times] 0, L\left[, Y^{\#}=Y \backslash \bar{D}\right.$ et $\left.\Sigma=\partial S \times\right] 0, L[$.

We define the following sets:
$\left.Y_{\varepsilon}^{k}=\left(k_{1} \varepsilon, k_{2} \varepsilon\right)+\right]-\frac{\varepsilon}{2},-\frac{\varepsilon}{2}[\times]-\frac{\varepsilon}{2}, \frac{\varepsilon}{2}\left[, \varepsilon>0\right.$ and $\left(k_{1}, k_{2}\right) \in \mathbb{Z}^{2}, D_{\varepsilon}^{k}=D(k \varepsilon, \varepsilon R)$, the disc of radius $\varepsilon R$ centred at $k \varepsilon=\left(k_{1} \varepsilon, k_{2} \varepsilon\right)$.

$$
\left.T_{\varepsilon}^{k}=D_{\varepsilon}^{k} \times\right] 0, L\left[, Y_{\varepsilon}^{\# k}=Y_{\varepsilon}^{k} \backslash \overline{D_{\varepsilon}^{k}}, \sum_{\varepsilon}^{k}=\partial D_{\varepsilon}^{k} \times\right] 0, L[
$$

Let us define: $D_{\varepsilon}=\bigcup_{k \in I_{\varepsilon}} D_{\varepsilon}^{k}$ where $I_{\varepsilon}=\left\{k \in \mathbb{Z}^{2} ; \bar{D}_{\varepsilon}^{k} \subset \omega\right\}$.

$$
\begin{aligned}
Y_{\varepsilon} & =\bigcup_{k \in I_{\varepsilon}} Y_{\varepsilon}^{k} \\
T_{\varepsilon} & =\bigcup_{k \in I_{\varepsilon}} T_{\varepsilon}^{k} \\
Y_{\varepsilon}^{\#} & =\bigcup_{k \in I_{\varepsilon}} Y_{\varepsilon}^{\# k} \\
\Sigma_{\varepsilon} & =\bigcup_{k \in I_{\varepsilon}} \Sigma_{\varepsilon}^{k}
\end{aligned}
$$

The fibres do not touch the lateral side of $\Omega$, since $\bar{T}_{\varepsilon} \cap(\partial \Omega \backslash \Gamma)=\emptyset$. Let $\Omega_{\varepsilon}=\Omega \backslash \overline{T_{\varepsilon}}$ and $f \in C_{0}(\Omega)$. We consider the following problem :

$$
\left(P_{\varepsilon}^{\lambda}\right) \begin{cases}-\left(\operatorname{div}\left(\left|\nabla u_{\varepsilon}\right|^{p-2} \nabla u_{\varepsilon}\right)=f / \Omega_{\varepsilon}\right. & \text { in } \Omega_{\varepsilon} \\ -\left(\operatorname{div}\left(\left|\nabla v_{\varepsilon}\right|^{p-2} \nabla v_{\varepsilon}\right)=f / T_{\varepsilon}\right. & \text { in } T_{\varepsilon} \\ \left(u_{\varepsilon}, v_{\varepsilon}\right)=(g, g) & \text { on } \partial T_{\varepsilon} \cap \Gamma \\ \left|\nabla u_{\varepsilon}\right|^{p-2} \frac{\partial u_{\varepsilon}}{\partial n}=\lambda\left|u_{\varepsilon}-v_{\varepsilon}\right|^{p-2}\left(u_{\varepsilon}-v_{\varepsilon}\right) & \text { on } \Sigma_{\varepsilon} \\ \left|\nabla v_{\varepsilon}\right|^{p-2} \frac{\partial v_{\varepsilon}}{\partial n}=\lambda\left|u_{\varepsilon}-v_{\varepsilon}\right|^{p-2}\left(v_{\varepsilon}-u_{\varepsilon}\right) & \text { on } \Sigma_{\varepsilon}\end{cases}
$$

where $p \in] 1,+\infty[, g$ is a lipchitzian continuous function and $\lambda>0$ is a parameter who will tend towards 0 or $+\infty$.

Contact conditions (4) and (5) between the matrix and fibres on the interface $\Sigma_{\varepsilon}$ mean that the stresses depend on the gap of the displacements on $\Sigma_{\varepsilon}$. Contact model, in which the difference between displacements across a linear elastic interface is linearly related to components of tractions, has been formulated in [16]. A analogous model has been used in [2] to describe a contact on interfacial zones between fibres and matrix material. A similar model has been obtained from thermodynamic considerations in [14] and [15], where the proportional coefficient, between the adhesive forces and the gap between the materials, is of the form $k \beta^{2}, k>0$ being the interface stiffness and $\beta$ the bonding field which measures the active microscopic bounds with maximal value 1 corresponding to the perfect active bounds.

Our interest in this paper is with the study of the homogenization of the problem $\left(P_{\varepsilon}^{\lambda}\right)$ when the periodic $\varepsilon$ tends to 0 using $\Gamma$-convergence methods (see for example [4, 10], according to the limit of the report $\gamma=\frac{\lambda(\varepsilon)}{\varepsilon}, \lambda \rightarrow 0$ or $+\infty$.

The homogenization of materials reinforced with fibres have been recently considered by several authors among which [7, 8, 11, 12, 22] . For $p=2$, the case of a network of tubes for two related mediums was studied by H.Samadi and M.Mabrouk (see [21]) and also in references [19, 20] using the energy method of Tartar [23] with $\lambda=\varepsilon^{r}, r>0$. The same problem has been also addressed by Auriault and Ene in references [5], where they exhibit, using the method of matched asymptotic expansion, five models corresponding to $\lambda=\varepsilon^{p}$, with $p=-1,0,1,2,3$.

Let us define:

$$
\begin{aligned}
& W_{g}^{1, p}\left(\Omega_{\varepsilon}\right)=\left\{u \in W^{1, p}\left(\Omega_{\varepsilon}\right) ; u=g \text { on } \partial \Omega_{\varepsilon} \cap \Gamma\right\}, \\
& W_{g}^{1, p}\left(T_{\varepsilon}\right)=\left\{u \in W^{1, p}\left(T_{\varepsilon}\right) ; u=g \text { on } \partial T_{\varepsilon} \cap \Gamma\right\}
\end{aligned}
$$

Definition 1.1. We say that a sequence $\left(u_{\varepsilon}, v_{\varepsilon}\right)_{\varepsilon},\left(u_{\varepsilon}, v_{\varepsilon}\right) \in W_{g}^{1, p}\left(\Omega_{\varepsilon}\right) \times W_{g}^{1, p}\left(T_{\varepsilon}\right), \tau-$ converges to $(u, v)$ if
(i) $u_{\varepsilon} \rightarrow u$ in $W^{1, p}(\Omega)-$ weak
(ii) $\int_{\Omega} \varphi v_{\varepsilon} d \mu_{\varepsilon} \rightarrow \int_{\Omega} \varphi v d x \quad \forall \varphi \in C_{0}(\Omega)$

The main result obtained in this work is described as follows.
Let $\gamma=\lim \frac{\lambda}{\varepsilon} \in[0,+\infty]$. Then
(1) if $\gamma \in(0,+\infty)$, then the solution $\left(u_{\varepsilon}, v_{\varepsilon}\right)$ of $\left(P_{\varepsilon}^{\lambda}\right) \tau-\operatorname{converge}$ to $(u, v) \in W_{g}^{1, p}(\Omega) \times L^{p}\left(\omega, W_{g}^{1, p}(0, L)\right)$, where $(u, v)$ is the solution of the following problem

$$
\begin{cases}-\operatorname{div}\left(\partial j_{p}^{h o m}(\nabla u)\right)+2 \pi R \gamma|u-v|^{p-2}(u-v)=\left|Y^{\#}\right| f & \text { in } \Omega \\ -\frac{\partial}{\partial x_{3}}\left(\left|\frac{\partial v}{\partial x_{3}}\right|^{p-2} \frac{\partial v}{\partial x_{3}}\right)+\frac{2 \gamma}{R}|u-v|^{p-2}(v-u)=f & \text { in } \Omega \\ u=v=g & \text { on } \Gamma \\ \partial j_{p}^{h o m}(\nabla u) . n=0 & \text { on } \partial \omega \times] 0, L[ \end{cases}
$$

(2) if $\gamma=0$, there is no relationship between $u$ and v ,
(3) if $\gamma=+\infty$ we obtain that $u=v$ on $\Omega$,

## 2. Estimates and Compactness Results

We define the functional $F_{\varepsilon}^{g}$ through:

$$
F_{\varepsilon}^{g}(u, v)= \begin{cases}\int_{\Omega_{\varepsilon}}|\nabla u|^{p} d u+\int_{T_{\varepsilon}}|\nabla v|^{p} d v+\lambda \int_{\Sigma_{\varepsilon}}|u-v|^{p} d v & \text { if }(u, v) \in W_{g}^{1, p}\left(\Omega_{\varepsilon}\right) \times W_{g}^{1, p}\left(T_{\varepsilon}\right) \\ +\infty & \text { elsewhere }\end{cases}
$$

The problem $\left(P_{\varepsilon}^{\lambda}\right)$ is equivalent to the following minimization problem:

$$
\left(m_{\varepsilon}^{\lambda}\right) \min \left\{F_{\varepsilon}^{g}(u, v)-\int_{\Omega} \chi\left(\Omega_{\varepsilon}\right) f u d x-\int_{\Omega} f v \chi_{T_{\varepsilon}} d x ;(u, v) \in W_{g}^{1, p}\left(\Omega_{\varepsilon}\right) \times W_{g}^{1, p}\left(T_{\varepsilon}\right)\right\},
$$

where $\chi_{E}$ is the characteristic function of the set $E$.

