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1. Introduction

The nonlinear differential equation:
(=div(|Vul) = f,p>1), (1)

together with appropriate boundary conditions, describes a variety of physical phenomena. This equation appears in some
nonlinear diffusion problems [3] as well as in the nonlinear filtration theory of gases and liquids in cracked porous media (see

for instance [6]). This equation also occurs in plasticity problems involving a power-hardening stress-strain law given by
eij(u) = Mo(w)|" oy (u); i,j=1,2,3,
linking the stress tensor o to the strain tensor e(u) = (ei;(u))i,j=1,2,3, with
1 auz 8uj
eu(w) =3 <axj + ax,») :

through the Northon-Hoff law, where ¢ > 1 is the power-harderning parameter and A is a non-dimensional positive constant.

For a two-dimensional deformation plasticity under longitudinal shear, if u(z,y) represents the component of displacement

in the z direction, then the anti-plane stress component o153 and 23 are defined as:

0’13(u) = |Vu|p_18—u,
10
o13(u) = |[Vul|? la—z
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and equation (1) represents the equilibrium of a material under external loads of density f. The main purpose of this work
is to study of the homogenization of a composite material lying in a bounded domain Q C R3, which is built with a plastic
matrix in contact with plastic circular fibres. We consider a scalar version of a plasticity model obeying a Northon-Hoff’s

law. Let wa bounded open of TR? with lipschitzian continuous boundary dw.
Q =wx]0,L[,wo = w x {0},wr, =w x {L},T = wo X wr.

The unit cell Y =] — 3,—1[>, 0 < R < L, D(0, R) the disc of radius R centred at the origin, 7' = D(0, R)x]0, L[, S =
aD(0,R)x]0, L[, Y#* = Y\D etX = 9Sx]0, L|.

We define the following sets:

YF = (kie, koe)+] — £,—5[x] — £,£[, ¢ > 0 and (ki,k2) € Z*, DY = D(ke,eR), the disc of radius eR centred at
ke = (kig, keg).

k
TF = DEX]0, L[, YZ** = YI\DE, > " = 0D:x]0, L.

Let us define: D. = |J DF where I. = {k € ZQ;ﬁ: C w}.
kElL

v. = |J Y5
kel:

1. = UTskv

kel.

k
vF =] v,
kel,

D= J =t

kele

The fibres do not touch the lateral side of €2, since T: N (ONQ\T') = 0. Let Q. = Q\T: and f € Co(Q). We consider the
following problem :
—(div(|Vue|P2Vue) = f/a. in Q¢ (1)
—(div(|Voe P2 Vo) = /1. in T (2)
(P2){ (ue,v:) = (g, 9) on 7. NI (3)
\Vu5|p_2%ins = AMue — v [P (ue — ve) on X (4)
st‘pfzaa% = Mue — ve P72 (ve —ue) on X, (5)

where p €]1,4+00], g is a lipchitzian continuous function and A > 0 is a parameter who will tend towards 0 or +oo.

Contact conditions (4) and (5) between the matrix and fibres on the interface Y. mean that the stresses depend on the
gap of the displacements on ¥.. Contact model, in which the difference between displacements across a linear elastic
interface is linearly related to components of tractions, has been formulated in [16]. A analogous model has been used in
[2] to describe a contact on interfacial zones between fibres and matrix material. A similar model has been obtained from
thermodynamic considerations in [14] and [15], where the proportional coefficient, between the adhesive forces and the gap
between the materials, is of the form k32, k > 0 being the interface stiffness and 8 the bonding field which measures the

active microscopic bounds with maximal value 1 corresponding to the perfect active bounds.
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Our interest in this paper is with the study of the homogenization of the problem (PEA) when the periodic € tends to 0 using

Ae)

5

I'—convergence methods (see for example [4, 10], according to the limit of the report v = , A — 0 or +oco.

The homogenization of materials reinforced with fibres have been recently considered by several authors among which
[7, 8, 11, 12, 22] . For p = 2, the case of a network of tubes for two related mediums was studied by H.Samadi and
M.Mabrouk (see [21]) and also in references [19, 20] using the energy method of Tartar [23] with A = ", > 0. The same
problem has been also addressed by Auriault and Ene in references [5], where they exhibit, using the method of matched

asymptotic expansion, five models corresponding to A = &, with p = —1,0,1,2, 3.

