

International Journal of Mathematics And its Applications

Approximating Fixed Point in CAT(0) Space by s-iteration Process for a Pair of Single Valued and Multivalued Mappings

Research Article

Manjula Tripathi¹ and Anil Kumar Dubey^{2*}

1 Sr. Lecturer, Government Polytechnic College, Durg, India.

2 Assistant Professor, Bhilai Institute of Technology, Durg, India.

Abstract: Suppose K is a closed convex subset of a complete CAT(0) space X. T is mapping from K to X. F(T) is set of fixed point of T which is nonempty. Sequence $\{x_n\}$ is defined by an element $x_1 \in k$ such that

$$x_{n+1} = P((1 - \alpha_n)Tx_n \oplus \alpha_n y_n)$$

$$y_n = P((1 - \beta_n)x_n \oplus \beta_n Tx_n) \quad \forall \ge 1$$

where P is the nearest point projection from X onto k. $\{\alpha_n\}, \{\beta_n\}$ are real sequences in (0,1) with the condition

$$\sum_{n=1}^{\infty} \alpha_n \beta_n (1 - \beta_n) = \infty$$

Then $\{x_n\}$ converges to some point x^* in F(T). This result is extension of the result of Abdul Rehman Razani and saeed Shabhani. [Approximating fixed points for nonself mappings in CAT(0) spaces Springer 2011:65]

 ${\bf Keywords:} \ {\rm S-iteration,} \ {\rm CAT}(0) \ {\rm spaces,} \ {\rm fixed \ point \ condition \ E, \ nonself \ mapping, \ condition \ C.$

© JS Publication.

1. Introduction

In 2009 Agrawal etc introduced the S-iteration process [1] as follows. They showed that S-iteration process is faster than the picard km iteration. E be a convex subset of linear space X. T be nonself mapping from E to X. F(T) be nonempty set of fixed points of T. $\{x_n\}$ be the iterative sequence generated by $x_1 \in E$ and is defined by

$$x_{n+1} = (1 - \alpha_n)Tx_n + \alpha_nTy_n$$
$$y_n = (1 - \beta_n)x_n + \beta_nTx_n \quad \forall \ge 1$$

where $\{\alpha_n\}, \{\beta_n\}$ are real sequences in (0,1) satisfying the condition

$$\sum_{n=1}^{\infty} \alpha_n \beta_n (1 - \beta_n) = \infty$$

E-mail: anilkumardby70@gmail.com

In 2010 haowang and Panyanak [2] studied the iterative scheme defined by the following process. Let K be a nonempty closed convex subset of a complete CAT(0) space with the nearest point projection P from X onto K and $T: K \to X$ be a nonexpansive nonself mapping with the nonempty fixed point set $\{x_n\}$ is a sequence generated by $x_1 \in k$ such that.

$$x_{n+1} = P((1 - \alpha_n)x_n \oplus \alpha_n TP[(1 - \beta_n)x_n \oplus \beta_n Tx_n)]$$

where $\{\alpha_n\}, \{\beta_n\}$ are real sequences in $(\in, 1-\in) \in \in (0, 1)$ then $\{x_n\}$ is Δ -convergent to a fixed point of T.

In this paper this result is extended for the S-iteration process.

Fixed point for CAT(0) space:- Let K be a nonempty subset of a CAT(0) space X and let $T : K \to X$ be a nonself mapping. A point $x \in K$ is called a fixed point of T if Tx = x. Set of fixed points is denoted by F(T). Mapping T is nonexpansive if for each $x, y \in k$

$$d(Tx, Ty) \le d(x, y)$$

Condition C : Suzuki [3] introduced condition C in 2008 which states that mapping T is said to satisfy condition C if

$$d(x,Tx) \leq d(x,y)$$
 implies
 $d(Tx,Ty) \leq d(x,y) \quad \forall x,y \in K$

Condition E : In 2011, Falset etc [4] introduced condition E which states that

Let K be a bounded closed convex subset of a complete CAT(0) space X. A non self mapping $T: K \to X$ is satisfying condition E if there exist $\mu \leq 1$ such that

$$d(x, Ty) \le \mu(Tx, x) + d(x, y) \quad \forall x, y \in K, \ \mu \ge 1.$$

Proposition 1.1. Every non expansive mapping satisfies condition (c) but the converge is not true.

Proposition 1.2. Every non expansive mapping satisfies condition (E) but the converge is not true.

CAT(0) Spaces - Let (x, d) be a metric space. A geodesic path joining two points $x, y \in k$ or more briefly a geodesic from x to y is a mapping $c : [0, l] \to X$ such that [0, l]CR, C(0) = xC(l) = y and

$$d(c(t), c(t')) = |t - t'| \quad \forall t, t' \in [0, l]$$

this implies that d(x, y) = l.

The image α of mapping c is called a geodesic segment joining x and y. The space (X,d) is said to be a geodesic space if every two points of X are joined by a geodesic c. X is uniquely geodesic if there is exactly one geodesic for $x, y \in k$.

A subset $y \subset X$ is said to be convex if every geodesic segment (ie image α of c), joining any two points of y is contained in y itself.

A geodesic triangle $\Delta(x_1, x_2, x_3)$ is a geodesic metric space (X,d) consists of three points in X which are vertices of Δ and geodesic segment between each pair of vertices as the edges of Δ .