Proposition 2.1. There exists a unique solution $\left(u_{\varepsilon}, v_{\varepsilon}\right) \in W_{g}^{1, p}\left(\Omega_{\varepsilon}\right) \times W_{g}^{1, p}\left(T_{\varepsilon}\right)$ of problem $\left(m_{\varepsilon}^{\lambda}\right)$, such that
(1) $\sup _{\varepsilon}\left\|u_{\varepsilon}\right\|_{W^{1, p}\left(\Omega_{\varepsilon}\right)}<+\infty$
(2) $\sup _{\varepsilon}\left\|v_{\varepsilon}\right\|_{W^{1, p}\left(\Gamma_{\varepsilon}\right)}<+\infty$
(3) $\sup _{\varepsilon} \lambda \int_{\Sigma_{\varepsilon}}\left|u_{\varepsilon}-v_{\varepsilon}\right|^{p} d \sigma_{\varepsilon}<+\infty$

Remark 2.2. Let $\nu_{\varepsilon}=\frac{1}{2 \pi R}\left(\sum_{k \in I_{\varepsilon}} \varepsilon \delta_{\Sigma_{\varepsilon}^{k}}\right)$, where $\delta_{\Sigma_{\varepsilon}^{k}}$ is the Dirac measure of $\Sigma_{\varepsilon}^{k}$, then (3) becomes:
(4) $2 \pi R \sup _{\varepsilon} \frac{\lambda}{\varepsilon} \int_{\Omega}\left|u_{\varepsilon}-v_{\varepsilon}\right|^{p} d \nu_{\varepsilon}<+\infty$.

Proof. Let $\tilde{g}$ be a lipschitzian continuous extension of $g$ to the whole $\Omega$ (Lemma of MacShane [13]). Then, $\forall(u, v) \in$ $W_{g}^{1, p}\left(\Omega_{\varepsilon}\right) \times W_{g}^{1, p}\left(T_{\varepsilon}\right),(u-\tilde{g}, v-\tilde{g}) \in W_{\Gamma}^{1, p}\left(\Omega_{\varepsilon}\right) \times W_{\Gamma}^{1, p}\left(T_{\varepsilon}\right)$, where $W_{\Gamma}^{1, p}=\left\{u \in W^{1, p} / u=0\right.$ in $\left.\Gamma\right\}$.

Using Poincaré's inequality there exists a positive constant $c_{p, L}$ depending only of p and L such that

$$
c_{p, L} \int_{\Omega_{\varepsilon}}|u-\tilde{g}|^{p} d x \leq \int_{\Omega_{\varepsilon}}|\nabla(u-\tilde{g})|^{p} d x .
$$

Let c be some positive constant with $c<c_{p, L}$, then by [4] Lemma 2.7, there exists $c_{1}>0$ and $c_{2} \geq 0$ depending only of c , $c_{p, L}$ and $\|\tilde{g}\|_{W^{1, p}(\Omega)}$, such that:

$$
\int_{\Omega_{\varepsilon}}|\nabla u|^{p} d x-c \int_{\Omega_{\varepsilon}}|u|^{p} d x \geq c_{1}\|u\|_{W^{1, p}\left(\Omega_{\varepsilon}\right)}^{p}-c_{2} .
$$

We similarly obtain

$$
\int_{T_{\varepsilon}}|\nabla v|^{p} d x-c \int_{T_{\varepsilon}}|v|^{p} d x \geq c_{1}\|v\|_{W^{1, p}\left(T_{\varepsilon}\right)}^{p}-c_{2}
$$

One deduces that there exists $C>0$ independent on $\varepsilon$ such that (with $q=\frac{p}{p-1}$ ):

$$
\begin{aligned}
F_{\varepsilon}^{g}(u, v) & -\int_{\Omega} \chi\left(\Omega_{\varepsilon}\right) f u d x-\int_{\Omega} \chi\left(T_{\varepsilon}\right) f v d x \\
& \geq C\left(\|u\|_{W^{1, p}\left(\Omega_{\varepsilon}\right)}+\|v\|_{W^{1, p}\left(T_{\varepsilon}\right)}\right)\left(\|u\|_{W^{1, p}\left(\Omega_{\varepsilon}\right)}+\|v\|_{W^{1, p}\left(T_{\varepsilon}\right)}-\|f\|_{L^{q}(\Omega)}\right)-2 c_{2}
\end{aligned}
$$

which implies the coerciveness of $F_{\varepsilon}^{g}(u, v)-L_{\varepsilon}(u, v)$, where $L_{\varepsilon}(u, v)=\int_{\Omega}\left(\chi\left(\Omega_{\varepsilon}\right) u-\chi\left(T_{\varepsilon}\right) v\right) f d x$.
As $F_{\varepsilon}^{g}-L_{\varepsilon}$ is strictly convex and $\not \equiv+\infty$ there exists a unique solution $\left(u_{\varepsilon}, v_{\varepsilon}\right) \in W_{g}^{1, p}\left(\Omega_{\varepsilon}\right) \times W_{g}^{1, p}\left(T_{\varepsilon}\right)$ to problem ( $m_{\varepsilon}^{\lambda}$ ). On the other hand,

$$
F_{\varepsilon}^{g}\left(u_{\varepsilon}, v_{\varepsilon}\right)-L_{\varepsilon}\left(u_{\varepsilon}, v_{\varepsilon}\right) \leq F_{\varepsilon}^{g}(\tilde{g}, \tilde{g})-L_{\varepsilon}(\tilde{g}, \tilde{g}) \leq \int_{\Omega}|\nabla \tilde{g}|^{p} d x+\|f\|_{L^{p}(\Omega)}\|\tilde{g}\|_{L^{q}(\Omega)}<+\infty
$$

from which we deduce, using the continuity of $L_{\varepsilon}$, that $\sup _{\epsilon} F_{\epsilon}^{g}\left(u_{\epsilon}, v_{\epsilon}\right)<+\infty, \sup _{\epsilon}\left\|u_{\varepsilon}\right\|_{W^{1, p}\left(\Omega_{\varepsilon}\right)}<+\infty$ and $\sup _{\epsilon}\left\|v_{\varepsilon}\right\|_{W^{1, p}\left(\Gamma_{\varepsilon}\right)}<+\infty$.

Now, as $\Omega_{\varepsilon}$ is convex, using [21] Theorem 2.1, we have that there exists a extension operator $I P_{E}$ from $W_{g}^{1, p}\left(\Omega_{\epsilon}\right)$ into $W_{g}^{1, p}(\Omega)$, such that $I P_{E} u_{E}=u_{E}$ in $\Omega_{\varepsilon}$ and $\left\|I P_{E} u_{\varepsilon}\right\|_{W^{1, p}(\Omega)} \leq C$.

In what follows, we omit the symbol $I P_{E}$. Let us define the measure $\mu_{\varepsilon}$ by $\mu_{\varepsilon}=\frac{|\Omega|}{\left|T_{\varepsilon}\right|} \sum_{k \in I_{\varepsilon}} \delta_{T_{\varepsilon}^{k}}$, where $\delta_{T_{\varepsilon}^{k}}$ is the Dirac measure supported by $T_{\varepsilon}^{k}$. One can easily see that $\mu_{\varepsilon} \rightarrow 1_{\Omega} d x$ weakly in sense of measure, and as $\sup _{\varepsilon}\left\|v_{\varepsilon}\right\|_{W^{1, p}\left(\Gamma_{\varepsilon}\right)}<+\infty$ we get, using Holder's inequality :

$$
\int_{\Omega}\left|v_{\varepsilon}\right| d \mu_{\varepsilon}=\int_{T_{\varepsilon}}\left|v_{\varepsilon}\right| d x \leq C \int_{T_{\varepsilon}}\left|v_{\varepsilon}\right|^{P} d x \leq C \quad \forall \varepsilon>0,
$$

where C is a generic positive constant.

Lemma 2.3. Let $\left(v_{\varepsilon}\right)_{\varepsilon} \in W_{g}^{1, p}\left(T_{\varepsilon}\right)$ such that : $\sup _{\varepsilon} \int_{T_{\varepsilon}}\left|\nabla v_{\varepsilon}\right|^{P} d x<+\infty$ and $\int_{\Omega} \phi v_{\varepsilon} d \mu_{\varepsilon} \rightarrow \int_{\Omega} \varphi v d x \forall \varphi \in C_{0}(\Omega)$.
Then $v, \partial_{3} v \in L^{p}(\Omega)$, and $v=g$ on $\Gamma$.
Proof. We use here Lemma $A_{3}$ of [1]. Let us notice that by Hölder's inequality we have :

$$
\int_{\Omega}\left|\frac{\partial v_{\epsilon}}{\partial x_{3}}\right| d \mu_{\epsilon} \leq\left(\mu_{\epsilon}(\Omega)\right)^{\frac{1}{q}}\left\{\int_{\Omega}\left|\frac{\partial v_{\epsilon}}{\partial x_{3}}\right|^{p} d \mu_{\epsilon}\right\}^{\frac{1}{p}}
$$

Since $\mu_{\varepsilon}(\Omega)=\frac{|\Omega|}{\left|T_{\varepsilon}\right|}\left|T_{\varepsilon}\right|=|\Omega|$, we have $\int_{\Omega}\left|\frac{\partial v_{\varepsilon}}{\partial x_{3}}\right| d \mu_{\varepsilon} \leq|\Omega|\left\|\frac{\partial v_{\varepsilon}}{\partial x_{3}}\right\|_{L^{p}(\Omega)}<+\infty$.