Let us define:

WP (Qe) = {u € WH(Q);u=g on 99-NT},

Wy P(T.) = {u e W"P(T:);u=g on 8T- NI}

g

Definition 1.1. We say that a sequence (uc,ve)e, (ue,v:) € WP () x Wy P (), 7— converges to (u,v) if
(i) ue = u in WHP(Q)—weak
(i) [o, pvedpe — [, pvdz ¥ ¢ € Co()

The main result obtained in this work is described as follows.

Let v =lim 2 € [0,400]. Then

(1) if v € (0,+00), then the solution (uc,v:) of (P})r—converge to (u,v) € Wy () x LP (w, W, (0, L)), where (u,v) is

the solution of the following problem

—div(9j2°™(Vu)) + 2nRy|u — v’ (u —v) = [Y#|f in Q

— (1P 8) + Bl 2o —w =7 w0
u=v=g on I'
ajgom(Vu).n =0 on 80.1)(]0, L[

(2) if v = 0, there is no relationship between u and v,

(3) if ¥ = 400 we obtain that w = v on Q,
2. Estimates and Compactness Results

We define the functional F? through:

. 1, 1,
() = fﬂa [Vu|Pdu + ng |[VolPdo + /\fZE lu —vfPdv if (u,v) € Wy P(Q:) x Wy P(T%)
+00 elsewhere

The problem (P2') is equivalent to the following minimization problem:

(m?) min {Ff(uw) - / X(Qe) fu dz— / foxr.dz; (u,v) € Wy P (Qc) x WJ”’(JL)} :
Q Q

where x g is the characteristic function of the set E.
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Proposition 2.1. There exists a unique solution (ue,v:) € ngvP(Qs) % ng’p(Tg) of problem (m?)’ such that
(1) Sup. H“EHWLP(QE) < 400

(2) sup, [[ve[[wrp(r.) < 400

(3) sup, A [5,_|ue — ve[Pdoe < 400

Remark 2.2. Let v. = ﬁ (Zkels 5625), where (Szlac is the Dirac measure of ©¥, then (8) becomes:
(4) 2rRsup, 2 [, |ue — ve|Pdve < +o0.

Proof. Let g be a lipschitzian continuous extension of g to the whole Q (Lemma of MacShane [13]). Then, V (u,v) €
WaP(Qe) x WEP(TL), (u — §,v — §) € WpP(Qe) x WEP(TL), where WP = {u € WP /u =0inT}.
Using Poincaré’s inequality there exists a positive constant ¢, 1, depending only of p and L such that

o | u=glde< [ vl

€ =

Let ¢ be some positive constant with ¢ < ¢, , then by [4] Lemma 2.7, there exists ¢1 > 0 and ¢z > 0 depending only of c,

¢p, and ||gllw1.p(q), such that:

/Q |VulPdz — c/Q |u|"dz > cﬂ\u”’évlmm& — ca.

€

We similarly obtain

[ wopda—c [ popde > el - o
Te T.

€

One deduces that there exists C' > 0 independent on € such that (with ¢ = _Z5):

F?(u,v) —/ X(9:) fu dw—/ x(T:) fv dz
Q Q
> C (llullwrr@y + I0llwie ) (lullwre@o + vllwie) — 1 flla@) — 2¢2,

which implies the coerciveness of FZ(u,v) — Le(u,v), where Le(u,v) = [, (x(Qe)u—x(T:)v) fdz.
As F9- L. is strictly convex and # +oo there exists a unique solution (u,v.) € Wy P(Q:) x WaP(T.) to problem (m2). On

the other hand,
Fsg(us,’us) - Ls(usvvs) < Fsg(gv g) - Lf(gv g) < / |v§|pd‘r + ||f||LP(Q)||§HL‘1(Q) < o0,
Q
from which we deduce, using the continuity of L., that sup, F(uc,ve) < 400, sup, |[ue|lwip@,) < +4oo and

sup, [|velwip .y < +00.

Now, as . is convex, using [21] Theorem 2.1, we have that there exists a extension operator IPg from ng’p(ﬂe) into

ng’p(Q), such that IPeur = ug in Q. and ||IPEuE||W1,p(Q) <C.

In what follows, we omit the symbol I Pg. Let us define the measure p. by p. = % Zkels 6T£k, where 5T§ is the Dirac
measure supported by 7. One can easily see that e = lodx weakly in sense of measure, and as sup, HUEHWI’P(FE) < +00

we get, using Holder’s inequality :

/|vg|du€:/ |v5|dw§0/ lve|Pdz < C ¥ e >0,
Q Te T

where C is a generic positive constant. O
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Lemma 2.3. Let (ve). € W, P(T.) such that : sup, fTe |Vve|Pde < +oo and [, pvedpe — [, pvdz V @ € Co(R2).
Then v,0sv € LP(Q), andv =g on T.

Proof. We use here Lemma A3 of [1]. Let us notice that by Holder’s inequality we have :

Ove 1 85
[ 15 i < (els0) {/\ }

-] = |9, we have [, |54 |due <[] 22| 1o ) < +o0.
Q

dxs Oxs

Since p:(Q) = “?‘

The sequence (ng e) is thus uniformly bounded in variations, hence *-weakly relatively compact. Thus, possibly passing

6115

to a subsequence, we can assume that, up to some subsequence, 3 e — wlLodx weakly in the sense of measure. Let

@ € CY(Q). Then with z’ = (21,x2), we have

Ove

Oy
Q (p6$3

O3

dpe = Ug du. —|— Jwl / {o@@, L)ve (2", L) — ¢(z’,0)ve (2, 0) } da’. *)

Let us take now ¢ € C5°(Q) in (*). Then

Thus w = (%”3 in the sense of distribution. By Fenchel’s inequality we have, for every ¢ € Cy(Q),

lim mf{ Ove gadus_l/ |¢|Qdus} < lim inf 1/ 9% . < oo,
o O3 qJa =0p Jo Oxs

e—0

From which we deduce that sup {fQ wedz; ||¢||La) < 1} < 400. Thus, according to Riesz representation Theorem, w €

L?(€)). Repeating the same argument, we prove that

v € LP(Q),i=1,2,3.

Let ¢ such that ¢(z) = 0(z')¢(x3) , where ¢ € C*([0, L]); 9(0) = 1, 4(L) = 0, and 0 € C§°(Go) with Go = {2’ € w;(2’,0) €

wo}. As ve(x’,0) = g(z’,0) in Gy, one has, passing to the limit in (*)

Oy |7-U‘ ’ ’ ’ / ’ ’ /
a_ = 1 - € ) = - - I
8a:3d —l—/ Y ors —dz = % B2 /), (0(z")ve (', 0)dx ; (0(z")g(z",0)dx
On the other hand thanks of the first assertion of Lemma 2.3, we have, using Green’s formula, fQ Coag Oy = — fQ vg—i’dx —
[, (0(z")v(2’,0)dz’, from which we deduce that [ (0(z")v(z’,0)dz" = [ (6(z")g(z',0)dz" V O € C5°(Go).

This implies that v = g p.p wo. Similarly, with ¢(L) =1, ¥(0) = 0 and 6 € C§°(G 1) with

r={s' cw; (z',L) €ewr}

we get v =g p.pwr, . O

Lemma 2.4. Let (uc,v:) € Wy?(Q:) x W P(T.). Then sup, [, |us — ve|Pdv. < +oo.
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Proof. Let u € W"P(Y#x]0, L) such that u(-,x3) is Y —periodic. Let v € W"?(T);v(-,z3)Y —periodic. By the trace

L L
/|u|pds§0{/ /|u|de+/ /|vU|de}
> (0] Y 0 Y

Introducing the change of variables 2’ = ey, 3 = y3 et s3 = &5, we get

/|u|PdsE<c{ // \u|Pda:+eP1// {| +|a“|P}d+ // 2 |”d}
sk y#k | 0z y#k  Oxg

Then summing over k € I, we obtain that: fEe lu|Pdse < g”u”€v1m(ﬂ) and, in the same way, fEs |v|Pdse < %/Hv

Theorem

p
Koo (z.)-

Multiplying these inequalities by we get, [, [ve|Pdve < C"HU||ZV’VLP(T£)7 and [, |uPdr. < Cllvl[}y1.p(qy- Thus, using a

e
27R

convexity argument, we obtain that: [, |ue — ve[Pdve < 4o0. O

3. Convergence

We suppose here that v = lim 2 € (0, +00). We define the functional F¥ on W, ?(Q) x L?(Q) by