The sequence $\left(\frac{\partial v_{\varepsilon}}{\partial x_{3}} \mu_{\varepsilon}\right)$ is thus uniformly bounded in variations, hence *-weakly relatively compact. Thus, possibly passing to a subsequence, we can assume that, up to some subsequence, $\frac{\partial v_{\varepsilon}}{\partial x_{3}} \mu_{\varepsilon} \rightarrow w \mathbb{L}_{\Omega} d x$ weakly in the sense of measure. Let $\varphi \in C^{1}(\bar{\Omega})$. Then with $x^{\prime}=\left(x_{1}, x_{2}\right)$, we have

$$
\begin{equation*}
\int_{\Omega} \varphi \frac{\partial v_{\varepsilon}}{\partial x_{3}} d \mu_{\varepsilon}=-\int_{\Omega} v_{\varepsilon} \frac{\partial \varphi}{\partial x_{3}} d \mu_{\varepsilon}+\frac{|w|}{R \pi^{2}} \int_{D_{\varepsilon}}\left\{\varphi\left(x^{\prime}, L\right) v_{\varepsilon}\left(x^{\prime}, L\right)-\varphi\left(x^{\prime}, 0\right) v_{\varepsilon}\left(x^{\prime}, 0\right)\right\} d x^{\prime} . \tag{*}
\end{equation*}
$$

Let us take now $\varphi \in C_{0}^{\infty}(\Omega)$ in (*). Then

$$
\int_{\Omega} \varphi w d x=\int_{\Omega} v \frac{\partial \varphi}{\partial x_{3}} d x
$$

Thus $w=\frac{\partial v}{\partial x_{3}}$ in the sense of distribution. By Fenchel's inequality we have, for every $\varphi \in C_{0}(\Omega)$,

$$
\lim \inf _{\varepsilon \rightarrow 0}\left\{\int_{\Omega} \frac{\partial v_{\varepsilon}}{\partial x_{3}} \varphi d \mu_{\varepsilon}-\frac{1}{q} \int_{\Omega}|\varphi|^{q} d \mu_{\varepsilon}\right\} \leq \lim \inf _{\varepsilon \rightarrow 0} \frac{1}{p} \int_{\Omega}\left|\frac{\partial v_{\varepsilon}}{\partial x_{3}}\right|^{p} d \mu_{\varepsilon}<+\infty
$$

From which we deduce that $\sup \left\{\int_{\Omega} w \varphi d x ;\|\varphi\|_{L^{q}(\Omega)} \leq 1\right\}<+\infty$. Thus, according to Riesz representation Theorem, $w \in$ $L^{p}(\Omega)$. Repeating the same argument, we prove that

$$
v_{i} \in L^{p}(\Omega), i=1,2,3
$$

Let $\varphi$ such that $\varphi(x)=\theta\left(x^{\prime}\right) \psi\left(x_{3}\right)$, where $\psi \in C^{1}([0, L]) ; \psi(0)=1, \psi(L)=0$, and $\theta \in C_{0}^{\infty}\left(G_{0}\right)$ with $G_{0}=\left\{x^{\prime} \in \omega ;\left(x^{\prime}, 0\right) \in\right.$ $\left.\omega_{0}\right\}$. As $v_{\varepsilon}\left(x^{\prime}, 0\right)=g\left(x^{\prime}, 0\right)$ in $G_{0}$, one has, passing to the limit in $\left({ }^{*}\right)$

$$
\int_{\Omega} \varphi \frac{\partial v}{\partial x_{3}} d x+\int_{\Omega} v \frac{\partial \varphi}{\partial x_{3}} d x=\lim _{\varepsilon \rightarrow 0} \frac{|w|}{R \pi^{2}} \int_{D_{\varepsilon}}-\left(\theta\left(x^{\prime}\right) v_{\varepsilon}\left(x^{\prime}, 0\right) d x^{\prime}=-\int_{\omega}-\left(\theta\left(x^{\prime}\right) g\left(x^{\prime}, 0\right) d x^{\prime}\right.\right.
$$

On the other hand thanks of the first assertion of Lemma 2.3, we have, using Green's formula, $\int_{\Omega} \varphi \frac{\partial v}{\partial x_{3}} d x=-\int_{\Omega} v \frac{\partial \varphi}{\partial x_{3}} d x-$ $\int_{\omega}\left(\theta\left(x^{\prime}\right) v\left(x^{\prime}, 0\right) d x^{\prime}\right.$, from which we deduce that $\int_{\omega}\left(\theta\left(x^{\prime}\right) v\left(x^{\prime}, 0\right) d x^{\prime}=\int_{\omega}\left(\theta\left(x^{\prime}\right) g\left(x^{\prime}, 0\right) d x^{\prime} \forall \theta \in C_{0}^{\infty}\left(G_{0}\right)\right.\right.$.
This implies that $v=g p . p \omega_{0}$. Similarly, with $\psi(L)=1, \psi(0)=0$ and $\theta \in C_{0}^{\infty}\left(G_{L}\right)$ with

$$
G_{L}=\left\{x^{\prime} \in \omega ;\left(x^{\prime}, L\right) \in \omega_{L}\right\}
$$

we get $v=g p . p \omega_{L}$.
Lemma 2.4. Let $\left(u_{\varepsilon}, v_{\varepsilon}\right) \in W_{g}^{1, p}\left(\Omega_{\varepsilon}\right) \times W_{g}^{1, p}\left(T_{\varepsilon}\right)$. Then $\sup _{\varepsilon} \int_{\Omega}\left|u_{\varepsilon}-v_{\varepsilon}\right|^{p} d \nu_{\varepsilon}<+\infty$.

Proof. Let $u \in W^{1, p}\left(Y^{\#} \times\right] 0, L[)$ such that $u\left(\cdot, x_{3}\right)$ is $Y$-periodic. Let $v \in W^{1, p}(T) ; v\left(\cdot, x_{3}\right) Y$-periodic. By the trace Theorem

$$
\int_{\Sigma}|u|^{p} d s \leq C\left\{\int_{0}^{L} \int_{Y}|u|^{p} d y+\int_{0}^{L} \int_{Y}|\nabla u|^{p} d y\right\}
$$

Introducing the change of variables $x^{\prime}=\varepsilon y^{\prime}, x_{3}=y_{3}$ et $s_{3}=\varepsilon s$, we get

$$
\int_{\Sigma_{\varepsilon}^{k}}|u|^{p} d s_{\varepsilon} \leq C\left\{\frac{1}{\varepsilon} \int_{0}^{L} \int_{Y_{\varepsilon}^{\# k}}|u|^{p} d x+\varepsilon^{p-1} \int_{0}^{L} \int_{Y_{\varepsilon}^{\# k}}\left\{\left|\frac{\partial u}{\partial x_{1}}\right|^{p}+\left|\frac{\partial u}{\partial x_{2}}\right|^{p}\right\} d x+\frac{1}{\varepsilon} \int_{0}^{L} \int_{Y_{\varepsilon}^{\# k}}\left|\frac{\partial u}{\partial x_{3}}\right|^{p} d x\right\}
$$

Then summing over $k \in I_{\varepsilon}$, we obtain that: $\int_{\Sigma_{\varepsilon}}|u|^{p} d s_{\varepsilon} \leq \frac{C}{\varepsilon}\|u\|_{W^{1, p}(\Omega)}^{p}$ and, in the same way, $\int_{\Sigma_{\varepsilon}}|v|^{p} d s_{\varepsilon} \leq \frac{C^{\prime}}{\varepsilon}\|v\|_{W^{1, p}\left(T_{\varepsilon}\right)}^{p}$. Multiplying these inequalities by $\frac{\varepsilon}{2 \pi R}$ we get, $\int_{\Omega}\left|v_{\varepsilon}\right|^{p} d \nu_{\varepsilon} \leq C^{\prime}\|v\|_{W^{1, p}\left(T_{\varepsilon}\right)}^{p}$, and $\int_{\Omega}|u|^{p} d \nu_{\varepsilon} \leq C\|v\|_{W^{1, p}(\Omega)}^{p}$. Thus, using a convexity argument, we obtain that: $\int_{\Omega}\left|u_{\varepsilon}-v_{\varepsilon}\right|^{p} d \nu_{\varepsilon}<+\infty$.