F9(u,v) = fnjhom (Vu(z))dz + ‘T‘ fQ aeg|PdT + +27 Ry [, lu — v[Pdz if (u,v) € WP (Q) x LP(w, Wy (0, L))
400 elsewhere

where j1°™(Z) is defined for Z € IR® by :
§r°™(Z) = min {/ |Z + vw|Pdy,w € W"P(Y#), wis Y—periodic} ,
Y#
for p = 2,

337 (Z) = |23]* + min { / |2+ vul’dy,w € WHP(YF), wis Y—periodic} :
Y#

where z = (21, 22). In this case we have
-hom _ ou 2 -hom
J2°"(Vu)de = | |z—"dz+ [ jog2 (Varu)dr,
Q o Oz3 Q

with Vu = (%7 %,O). For z € IR? we have

306%™ (2) = min {/ |z + vwl*dy,w € H' (Y#), w Y—periodic} .
Y #

Our main result in this section reads as follows:
Theorem 3.1. If v € (0,400) then

(i) For every (u,v) € Wy x LP(w, W, (0, L)), there ezists (ue,ve) € WP (Q:) x Wy P(T:), such that (ue,ve)-T—converges

to (u,v) and F9(u,v) > limsup F? (ue,ve).
e—0

(ii) For every (us,ve) € WyP(Qe) x WP(T:), such that (ue,v:)-T—converges to (u,v), we have (u,v) € WpP x

LP(w, W}P(0,L)), and F?(u,v) < lim infOFEg(ug,vg).
e—
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Proof. 1. The limit sup inequality : Let z € TR®. We define the following functional

WhP(Y#) — IR,
Fz:
w %fy# |z + Vw|Pdy

and consider the following minimisation problem: (P,)min{F;(w),w € W*P(Y#), w is Y-periodic}. Tt can easily checked
that (P.) have a unique solution w, € W'?(Y#), which can be extended to W'?(Y) keeping the same notation. We then

define the function wf through : wi(zr) = w. (2, %2). O
We have the following intermediate result.
Lemma 3.2. cw: —._0 0 in WHP(Q)—weak.

Proof.  Observe that

/ lews (2)Pdz = L / ews (@) P’ < L0 S &2 / lw. (1) [PdyLC < LC|w|e?.
Q w Y #

kel.

Thus, wi —.—0 0 in LP(2)—strong. On the other hand

/ levwiPdz < C'LP S EP“/ 1w (BL, 22y P g’ < Lc”\w\/ VW (y)|Pdy.
2 kel vk € ¢ v#

This implies that the sequence (V(ew?)) is bounded in LP(w, IR?). Combining with the above LP()—strong convergence
to 0 of the sequence (cw?), we get ews —e—s0 0 in WP(Q)—weak. Let us define u(x) = 2.z + ¢, where c is a constant and

z € IR®. We define the test-function u2 by:

ue (z) = u(z) + ew(z’) *)

Then, using Lemma 3.2, u2 — u in WP (Q)—weak and

. 0 P T eq NP g
gg%/QWuE(xﬂ dw—!%g L/YE#’“ |z + evw; (z')|Pdx

_ : 2 P
=Ll S [+ vu )Py
kele

10| / |2+ V- () dy
Y #

= [ atm (vuta)da,

-hom

where j,°™ (z) = min{ [y, |z + Vw[Pdy,w € WhP(Y#), w Y-periodic}. Let us now consider u € w'?(). Then, according
to [13], there exists a sequence of piecewise affine functions (uy), such that u, —n—co u in WHP(Q)—strong. The sequence
(un) is define on a partition (Qy) of Q by un(z) = zn.x +cn, where z, € IR? and ¢, € IR, ¥ n. We then build the associated
test-functions through

ud™ () = un(z) + ews, (z').
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Then u2™ =0 u™ in Wl’p(Q)—Weak and

. p p
213%/ |vul™ ()] dx—hmZ/ |2 + eVws, (2)[Pdx

— ’\|P /
21_12% Z/ |zn + evws:, (¢")[Pdx

kel

=Zmn|/ 20+ V-, ()P dy
Y #
_Z/ hom n
:/j;wm(Vun)dx.