## 3. Convergence

We suppose here that $\gamma=\lim \frac{\lambda}{\varepsilon} \in(0,+\infty)$. We define the functional $F^{g}$ on $W_{g}^{1, p}(\Omega) \times L^{p}(\Omega)$ by

$$
F^{g}(u, v)= \begin{cases}\int_{\Omega} j_{p}^{h o m}(\nabla u(x)) d x+\frac{|T|}{\lambda} \int_{\Omega}\left|\frac{\partial v}{\partial x_{3}}\right|^{p} d x++2 \pi R \gamma \int_{\Omega}|u-v|^{p} d x & \text { if }(u, v) \in W_{g}^{1, p}(\Omega) \times L^{p}\left(\omega, W_{g}^{1, p}(0, L)\right) \\ +\infty & \text { elsewhere }\end{cases}
$$

where $j_{p}^{\text {hom }}(Z)$ is defined for $Z \in I R^{3}$ by :

$$
j_{p}^{\text {hom }}(Z)=\min \left\{\int_{Y \#}|Z+\nabla w|^{p} d y, w \in W^{1, p}\left(Y^{\#}\right), \quad \text { w is Y-periodic }\right\}
$$

for $p=2$,

$$
j_{2}^{\text {hom }}(Z)=\left|z_{3}\right|^{2}+\min \left\{\int_{Y \#}|z+\nabla w|^{2} d y, w \in W^{1, p}\left(Y^{\#}\right), \text { w is Y-periodic }\right\}
$$

where $z=\left(z_{1}, z_{2}\right)$. In this case we have

$$
\int_{\Omega} j_{2}^{h o m}(\nabla u) d x=\int_{\Omega}\left|\frac{\partial u}{\partial x_{3}}\right|^{2} d x+\int_{\Omega} j_{0,2}^{h o m}\left(\nabla_{x^{\prime}} u\right) d x
$$

with $\nabla_{x^{\prime}} u=\left(\frac{\partial u}{\partial x_{1}}, \frac{\partial u}{\partial x_{2}}, 0\right)$. For $z \in I R^{2}$ we have

$$
j_{0,2}^{h o m}(z)=\min \left\{\int_{Y \#}|z+\nabla w|^{2} d y, w \in H^{1}\left(Y^{\#}\right), \text { w Y-periodic }\right\} .
$$

Our main result in this section reads as follows:

Theorem 3.1. If $\gamma \in(0,+\infty)$ then
(i) For every $(u, v) \in W_{g}^{1, p} \times L^{p}\left(\omega, W_{g}^{1, p}(0, L)\right)$, there exists $\left(u_{\varepsilon}, v_{\varepsilon}\right) \in W_{g}^{1, p}\left(\Omega_{\varepsilon}\right) \times W_{g}^{1, p}\left(T_{\varepsilon}\right)$, such that $\left(u_{\varepsilon}, v_{\varepsilon}\right)_{\varepsilon} \tau-$ converges to $(u, v)$ and $F^{g}(u, v) \geq \lim \sup _{\varepsilon \rightarrow 0} F_{\varepsilon}^{g}\left(u_{\varepsilon}, v_{\varepsilon}\right)$.
(ii) For every $\left(u_{\varepsilon}, v_{\varepsilon}\right) \in W_{g}^{1, p}\left(\Omega_{\varepsilon}\right) \times W_{g}^{1, p}\left(T_{\varepsilon}\right)$, such that $\left(u_{\varepsilon}, v_{\varepsilon}\right)_{\varepsilon} \tau$-converges to $(u, v)$, we have $(u, v) \in W_{g}^{1, p} \times$ $L^{p}\left(\omega, W_{g}^{1, p}(0, L)\right)$, and $F^{g}(u, v) \leq \lim \inf _{\varepsilon \rightarrow 0} F_{\varepsilon}^{g}\left(u_{\varepsilon}, v_{\varepsilon}\right)$.

Proof. 1. The limit sup inequality : Let $z \in I R^{3}$. We define the following functional

$$
F_{Z}: \begin{cases}W^{1, p}\left(Y^{\#}\right) & \rightarrow \overline{I R_{+}} \\ w & \rightarrow \int_{Y \#}|z+\nabla w|^{p} d y\end{cases}
$$

and consider the following minimisation problem: $\left(P_{z}\right) \min \left\{F_{z}(w), w \in W^{1, p}\left(Y^{\#}\right)\right.$, w is Y-periodic $\}$. It can easily checked that $\left(P_{z}\right)$ have a unique solution $w_{z} \in W^{1, p}\left(Y^{\#}\right)$, which can be extended to $W^{1, p}(Y)$ keeping the same notation. We then define the function $w_{z}^{\varepsilon}$ through : $w_{z}^{\varepsilon}(x)=w_{z}\left(\frac{x_{1}}{\varepsilon}, \frac{x_{2}}{\varepsilon}\right)$.

We have the following intermediate result.

Lemma 3.2. $\varepsilon w_{z}^{\varepsilon} \rightarrow_{\varepsilon \rightarrow 0} 0$ in $W^{1, p}(\Omega)-$ weak.
Proof. Observe that

$$
\int_{\Omega}\left|\varepsilon w_{z}^{\varepsilon}\left(x^{\prime}\right)\right|^{p} d x=L \int_{\omega}\left|\varepsilon w_{z}^{\varepsilon}\left(x^{\prime}\right)\right|^{p} d x^{\prime} \leq L C \sum_{k \in I_{\varepsilon}} \varepsilon^{p+2} \int_{Y \#}\left|w_{z}(y)\right|^{p} d y L C \leq L C|\omega| \varepsilon^{p} .
$$

Thus, $w_{z}^{\varepsilon} \rightarrow_{\varepsilon \rightarrow 0} 0$ in $L^{p}(\Omega)-$ strong. On the other hand

$$
\int_{\Omega}\left|\varepsilon \nabla w_{z}^{\varepsilon}\right|^{p} d x \leq C^{\prime} L \varepsilon^{p} \sum_{k \in I_{\varepsilon}} \varepsilon^{p+2} \int_{Y_{\varepsilon}^{k}}\left|\nabla w_{z}\left(\frac{x_{1}}{\varepsilon}, \frac{x_{2}}{\varepsilon}\right)\right|^{p} d x^{\prime} \leq L C^{\prime \prime}|\omega| \int_{Y \#}\left|\nabla w_{z}(y)\right|^{p} d y .
$$

This implies that the sequence $\left(\nabla\left(\varepsilon w_{z}^{\varepsilon}\right)\right)$ is bounded in $L^{p}\left(\omega, I R^{2}\right)$. Combining with the above $L^{p}(\Omega)-$ strong convergence to 0 of the sequence $\left(\varepsilon w_{z}^{\varepsilon}\right)$, we get $\varepsilon w_{z}^{\varepsilon} \rightarrow_{\varepsilon \rightarrow 0} 0$ in $W^{1, p}(\Omega)$-weak. Let us define $u(x)=z \cdot x+c$, where c is a constant and $z \in I R^{3}$. We define the test-function $u_{\varepsilon}^{0}$ by:

$$
\begin{equation*}
u_{\varepsilon}^{0}(x)=u(x)+\varepsilon w_{z}^{\varepsilon}\left(x^{\prime}\right) \tag{*}
\end{equation*}
$$

Then, using Lemma 3.2, $u_{\varepsilon}^{0} \rightarrow u$ in $W^{1, p}(\Omega)$-weak and

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left|\nabla u_{\varepsilon}^{0}(x)\right|^{p} d x & =\lim _{\varepsilon \rightarrow 0} \sum_{k \in I_{\varepsilon}} L \int_{Y_{\varepsilon}^{\# k}}\left|z+\varepsilon \nabla w_{z}^{\varepsilon}\left(x^{\prime}\right)\right|^{p} d x^{\prime} \\
& =L \lim _{\varepsilon \rightarrow 0} \sum_{k \in I_{\varepsilon}} \varepsilon^{2} \int_{Y \#}\left|z+\nabla w_{z}(y)\right|^{p} d y \\
& =|\Omega| \int_{Y \#}\left|z+\nabla w_{z}(y)\right|^{p} d y \\
& =\int_{\Omega} j_{p}^{h o m}(\nabla u(x)) d x
\end{aligned}
$$

where $j_{p}^{h o m}(z)=\min \left\{\int_{Y \#}|z+\nabla w|^{p} d y, w \in W^{1, p}\left(Y^{\#}\right)\right.$, w Y-periodic $\}$. Let us now consider $u \in w^{1, p}(\Omega)$. Then, according to [13], there exists a sequence of piecewise affine functions $\left(u_{n}\right)$, such that $u_{n} \rightarrow_{n \rightarrow \infty} u$ in $W^{1, p}(\Omega)-$ strong. The sequence $\left(u_{n}\right)$ is define on a partition $\left(\Omega_{n}\right)$ of $\Omega$ by $u_{n}(x)=z_{n} \cdot x+c_{n}$, where $z_{n} \in I R^{3}$ and $c_{n} \in I R, \forall n$. We then build the associated test-functions through

$$
u_{\varepsilon}^{0, n}(x)=u_{n}(x)+\varepsilon w_{z_{n}}^{\varepsilon}\left(x^{\prime}\right) .
$$

Then $u_{\varepsilon}^{0, n} \rightarrow_{\varepsilon \rightarrow 0} u^{n}$ in $W^{1, p}(\Omega)$-weak and

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left|\nabla u_{\varepsilon}^{0, n}(x)\right|^{p} d x & =\lim _{\varepsilon \rightarrow 0} \sum_{n} \int_{\Omega_{n}}\left|z_{n}+\varepsilon \nabla w_{z_{n}}^{\varepsilon}(x)\right|^{p} d x \\
& =\sum_{n} \lim _{\varepsilon \rightarrow 0} \sum_{k \in I_{\varepsilon}^{n}} \int_{Y_{\varepsilon}^{\# k}}\left|z_{n}+\varepsilon \nabla w_{z_{n}}^{\varepsilon}\left(x^{\prime}\right)\right|^{p} d x^{\prime} \\
& =\sum_{n}\left|\Omega_{n}\right| \int_{Y \#}\left|z_{n}+\nabla w_{z_{n}}(y)\right|^{p} d y \\
& =\sum_{n} \int_{\Omega_{n}} j_{p}^{h o m}\left(z_{n}\right) d x \\
& =\int_{\Omega} j_{p}^{h o m}\left(\nabla u_{n}\right) d x .
\end{aligned}
$$

Using the continuity of $j_{p}^{h o m}$ we get $\lim _{n \rightarrow \infty} \int_{\Omega} j_{p}^{h o m}\left(\nabla u_{n}\right) d x=\int_{\Omega} j_{p}^{h o m}(\nabla u) d x$. Then, using the diagonalization argument of [3], there exists a sequence $n(\varepsilon) \rightarrow_{\varepsilon \rightarrow 0}+\infty$, such that, with $u_{\varepsilon}=u_{\varepsilon}^{0, n(\varepsilon)}, u_{\varepsilon} \rightarrow_{\varepsilon \rightarrow 0} u$ in $W^{1, p}(\Omega)-$ weak, and $\lim \sup _{\varepsilon \rightarrow 0} \int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{p} d x \leq \int_{\Omega} j_{p}^{h o m}(\nabla u) d x$.
Let $v$ be a Lipschitzian continuous function on $\Omega$, such that $v=g$ on $\Gamma$. We define $v_{\varepsilon}^{\#}=\sum_{k \in I_{\varepsilon}} v\left(k_{1} \varepsilon, k_{2} \varepsilon, x_{3}\right) l_{Y_{\varepsilon}^{k}}\left(x^{\prime}\right)$. Then $v_{\varepsilon}^{\#}$ is a piecewise affine function with respect to $x^{\prime}$. Let $E_{\varepsilon}=\{x \in \Omega ; d(x, \Gamma)<\varepsilon\}$ and $\varphi_{\varepsilon}$ a smooth function such that: $\varphi_{\varepsilon}=1$ on $\Gamma, \varphi_{\varepsilon}=0$ in $\Omega \backslash \bar{E}_{\varepsilon}$ and $\left|\nabla \varphi_{\varepsilon}\right| \leq \frac{C}{\varepsilon}$. We then define the following test-function in the fibres $v_{\varepsilon}^{0}=\left(1-\varphi_{\varepsilon}\right) v_{\varepsilon}^{\#}+\varphi_{\varepsilon} v$ . One can see that $v_{\varepsilon}^{0} \in W_{g}^{1, p}\left(T_{\varepsilon}\right)$ and, after some computations,

$$
\int_{\Omega} \varphi v_{\varepsilon}^{0} d \mu_{\varepsilon} \rightarrow_{\varepsilon \rightarrow 0} \int_{\Omega} \varphi v d x, \quad \forall \varphi \in C_{0}(\Omega) .
$$

Besides $\int_{T_{\varepsilon}}\left|\nabla v_{\varepsilon}^{0}\right|^{p} d x=\int_{T_{\varepsilon} \backslash E_{\varepsilon}}\left|\nabla v_{\varepsilon}^{\#}\right|^{p} d x+\int_{T_{\varepsilon} \cap E_{\varepsilon}}\left|\nabla v_{\varepsilon}^{\#}+\varphi_{\varepsilon} \nabla\left(v_{\varepsilon}^{\#}-v\right)+\left(v_{\varepsilon}^{\#}-v\right) \nabla \varphi_{\varepsilon}\right|^{p} d x$. We have the following estimate for the second right term:
$\int_{T_{\varepsilon} \cap E_{\varepsilon}}\left|\nabla v_{\varepsilon}^{\#}+\varphi_{\varepsilon} \nabla\left(v_{\varepsilon}^{\#}-v\right)+\left(v_{\varepsilon}^{\#}-v\right) \nabla \varphi_{\varepsilon}\right|^{p} d x \leq C\left\{\int_{T_{\varepsilon} \cap E_{\varepsilon}}\left|\nabla v_{\varepsilon}^{\#}\right|^{p} d x+\int_{T_{\varepsilon} \cap E_{\varepsilon}}\left|\nabla\left(v_{\varepsilon}^{\#}-v\right)\right|^{p} d x+\frac{1}{\varepsilon^{p}} \int_{T_{\varepsilon} \cap E_{\varepsilon}}\left|\left(v_{\varepsilon}^{\#}-v\right)\right|^{p} d x\right\}$ As $\left|v_{\varepsilon}^{\#}-v\right| \leq C \varepsilon$ in $T_{\varepsilon} \cap E_{\varepsilon}$, we get $\left.\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{p}} \int_{T_{\varepsilon} \cap E_{\varepsilon}}\left|\left(v_{\varepsilon}^{\#}-v\right)\right|\right)^{p} d x=0$. Observing that

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} \int_{T_{\varepsilon} \backslash \bar{E}_{\varepsilon}}\left|\nabla v_{\varepsilon}^{\#}\right|^{p} d x & =\lim _{\varepsilon \rightarrow 0} \sum_{k \in I_{\varepsilon}} \int_{T_{\varepsilon} \backslash \bar{E}_{\varepsilon}}\left|\frac{\partial v}{\partial x_{3}}\left(k_{1} \varepsilon, k_{2} \varepsilon, x_{3}\right)\right|^{p} d x_{3} \\
& =\frac{|T|}{L} \lim _{\varepsilon \rightarrow 0} \sum_{k \in I_{\varepsilon}} \varepsilon^{2} \int_{\varepsilon}^{L-\varepsilon}\left|\frac{\partial v}{\partial x_{3}}\left(k_{1} \varepsilon, k_{2} \varepsilon, x_{3}\right)\right|^{p} d x_{3} \\
& =\frac{|T|}{L} \int_{\Omega}\left|\frac{\partial v}{\partial x_{3}}(x)\right|^{p} d x
\end{aligned}
$$

and

$$
\lim _{\varepsilon \rightarrow 0} \int_{T_{\varepsilon} \cap E_{\varepsilon}}\left|\nabla v_{\varepsilon}^{\#}\right|^{p} d x=\lim _{\varepsilon \rightarrow 0} \int_{T_{\varepsilon} \cap E_{\varepsilon}}\left|\nabla\left(v_{\varepsilon}^{\#}-v\right)\right|^{p} d x=0
$$

We thus obtain that

$$
\lim _{\varepsilon \rightarrow 0} \int_{T_{\varepsilon}}\left|\nabla v_{\varepsilon}^{0}\right|^{p} d x=\frac{|T|}{L} \int_{\Omega}\left|\frac{\partial v}{\partial x_{3}}\right|^{p} d x
$$

Now, taking a sequence of the Lipschitzian continuous functions $\left(v_{n}\right)$ such that $v_{n}=g$ on $\Gamma$ and $v_{n} \rightarrow v$ in $L^{p}\left(\omega, W^{1, p}(0, L)\right)$-strong, we build, as before a sequence of functions $\left(v_{\varepsilon}^{\# n}\right)$ :

$$
v_{\varepsilon}^{\# n}=\sum_{k \in I_{\varepsilon}} v_{n}\left(k_{1} \varepsilon, k_{2} \varepsilon, x_{3}\right) l_{Y_{\varepsilon}^{k}}
$$

and define the sequence of test-functions $\left(v_{\varepsilon}^{0, n}\right) ; v_{\varepsilon}^{0, n}=\left(1-\varphi_{\varepsilon}\right) v_{\varepsilon}^{\#}+\varphi_{\varepsilon} v_{n}$. Then, for every $\varphi \in C_{0}(\Omega)$,

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega} \varphi v_{\varepsilon}^{0, n} d \mu_{\varepsilon} & =\int_{\Omega} \varphi v_{n} d x, \\
\lim _{\varepsilon \rightarrow 0} \int_{T_{\varepsilon}}\left|\nabla v_{\varepsilon}^{0, n}\right|^{p} d x & =\int_{\Omega}\left|\frac{\partial v_{n}}{\partial x_{3}}\right|^{p} d x \text { and } \\
\lim _{n \rightarrow+\infty} \int_{\Omega}\left|\frac{\partial v_{n}}{\partial x_{3}}\right|^{p} d x & =\int_{\Omega}\left|\frac{\partial v}{\partial x_{3}}\right|^{p} d x .
\end{aligned}
$$

Thus, using the diagonalization argument of [3], there exists a sequence ( $v_{\varepsilon}$ ), such that $\int_{\Omega} \varphi v_{\varepsilon} d \mu_{\varepsilon} \rightarrow_{\varepsilon \rightarrow 0} \int_{\Omega} \varphi v d x \forall \varphi \in$ $C_{0}(\Omega)$, and

$$
\lim \sup _{\varepsilon \rightarrow 0} \int_{T_{\varepsilon}}\left|\nabla v_{\varepsilon}\right|^{p} d x \leq \int_{\Omega}\left|\frac{\partial v}{\partial x_{3}}\right|^{p} d x .
$$

Let ( $u_{\varepsilon}^{0, n}$ ) and ( $\left(v_{\varepsilon}^{0, n}\right)$ be the sequences previously built. Let us compute the limit

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left|u_{\varepsilon}^{0, n}-v_{\varepsilon}^{0, n}\right|^{p} d \nu_{\varepsilon}
$$