Q

Using the continuity of ]h"m we get limy, oo fthom(Vun dex = fﬂjhom (Vu)dz. Then, using the diagonalization argu-

ment of [3], there exists a sequence n(e) —c—o +00, such that, with u. = ug’n(s)

, Ue —Fes0 U IN Wl’p(ﬂ)—weak, and
limsup,_,, [, |VuePdz < [, jp°" (Vu)da.

Let v be a Lipschitzian continuous function on ©, such that v = g on T'. We define v# Zke[ v(kie, kae, Q?J)lyk( "). Then
v¥ is a piecewise affine function with respect to 2’. Let E. = {x € Q;d(z,T) < €} and . a smooth function such that:
we=1onT, p. =0in Q\FE: and | V| § . We then define the following test-function in the fibres v2 = (1 — . )v¥ + @ev

. One can see that v? € W, ?(T.) and, after some computations,

/ vagdug —>5_,o/ pvdz, YV p € Co().
Q Q

Besides fT |vol|Pde = fT \E. |vo# |Pdx + fT B, |Vof + p. V(v —v) + (v — v)Vpe|Pdz. We have the following estimate

for the second right term:

1
/ |Vva#+<pgv(vf—U)+(vf—v)V<p5|pdm§C{/ |vo? |pdx+/ |V(vf—v)|pdm+—/ |(vs#—v)|pda:}
T.NE. T-NE. T.NE. eP Jr.nE.
As [v# —v| < Ce in Te N E., we get lime,0 & [, . |(v¥ —v)|)Pdz = 0. Observing that
4 p —
611_1}(1) s, |Vv5 |Pdx = gl_rz% Z /TS\EE Ern (k1g, koe, x3) | dxs
= gg% Z / |7 k16 kae, :L’3)| dxs
Il / »
= dz
\amg )|
and
lim |vo¥ [Pdz = lim |V (v — v)[Pdz = 0.
e—0 T.NE. e—0 T.NE.
We thus obtain that
T
tim [ 1ot = 17l / | 9v.
Now, taking a sequence of the Lipschitzian continuous functions (v,) such that v, = g on I' and v, — v in

LP(w, WHP(0, L)) —strong, we build, as before a sequence of functions (v#™):

v = Z vn (k1g, ke, ﬂcg)lyik

kel
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and define the sequence of test-functions (v2"); v2"™ = (1 — @.)v¥ + p-v,. Then, for every ¢ € Co(Q),

e—0

lim gpvs "dpe :/ pupdz,

lim \ O Pdr = / |81)n |Pdz and

e—0
lim /|8U"|pdx:/|—|pdx.
n—+o00 o Ozs

Thus, using the diagonalization argument of [3], there exists a sequence (v.), such that fQ YUdpte —e—0 fQ pvdr V ¢ €

limsup/ |Vvs|pdx§/|ﬁ|pd:r.
e—=0JT, Q Ox3

Let (u2™) and (v2'™) be the sequences previously built. Let us compute the limit

Co(9), and

: 0, 0,
lim [ |Ju2™ — v "|Pdve.
e=0 Jo

We first have

Z/ levw;, [Pdve = ZL Z p+1/ ? 2":}

kel

< CZ |lwn| L [|w-,, HleP(Y#)gp7

n

where L, is the length of the set {(0,z3) € Q.}. Observing that > Lu|lw.,llwiry# < C|Q, we get

lime o), fﬂn levws, |Pdve = 0. Since ve =0 drlla, we have

/ |1 |P dve —>5H0/ |un|Pdz,
Q Q

Thus lim. o [, [u2"[Pdve = [, |un(2)|’dz. On the other hand

P
Eh_r)% |v "Pdv. = hm 27rR Z /aT [vn (k1€, koe, x3)|Pdas

= lim/ Z ‘Un(kjs kza .T3)|pd$3

e—0
k71

_ /Q (o, ()P de.

Thus, using the uniform convexity property of L?(Q2)p > 1), we have

lim/ [ud™ — 02" P du, :/ [un — v |[Pdx
e—=0 Jo Q

and, since

lim /|un—vn\pdm:/|u—v|pda:,
n—+oo [o Q

we get lime_,o sup fQ |tn — vn|Pdve < fQ |u — v|Pdx, where (uc) and (v.) are the sequences obtained previously by diagonal-
isation. We thus proved that, for every (u,v) € Wy x LP(w, Wy (0, L)), there exists (uc,v:) € Wy (Q:) x W, P(T.), such
that (ue, ve)eT—converges to (u,v) and

F9(u,v) > limsup F? (ue, ve).

e—0
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2. The limit inf inequality:

Let (ue,v:) € W'P(Qe) x W}P(T.) such that (u.,v.)T—converge to (u,v). We may suppose that sup F:(ue,v:) < 400,
otherwise the result is trivial.