We first have

$$
\begin{aligned}
\sum_{n} \int_{\Omega_{n}}\left|\varepsilon \nabla w_{z_{n}}^{\varepsilon}\right|^{p} d \nu_{\varepsilon} & =\sum_{n} L_{n} \sum_{k \in I_{\varepsilon}^{n}} \varepsilon^{p+1} \int_{\partial D_{\varepsilon}^{k}}\left|w_{z_{n}}\left(\frac{s_{\varepsilon}}{\varepsilon}\right)\right|^{p} \frac{d s_{\varepsilon}}{2 \pi R} \\
& \leq C \sum_{n}\left|\omega_{n}\right| L_{n}\left\|w_{z_{n}}\right\|_{W^{1, p}(Y \#)} \varepsilon^{p},
\end{aligned}
$$

where $L_{n}$ is the length of the set $\left\{\left(0, x_{3}\right) \in \Omega_{n}\right\}$. Observing that $\sum_{n} L_{n}\left\|w_{z_{n}}\right\|_{W^{1, p}\left(Y^{\#}\right)} \leq C|\Omega|$, we get $\lim _{\varepsilon \rightarrow 0} \sum_{n} \int_{\Omega_{n}}\left|\varepsilon \nabla w_{z_{n}}^{\varepsilon}\right|^{p} d \nu_{\varepsilon}=0$. Since $v_{\varepsilon} \rightarrow_{\varepsilon \rightarrow 0} d x \mathbb{L}_{\Omega}$, we have

$$
\int_{\Omega}\left|u_{n}\right|^{p} d \nu_{\varepsilon} \rightarrow_{\varepsilon \rightarrow 0} \int_{\Omega}\left|u_{n}\right|^{p} d x
$$

Thus $\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left|u_{\varepsilon}^{0, n}\right|^{p} d \nu_{\varepsilon}=\int_{\Omega}\left|u_{n}(x)\right|^{p} d x$. On the other hand

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left|v_{\varepsilon}^{0, n}\right|^{p} d \nu_{\varepsilon} & =\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \pi R} \sum_{k \in I_{\varepsilon}} \varepsilon \int_{\partial T_{\varepsilon}^{k}}\left|v_{n}\left(k_{1} \varepsilon, k_{2} \varepsilon, x_{3}\right)\right|^{p} d x_{3} \\
& =\lim _{\varepsilon \rightarrow 0} \int_{0}^{L} \sum_{k ? I_{\varepsilon}} \varepsilon^{2}\left|v_{n}\left(k_{1} \varepsilon, k_{2} \varepsilon, x_{3}\right)\right|^{p} d x_{3} \\
& =\int_{\Omega}\left|v_{n}(x)\right|^{p} d x .
\end{aligned}
$$

Thus, using the uniform convexity property of $L^{p}(\Omega) p>1$ ), we have

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left|u_{\varepsilon}^{0, n}-v_{\varepsilon}^{0, n}\right|^{p} d \nu_{\varepsilon}=\int_{\Omega}\left|u_{n}-v_{n}\right|^{p} d x
$$

and, since

$$
\lim _{n \rightarrow+\infty} \int_{\Omega}\left|u_{n}-v_{n}\right|^{p} d x=\int_{\Omega}|u-v|^{p} d x
$$

we get $\lim _{\varepsilon \rightarrow 0} \sup \int_{\Omega}\left|u_{n}-v_{n}\right|^{p} d v_{\varepsilon} \leq \int_{\Omega}|u-v|^{p} d x$, where $\left(u_{\varepsilon}\right)$ and $\left(v_{\varepsilon}\right)$ are the sequences obtained previously by diagonalisation. We thus proved that, for every $(u, v) \in W_{g}^{1, p} \times L^{p}\left(\omega, W_{g}^{1, p}(0, L)\right)$, there exists $\left(u_{\varepsilon}, v_{\varepsilon}\right) \in W_{g}^{1, p}\left(\Omega_{\varepsilon}\right) \times W_{g}^{1, p}\left(T_{\varepsilon}\right)$, such that $\left(u_{\varepsilon}, v_{\varepsilon}\right)_{\varepsilon} \tau$-converges to $(u, v)$ and

$$
F^{g}(u, v) \geq \lim \sup _{\varepsilon \rightarrow 0} F_{\varepsilon}^{g}\left(u_{\varepsilon}, v_{\varepsilon}\right)
$$

## 2. The limit inf inequality:

Let $\left(u_{\varepsilon}, v_{\varepsilon}\right) \in W^{1, p}\left(\Omega_{\varepsilon}\right) \times W_{g}^{1, p}\left(T_{\varepsilon}\right)$ such that $\left(u_{\varepsilon}, v_{\varepsilon}\right) \tau-$ converge to $(u, v)$. We may suppose that $\sup F_{\varepsilon}\left(u_{\varepsilon}, v_{\varepsilon}\right)<+\infty$, otherwise the result is trivial.

Let ( $u_{\varepsilon}^{0, n}$ ); $u_{\varepsilon}^{0, n}=u_{n}+\varepsilon w_{z_{n}}^{\varepsilon}$, be the sequence previously built in (*), with here $u_{n} \rightarrow_{n \rightarrow \infty} u W^{1, p}(\Omega)-$ strong and $z_{n}=\nabla u_{n}$ in $\Omega_{n}$. Let $\varphi_{n} \in C_{0}^{\infty}\left(\Omega_{n}\right) ; 0 \leq \varphi_{n} \leq 1$. Let us introduce the following sub differential inequality

$$
\begin{aligned}
\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{p} d x & \geq \sum_{n} \int_{\Omega_{n}}\left|\nabla u_{\varepsilon}\right|^{p} \varphi_{n} d x \\
& \geq \sum_{n} \int_{\Omega_{n}}\left|\nabla u_{\varepsilon}^{0, n}\right|^{p} \varphi_{n} d x+p \sum_{n} \int_{\Omega_{n}}\left|\nabla u_{\varepsilon}^{0, n}\right|^{p-2} \nabla u_{\varepsilon}^{0, n}\left(\nabla u_{\varepsilon}-\nabla u_{\varepsilon}^{0, n}\right) \varphi_{n} d x .
\end{aligned}
$$

We have

$$
\begin{aligned}
\int_{\Omega_{n}}\left|\nabla u_{\varepsilon}^{0, n}\right|^{p-2} \nabla u_{\varepsilon}^{0, n}\left(\nabla u_{\varepsilon}-\nabla u_{\varepsilon}^{0, n}\right) \varphi_{n} d x & =-\int_{\Omega_{n}} \operatorname{div}\left(\left|\nabla u_{\varepsilon}^{0, n}\right|^{p-2} \nabla u_{\varepsilon}^{0, n}\right)\left(u_{\varepsilon}-u_{\varepsilon}^{0, n}\right) \varphi_{n} d x \\
& +\int_{\Omega_{n}}\left|\nabla u_{\varepsilon}^{0, n}\right|^{p-2} \nabla u_{\varepsilon}^{0, n} \nabla \varphi_{n}\left(u_{\varepsilon}-u_{\varepsilon}^{0, n}\right) d x .
\end{aligned}
$$

Observe that, for every $\psi_{n} \in C_{0}^{\infty}\left(\Omega_{n}\right)$,

$$
\begin{aligned}
-\int_{\Omega_{n}} \operatorname{div}\left(\left|\nabla u_{\varepsilon}^{0, n}\right|^{p-2} \nabla u_{\varepsilon}^{0, n}\right) \psi_{n} d x & =-\sum_{k \in I_{\varepsilon}^{n}} \int_{Y_{\varepsilon}^{\# k}} \operatorname{div}\left(\left|z_{n}+\varepsilon \nabla w_{z_{n}}\left(\frac{x^{\prime}}{\varepsilon}\right)\right|^{p-2}\left(z_{n}+\varepsilon \nabla w_{z_{n}}\left(\frac{x^{\prime}}{\varepsilon}\right)\right) \psi_{n} d x^{\prime}\right. \\
& =-\int_{\Omega_{n}\left(x_{3}\right)} \sum_{k \in I_{\varepsilon}^{n}} \varepsilon^{2} \psi_{n}\left(k_{1} \varepsilon, k_{2} \varepsilon, x_{3}\right) \int_{Y} \operatorname{div}\left(\left|z_{n}+\nabla w_{z_{n}}(y)\right|^{p-2}\right)\left(z_{n}+\nabla w_{z_{n}}(y)\right) d x^{\prime}+O_{n}(\varepsilon),
\end{aligned}
$$

where $\left.\Omega_{n}\left(x_{3}\right)=\Omega_{n} \cap(0,0) \times\right] 0, L\left[. \quad\right.$ As $\operatorname{div}\left(\left|z_{n}+\nabla w_{z_{n}}(y)\right|^{p-2}\right)\left(z_{n}+\nabla w_{z_{n}}(y)\right)=0$, we obtain that $\lim _{\varepsilon \rightarrow 0} \int_{\Omega_{n}} \operatorname{div}\left(\left|\nabla u_{\varepsilon}^{0, n}\right|^{p-2} \nabla u_{\varepsilon}^{0, n}\right) \psi_{n} d x=0$, hence, recalling that $\left(u_{\varepsilon}-u_{\varepsilon}^{0, n}\right) \varphi_{n} \rightarrow\left(u-u^{n}\right) \varphi_{n}$ dans $L^{p}\left(\Omega_{n}\right)-$ strong, we get

$$
\lim _{\varepsilon \rightarrow 0} \sum_{n} \int_{\Omega_{n}} \operatorname{div}\left(\left|\nabla u_{\varepsilon}^{0, n}\right|^{p-2} \nabla u_{\varepsilon}^{0, n}\right)\left(u_{\varepsilon}-u_{\varepsilon}^{0, n}\right) \varphi_{n} d x=0 .
$$