Let (u2™); ud™ = u, + ews, , be the sequence previously built in (*), with here un —n—co uWhP(Q)—strong and z, = Vu,

in Q,. Let ¢, € C5°(Q2);0 < ¢, < 1. Let us introduce the following sub differential inequality

/|Vu5\pdx22/ [Vue|Ppndz
Q n Jan
>3 [ gvae
n Y8n

pﬁpnd:n—FpZ/ [Vul P2 vud ™ (Vue — Vud™)pnda.
n Qn
We have

/ [Vud™ P2 vud™ (Vue — Vud™)pnde = — div(|Vud ™ P2 vud ™) (ue — ud ™) onda
Q'Vl Qn

+/ [Vud™ P2 vud " Vo, (ue — ul™)dx.
Q

n

Observe that, for every ¥, € C5° (),

!

— [ div(|vud" PP vud ) pde = — / div(|zn + eV, ()72 (20 + eV, () thnda’
[ i e = = 5 [ div(n <9, ()P o+ T, (D))

kelr

—— [ Y ke kz,m) [ div(lan+ T, )+ T, @)+ On(e),
Qn (23) keln Y

where Qy,(z3) = ., N (0,0)x]0,LJ. As div(|zn + Vws, ®)|P"3)(2n + Vw.,(y)) = 0, we obtain that
lim. 0 an div(|[vud™ P2 vud™)h,de = 0, hence, recalling that (ue — u2™)pn — (u — u™)p, dans LP(,)—strong, we
get

lim Z/ div(|vud™ P2 vud ™) (ue — ud™)ppdz = 0.
n Qn

e—0

On the other hand
lir% Z/ [Vud™ P2 vud " Vo (ue — ul™)dr = Z/ [Vu" P72 vu" Von (u — u™)dz.
e n Qn n Qn

Then letting n tend to o0 in the above sub differential inequality we get

lim inf [ |Vu.|"dz > / G (Vu)da.
=0 Jq Q

dxs

Observe that [, |Voc|Pdz > [, 9ve |Pdz. Then, using the proof of Lemma 2.3, we obtain that, for every ¢ € L%(Q);

— _P
q= p—17

L Ove Ov p 1
lim inf —|Pdpe > /— dxff/ Idx, and v € LP(w, W, P(0,L)).
[ gerdnezp [ a2 [ 1o (0, W37(0,1)

e—0

This implies that, with ¢ = |63—9;’3|p72 38;3,

N T v
p > | p
lim inf /TE |Vve|Pdx /Q |6x3| dz.

Now according to Lemma 2.4, we have

sup/ [ue — ve|Pdre < 400,
e Ja
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From which we deduce, using Hélder’s inequality, that the sequence ((us — ve)ve) is uniformly bounded in variation and
thus, weakly converges, up to some subsequence, to some xlodz in the sense of measure. Then, using Fenchel’s inequality,

we have, for every ¢ € Cy(Q2),

lim inf [ |u. — ve|Pdoe >p/ xpdr — B/ |p|?d,
Q q9Ja

e—0 Q

from which we deduce, using the proof of lemmal, that x = u — v € LP(Q). Then taking ¢ = |u — v|P~(u — v), we get

lim inf [ |u. —ve|Pdve > / |lu — v|Pdz.
Q

e=0 Jo

We thus have proved that for every (u.,v:) € Wy P(Q.) x Wy P(T:), such that (uc,v:)-7—converges to (u,v), we have

(u,v) € WP x LP(w, Wy(0,L)), and F?(u,v) < liminf._,o F¢(uc,v:). One can easily see that

x(Q) =|Y#| in LP(Q) — weak,

X(T:) —|Q|R*r in L' () — strong,

And, as f € Co(Q),

/ AT foeda = | o / fodpe,

— R*r [ fudz.
Q

Then, using the properties of I'-convergence [4] we obtain the following
Corollary 3.3.

(1) If v € (0,+00) then : the solution (ue,ve) of (m2)T—converges to (u,v) € W P(Q) x LP(w, W, *(0,L)) where (u,v) is

the solution of the following problem

—div(03}°™(Vu)) + 27 Ry|u — v|P % (u —v) = |[Y#|f in Q,
313 (|313‘p 2311)3) 2§7|'LL_7)|1772(U_'“) =f in Q,
uUu=v=9g on F,

b (Vu).m = 0 on dwx]0, L.
(2) if v =0, there is no relation between u and v,

(3) if v = 400, then u = v in Q.

Representation of Deny-Beurling (case of p =2 and g = 0) : In this case for p.p ' € w,v(z’,-) is the solution of the
differential equation in ]0, L|:

—w + %w = 2f’y,u’(x/7 ) + f(xla )

w(0) =w(L) =0

(Pw)

The solution of (P,) is given by:

s):/OLG(s,t)u(x'tdt—i—f/ G(s,t)f(z',t)dt
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for t €]0, L[, the kernel Poisson G(-,t) is the solution of the equation:

fy "4 ¢ =26
y(0) =y(L) =0

(Py)

c=

E

E
oyt = EEhEAL =2 (v;))sh(ds At)

by an integration by parts :

s fas (/o e )

L (2 [ )
=

{O

(«',5)* +u(z', s)v(z, s)]dsdx’ +/fvd:c

/ v—v dm—i—/fvdx
Q

:UL‘:’ :0\3 s\ s\

then

7rR2/ |ﬁ|2dm :2’y7rR/ (uv—vz)dx+7r2R/ fudz
Q 8%3 Q Q

deferring in the total energy :

o(u,v) = F(u,v) — |[Y#| /Q fudac—71'2R/Q Sfodz

-hom
2

Vu(z))dr — |Y#|/ fud:c—i—?’yﬂR/ qum—Q'er/ uvdz
Q Q Q

[ a5 wuta)
= [ b dz —|Y# dz+2ymR | w’d
[ utends = V) [ fudzs2in [ ol
_ 2’Y7TR/w (/(0,L>2 u(x’,S)U(x’,t)G(S,t)dsdt) dz’ — 7T2R/w </(0,L)2 u(w,S)G(S,t)f(x’,t)dsdt> da’
however
2’y7rR/Qu2dm — 2’y7rR/;U (/(()JL)2 u(x/,s)u(;r/,t)G(s,t)dsdt) de' = ’WTR/ </(0 L (u(z’, ) — u(x/,t))ZG(s,t)dsdt> da’

+2wR/ (/ x,s))2(1—/OLG(s,t)ds)ds)>

= 2’y7rR/ u?p(x3)de
Q
+77rR/ </ (u(a’, s)u(x/,t))QG(s,t)dsdt> dx’
w (0,L)2

cosh 2y (s—L
where p(s) = M. Let

ky (s, t) = msh ( 2 sv t)) sh (\/%(s A t))
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‘We obtain

= ibom (Gu(x))dx u’p, r(z3)dx
qs(u,v)—/ﬂh (Vu(x))d +/Q Py, r(s)d

+/w (/((),L)Z (u(x”s) — U(x,,t)) G(s’t)k%R(S,t)dsdt> d;lj/

—/ (/ u(z, S)f(l'/,t)]f'y,R(S,t)det> dz’ —|Y¥| / fudz
w (0,1)2 T

let pu(dx) = py,r(ws)dz, J(dzvdy) = $A(de'dy’) ® ky,r(z3,ys)dsdys, where A(dz’dy’) is the measure in w” defined by:

[ et wiaiay) = [ o i’
'LU2 w
and v = (vs;) 4,7 = 1,2, 3 the measure defined by:

vij(dz) = aly™dx for i,j = 1,201

hom aXJ
hom _ 5= 3 w2 ya
Qi /Y#{ J kayk}y

k=1,2

with X7 is the solution of the problem min { [, [Vw + ¢;|*dz,w € H' (Y#)Y — periodique}, where (e;);=1,2 the canonical
base of TR?, v33(dx) = dx. Then

o) = [ S (o) + / (u(x))?(dz) + / (u() — u(y))* I (dady)

X

- u(@) f(y)J (dedy) =Y *| [ f(z)u(z)dz
Jh J
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