On the other hand

$$
\lim _{\varepsilon \rightarrow 0} \sum_{n} \int_{\Omega_{n}}\left|\nabla u_{\varepsilon}^{0, n}\right|^{p-2} \nabla u_{\varepsilon}^{0, n} \nabla \varphi_{n}\left(u_{\varepsilon}-u_{\varepsilon}^{0, n}\right) d x=\sum_{n} \int_{\Omega_{n}}\left|\nabla u^{n}\right|^{p-2} \nabla u^{n} \nabla \varphi_{n}\left(u-u^{n}\right) d x .
$$

Then letting n tend to $+\infty$ in the above sub differential inequality we get

$$
\lim \inf _{\varepsilon \rightarrow 0} \int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{p} d x \geq \int_{\Omega} j_{p}^{h o m}(\nabla u) d x .
$$

Observe that $\int_{T_{\varepsilon}}\left|\nabla v_{\varepsilon}\right|^{p} d x \geq \int_{T_{\varepsilon}}\left|\frac{\partial v_{\varepsilon}}{\partial x_{3}}\right|^{p} d x$. Then, using the proof of Lemma 2.3, we obtain that, for every $\varphi \in L^{q}(\Omega)$; $q=\frac{p}{p-1}$,

$$
\lim \inf _{\varepsilon \rightarrow 0} \int_{\Omega}\left|\frac{\partial v_{\varepsilon}}{\partial x_{3}}\right|^{p} d \mu_{\varepsilon} \geq p \int_{\Omega} \frac{\partial v}{\partial x_{3}} \varphi d x-\frac{p}{q} \int_{\Omega}|\varphi|^{q} d x, \text { and } v \in L^{p}\left(\omega, W_{g}^{1, p}(0, L)\right) .
$$

This implies that, with $\varphi=\left|\frac{\partial v}{\partial x_{3}}\right|^{p-2} \frac{\partial v}{\partial x_{3}}$,

$$
\lim \inf _{\varepsilon \rightarrow 0} \int_{T_{\varepsilon}}\left|\nabla v_{\varepsilon}\right|^{p} d x \geq \frac{|T|}{L} \int_{\Omega}\left|\frac{\partial v}{\partial x_{3}}\right|^{p} d x .
$$

Now according to Lemma 2.4, we have

$$
\sup _{\varepsilon} \int_{\Omega}\left|u_{\varepsilon}-v_{\varepsilon}\right|^{p} d \nu_{\varepsilon}<+\infty,
$$

From which we deduce, using Hölder's inequality, that the sequence $\left(\left(u_{\varepsilon}-v_{\varepsilon}\right) v_{\varepsilon}\right)$ is uniformly bounded in variation and thus, weakly converges, up to some subsequence, to some $\chi l_{\Omega} d x$ in the sense of measure. Then, using Fenchel's inequality, we have, for every $\varphi \in C_{0}(\Omega)$,

$$
\lim \inf _{\varepsilon \rightarrow 0} \int_{\Omega}\left|u_{\varepsilon}-v_{\varepsilon}\right|^{p} d v_{\varepsilon} \geq p \int_{\Omega} \chi \varphi d x-\frac{p}{q} \int_{\Omega}|\varphi|^{q} d x
$$

from which we deduce, using the proof of lemma1, that $\chi=u-v \in L^{p}(\Omega)$. Then taking $\varphi=|u-v|^{p-2}(u-v)$, we get

$$
\lim \inf _{\varepsilon \rightarrow 0} \int_{\Omega}\left|u_{\varepsilon}-v_{\varepsilon}\right|^{p} d v_{\varepsilon} \geq \int_{\Omega}|u-v|^{p} d x
$$

We thus have proved that for every $\left(u_{\varepsilon}, v_{\varepsilon}\right) \in W_{g}^{1, p}\left(\Omega_{\varepsilon}\right) \times W_{g}^{1, p}\left(T_{\varepsilon}\right)$, such that $\left(u_{\varepsilon}, v_{\varepsilon}\right)_{\varepsilon} \tau$-converges to ( $u$, v), we have $(u, v) \in W_{g}^{1, p} \times L^{p}\left(\omega, W_{g}^{1, p}(0, L)\right)$, and $F^{g}(u, v) \leq \liminf _{\varepsilon \rightarrow 0} F_{\varepsilon}^{g}\left(u_{\varepsilon}, v_{\varepsilon}\right)$. One can easily see that

$$
\begin{aligned}
& \chi\left(\Omega_{\varepsilon}\right) \rightarrow\left|Y^{\#}\right| \text { in } L^{p}(\Omega)-\text { weak } \\
& \chi\left(T_{\varepsilon}\right) \rightarrow|\Omega| R^{2} \pi \text { in } L^{1}(\Omega)-\text { strong }
\end{aligned}
$$

And, as $f \in C_{0}(\Omega)$,

$$
\begin{aligned}
\int_{\Omega} \chi\left(T_{\varepsilon}\right) f v_{\varepsilon} d x & =\frac{\left|T_{\varepsilon}\right|}{|\Omega|} \int_{\Omega} f v_{\varepsilon} d \mu_{\varepsilon} \\
& \rightarrow R^{2} \pi \int_{\Omega} f v d x
\end{aligned}
$$

Then, using the properties of $\Gamma$-convergence [4] we obtain the following

## Corollary 3.3.

(1) If $\gamma \in(0,+\infty)$ then : the solution $\left(u_{\varepsilon}, v_{\varepsilon}\right)$ of $\left(m_{\varepsilon}^{\lambda}\right) \tau$-converges to $(u, v) \in W_{g}^{1, p}(\Omega) \times L^{p}\left(\omega, W_{g}^{1, p}(0, L)\right)$ where ( $u, v$ ) is the solution of the following problem

$$
\begin{cases}-\operatorname{div}\left(\partial j_{p}^{h o m}(\nabla u)\right)+2 \pi R \gamma|u-v|^{p-2}(u-v)=\left|Y^{\#}\right| f & \text { in } \Omega, \\ -\frac{\partial}{\partial x_{3}}\left(\left|\frac{\partial v}{\partial x_{3}}\right|^{p-2} \frac{\partial v}{\partial x_{3}}\right)+\frac{2 \gamma}{R}|u-v|^{p-2}(v-u)=f & \text { in } \Omega, \\ u=v=g & \text { on } \Gamma, \\ \partial j_{p}^{h o m}(\nabla u) \cdot n=0 & \text { on } \partial \omega \times] 0, L[ \end{cases}
$$

(2) if $\gamma=0$, there is no relation between $u$ and $v$,
(3) if $\gamma=+\infty$, then $u=v$ in $\Omega$.

Representation of Deny-Beurling (case of $p=2$ and $g=0$ ): In this case for p.p $x^{\prime} \in w, v\left(x^{\prime}, \cdot\right)$ is the solution of the differential equation in $] 0, L[$ :

$$
\left(P_{w}\right)\left\{\begin{array}{l}
-w^{\prime \prime}+\frac{2 \gamma}{R} w=\frac{2 \gamma}{R} u\left(x^{\prime}, \cdot\right)+f\left(x^{\prime}, \cdot\right) \\
w(0)=w(L)=0
\end{array}\right.
$$

The solution of $\left(P_{w}\right)$ is given by:

$$
w(s)=\int_{0}^{L} G(s, t) u\left(x^{\prime}, t\right) d t+\frac{R}{2 \gamma} \int_{0}^{L} G(s, t) f\left(x^{\prime}, t\right) d t
$$

for $t \in] 0, L[$, the kernel Poisson $G(\cdot, t)$ is the solution of the equation:

$$
\begin{gathered}
\left(P_{y}\right)\left\{\begin{array}{l}
-y^{\prime \prime}+c^{2} \phi=c^{2} \delta_{t} \\
y(0)=y(L)=0
\end{array}\right. \\
c=\sqrt{\frac{2 \gamma}{R}} \\
G(s, t)=\frac{\operatorname{csh}(c(L-s \vee t) \operatorname{sh}(c(s \wedge t)}{\operatorname{sh}(c L)}
\end{gathered}
$$

by an integration by parts:

$$
\begin{aligned}
\int_{\Omega}\left|\frac{\partial v}{\partial x_{3}}\right|^{2} d x & =\int_{w}\left(\int_{0}^{L}\left|\frac{\partial v}{\partial x_{3}}\right|^{2} d x_{3}\right) d x^{\prime} \\
& =\int_{w}\left(\left[v \frac{\partial v}{\partial x_{3}}\right]_{0}^{L}-\int_{0}^{L} \frac{\partial^{2} v}{\partial x_{3}^{2}} v d x_{3}\right) d x^{\prime} \\
& =\frac{2 \gamma}{R} \int_{\Omega}\left[-v\left(x^{\prime}, s\right)^{2}+u\left(x^{\prime}, s\right) v\left(x^{\prime}, s\right)\right] d s d x^{\prime}+\int_{\Omega} f v d x \\
& =\frac{2 \gamma}{R} \int_{\Omega}\left(u v-v^{2}\right) d x+\int_{\Omega} f v d x
\end{aligned}
$$

then

$$
\pi R^{2} \int_{\Omega}\left|\frac{\partial v}{\partial x_{3}}\right|^{2} d x=2 \gamma \pi R \int_{\Omega}\left(u v-v^{2}\right) d x+\pi^{2} R \int_{\Omega} f v d x
$$

deferring in the total energy :

$$
\begin{aligned}
\varphi(u, v)= & F(u, v)-\left|Y^{\#}\right| \int_{\Omega} f u d x-\pi^{2} R \int_{\Omega} f v d x \\
= & \int_{\Omega} j_{2}^{h o m}(\nabla u(x)) d x-\left|Y^{\#}\right| \int_{\Omega} f u d x+2 \gamma \pi R \int_{\Omega} u^{2} d x-2 \gamma \pi R \int_{\Omega} u v d x \\
= & \int_{\Omega} j_{2}^{h o m}(\nabla u(x)) d x-\left|Y^{\#}\right| \int_{\Omega} f u d x+2 \gamma \pi R \int_{\Omega} u^{2} d x \\
& \quad-2 \gamma \pi R \int_{w}\left(\int_{(0, L)^{2}} u\left(x^{\prime}, s\right) u\left(x^{\prime}, t\right) G(s, t) d s d t\right) d x^{\prime}-\pi^{2} R \int_{w}\left(\int_{(0, L)^{2}} u(x, s) G(s, t) f\left(x^{\prime}, t\right) d s d t\right) d x^{\prime}
\end{aligned}
$$

however

$$
\begin{aligned}
2 \gamma \pi R \int_{\Omega} u^{2} d x-2 \gamma \pi R \int_{w}\left(\int_{(0, L)^{2}} u\left(x^{\prime}, s\right) u\left(x^{\prime}, t\right) G(s, t) d s d t\right) d x^{\prime}= & \gamma \pi R \int_{w}\left(\int_{(0, L)^{2}}\left(u\left(x^{\prime}, s\right)-u\left(x^{\prime}, t\right)\right)^{2} G(s, t) d s d t\right) d x^{\prime} \\
& \left.+2 \gamma \pi R \int_{w}\left(\int_{0}^{L}\left(u\left(x^{\prime}, s\right)\right)^{2}\left(1-\int_{0}^{L} G(s, t) d s\right) d s\right)\right) \\
= & 2 \gamma \pi R \int_{\Omega} u^{2} p\left(x_{3}\right) d x \\
& +\gamma \pi R \int_{w}\left(\int_{(0, L)^{2}}\left(u\left(x^{\prime}, s\right)-u\left(x^{\prime}, t\right)\right)^{2} G(s, t) d s d t\right) d x^{\prime}
\end{aligned}
$$

where $p(s)=\frac{\cosh \left(\sqrt{\frac{2 \gamma}{R}}\left(s-\frac{L}{2}\right)\right)}{\cosh \left(\sqrt{\frac{2 \gamma}{R}}\left(\frac{L}{2}\right)\right)}$. Let

$$
\left\{\begin{array}{l}
p_{\gamma, R}(s)=2 \pi \gamma R p(s) \\
k_{\gamma, R}(s, t)=\frac{\pi R \gamma \sqrt{\frac{2 \gamma}{R}}}{s h\left(\sqrt{\frac{2 \gamma}{R}} L\right)} s h\left(\sqrt{\frac{2 \gamma}{R}}(L-s \vee t)\right) s h\left(\sqrt{\frac{2 \gamma}{R}}(s \wedge t)\right)
\end{array}\right.
$$

We obtain

$$
\begin{aligned}
\phi(u, v)= & \int_{\Omega} j_{2}^{h o m}(\nabla u(x)) d x+\int_{\Omega} u^{2} p_{\gamma, R}\left(x_{3}\right) d x \\
& +\int_{w}\left(\int_{(0, L)^{2}}\left(u\left(x^{\prime}, s\right)-u\left(x^{\prime}, t\right)\right)^{2} G(s, t) k_{\gamma, R}(s, t) d s d t\right) d x^{\prime} \\
& -\int_{w}\left(\int_{(0, l)^{2}} u(x, s) f\left(x^{\prime}, t\right) k_{\gamma, R}(s, t) d s d t\right) d x^{\prime}-\left|Y^{\#}\right| \int_{\Gamma} f u d x
\end{aligned}
$$

let $\mu(d x)=p_{\gamma, R}\left(x_{3}\right) d x, J(d x d y)=\frac{1}{2} \Delta\left(d x^{\prime} d y^{\prime}\right) \otimes k_{\gamma, R}\left(x_{3}, y_{3}\right) d_{3} d y_{3}$, where $\Delta\left(d x^{\prime} d y^{\prime}\right)$ is the measure in $w^{2}$ defined by:

$$
\iint_{w^{2}} \phi\left(x^{\prime}, y^{\prime}\right) \Delta\left(d x^{\prime} d y^{\prime}\right)=\int_{w} \phi\left(x^{\prime}, x^{\prime}\right) d x^{\prime}
$$

and $v=\left(v_{i j}\right) \quad i, j=1,2,3$ the measure defined by:

$$
\begin{aligned}
v_{i j}(d x) & =a_{i j}^{h o m} d x \text { for } i, j=1,2 \text { où } \\
a_{i j}^{h o m} & =\int_{Y \#}\left\{\delta_{i j}-\sum_{k=1,2} \delta_{i k} \frac{\partial \chi^{j}}{\partial y_{k}}\right\} d y
\end{aligned}
$$

with $\chi^{j}$ is the solution of the problem $\min \left\{\int_{Y \#}\left|\nabla w+e_{j}\right|^{2} d x, w \in H^{1}\left(Y^{\#}\right), Y-\right.$ periodique $\}$, where $\left(e_{j}\right)_{j=1,2}$ the canonical base of $I R^{2}, v_{3,3}(d x)=d x$. Then

$$
\begin{gathered}
\phi(u, v)=\int_{\Omega} \frac{\partial u}{\partial x_{j}} \frac{\partial u}{\partial x_{j}} v_{i j}(d x)+\int_{\Omega}(u(x))^{2} \mu(d x)+\int_{\Omega \times \Omega}(u(x)-u(y))^{2} J(d x d y) \\
\quad-\iint_{\Omega \times \Omega} u(x) f(y) J(d x d y)-\left|Y^{\#}\right| \int_{\Omega} f(x) u(x) d x
\end{gathered}
$$

## References

[1] E.Acerbi, V.Chiado Piat, G.DalMaso and D.Percivale, An extension theorem from connexted sets and homogenization in general periodic domains, Non linear Analysis TMA, 8(5)(1992), 418-496.
[2] J.D.Achembach and H.Zhu, Effect of interfacial zone on mechanical behavior and failure of fibred-reinforced composites, J.Mech. Phw. Solids, 37(3)(1989), 381-393.
[3] R.Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Volumes I and II, Clarendon Press, Oxford, (1975).
[4] H.Attouch, Variational convergence for functions and operators, Appl. Math. Series Pitman, London, (1984).
[5] JL.Auriault and HI.Ene, Macroscopic modelling of heat transfer in composites with interfacial thermal barrier, International Journal of Heat and Mass transfer, 37(18)(1994), 2885-2892.
[6] G.I.Barenblat, V.M.Entov and V.M.Ryzhik, Motion of liquids and gases in natural layers, Nauka, Moscow, (in Rus.), (1984).
[7] M.Bellieud and G,Bouchitté, Homogenization of elliptic problems in a fiber reinforced structures, Non local effectz, Ann. Csi. Norm. Sup. Pisa, 4(26)(1998), 407-436.
[8] A.Brillard and M.El Jarroudi, Homogenization of a nonlinear elastic structures periodically reinforced along identical fibres of high rigidity, Nonlinear Anal : RWA, 8(2007), 295-311.
[9] G.Dal Maso, An introduction to $\Gamma$ - convergence, Birkhäuser, (1993).
[10] G.Dal Maso, An Introduction to $\Gamma$-Convergence, Progress in Nonlinear Differential Equations and their applications. Birkhäuser, Basel, (1993).
[11] M.El Jarroudi, Homogenization of a non linear elastic fibre-reinforced composite : A second gradient nonlniear elastic material, J.Math. Anal. Appl., 403(2013), 487-505.
[12] M.El Jarroudi and A.Brillard, Homogenization and optimal design of an elastic material reinforced by means of quasiperiodic fibres of higher rigidity, Math. Compt. Model., 47(2008), 27-46.
[13] I.Ekland and R.Témam, Convex Analysis and Variational Problems, (1987).
[14] M.Frémond, Equilibre des structures qui adhérent a leur support, C.R. Acad. Sc. Paris, 295( Série II)(1982), 913-916.
[15] M.Frémond, Adhérence des solides, J. Mécanique Théorique et Appliquée, 6(1987), 383-407.
[16] J.P.Jones and J.S.Whittier, Waves at a flexibly bounded interface, J. Appl. Mech., 34(1967), 905-909.
[17] E.Ya.Khruslov, Homogenized Models of composite Media, Birkhäuser, (1991), 159-182.
[18] U.Mosco, Composite media and Dirichlet forms, J.Funct.Anal., 123(1994), 368-421.
[19] JN.Pernin, Homogénéisation en milieux composites, d'Etat es Sciences Physiques, 264(1995).
[20] JN.Pernin, Diffusion in composite solid ; threshold phenomenon and homogeneization, International Jpurnal of Enginneering Scienve, 37(1999), 1597-1610.
[21] H.Samadi and M.Mabrouk, Homogenization of a composite medium with a thermal barrier, Math. Meth. Appl. Sci., $27(2004), 405-425$.
[22] A.Sili, Homogenization of an elastic medium reinforced by anisotropic fibres, Asymptot. Anal., 42(1-2)(2005), $133-177$.
[23] L.Tartar, Cours Pecot, college de France, (1977).


[^0]:    * E-mail: ha.samadi@gmail.com