A comparison triangle $\overline{\Delta}$ for the triangle $\overline{\Delta}(x_1, x_2, x_3)$ in (X,d) is a triangle $\Delta(x_1, x_2, x_3)$ such that $\overline{\Delta}(x_1, x_2, x_3) = \Delta(\overline{x_1}, \overline{x_2}, \overline{x_3})$ in the Euclidean plane E^2 such that

$$d_{E^2}(\overline{x_i}, \overline{x_j}) = d(\overline{x_i}, \overline{x_j}) \quad \forall i, j \in (1, 2, 3).$$

A geodesic metric space is said to be a CAT(0) space if all geodesic triangle of approximate size satisfy the following condition.

Let Δ be a geodesic triangle in X and let $\overline{\Delta}$ be comparison triangle for Δ then Δ is said to satisfy the CAT(0) inequality if $\forall x, y \in \Delta$ and $x, y \in \overline{\Delta}$

$$d(x,y) \le d_{E^2}(\overline{x},\overline{y})$$

If (x_1, y_1, y_2) are points in CAT(0) space and if y_0 is the middle point of the geodesic regment $[y_1, y_2]$ then the CAT(0) inequality implies that

$$d(x,y_0)^2 \le \frac{1}{2}d(x,y_1)^2 + \frac{1}{2}d(x,y_2^2) - \frac{1}{4}d(y_1,y_2)^2$$

A geodesic space is a CAT(0) space if and only if it satisfies CN inequality.

Proposition 1.3. Let K be a bounded closed convex subset of a complete CAT(0) space X and $T: K \to X$. If T is satisfying condition (c) then

$$d(x, Ty) \le 3d(Tx, x) + d(x, y)$$

Lemma 1.4 ([5]). Let (X,d) be a CAT(0) space.

(1) Let K be a convex subset of X which is complete in the induced metric. Then for every $x \in X$, there exists a unique point $p(x) \in k$ such that $d(x, p(x)) = \inf\{d(x, y) : y \in k\}$ moreover map $x \to p(x)$ is a nonexpansive retract from X onto K. (2) For $x, y \in X$ and $t \in [0, 1]$, there exists a unique point $z \in [x, y]$ such that d(x, z) = td(x, y), d(y, z) = (1 - t)d(x, y) $z = (1 - t)x \oplus ty$

(3) For every $x, y, z \in X$ and $t \in [0, 1]$

$$d((1-t)x \oplus ty, z) \le (1-t)d(x, z) + td(y, z)$$

(4) For $x, y, z \in X$ and $t \in [0, 1]$

$$d((1-t)x \oplus ty, z)^2 \le (1-t)d(x, z)^2 + td(y, z)^2 - t(1-t)d(x, y)^2$$

Let $\{x_n\}$ be a bounded sequence in a CAT(0) space X. For $x \to X$ we set

$$r(x, \{x_n\}) = \lim_{n \to \infty} \sup d(x, x_n)$$

The asymptotic radius $r(\{x_n\}$ is given by

$$r(\{x_n\}) = \inf(r(x, \{x_n\}) \ x \in X)$$

The asymptotic centre $A(\{x_n\})of\{x_n\}$ is the set

$$A(x_n) = \{x \in X : r(x, \{x_n\}) = r(\{x_n\})\}$$

or in other words

$$A(x_n) = \{x \in X : \lim_{n \to \infty} \sup d(x, x_n) = \inf(r(x, x_n))\}$$

In a CAT(0) space $X, A(\{x_n\})$ consists of exactly one point.

Definition 1.5 ([5]). A sequence $\{x_n\}$ in a CAT(0) space X is said Δ converges to $x \in X$, if x is the unique asymptotic centre $\{u_n\}$ for every subsequence $\{u_n\}$ of $\{x_n\}$.

Lemma 1.6. Let (X,d) be a CAT(0) space

(1) [7] Every bounded sequence in X has a Δ - convergent subsequence.

(2) [8] If K is a closed convex subset of X and if $\{x_n\}$ is bounded sequence in K, then the asymptotic centre of $\{x_n\}$ is in K.

(3) [] If $\{x\}$ is a bounded sequence in X with $A(\{x_n\}) = (x)$ and $\{u_n\}$ is a subsequence of $\{x_n\}$ with $A(\{u_n\}) = (u)$ and the sequence $\{d(x_m, u\} \text{ converges then } x = u$.

2. Main Result

Lemma 2.1 ([5]). Let K be a nonempty closed convex subset of a complete CAT(0) space X and $T: K \to X$ be a nonself mapping, satisfying condition (E). Suppose $\{x_n\}$ is a bounded sequence in K such that $\lim_n d(x_n, Tx_n) = 0$ and $\{d(x_n, v)\}$ converges for all $v \in F(T)$ then

$$w_w(x_n) \subset F(T)$$

where $w_w(x_n) = \bigcup A(\{u_n\})$ and the union is taken over all subsequence $\{u_n\}of\{x_n\}$. Moreover $w_w(x_n)$ consists of exactly one point.

Theorem 2.2. Let K be a nonempty closed convex subset of a complete CAT(0) space X and $T : K \to X$ be a nonself mapping satisfying condition E with $x^* \in F(T) = \{x \in K : Tx = x\}F(T)$ is nonempty set. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be sequences in $[\in, 1-\epsilon]$ for some $\epsilon \in (0,1)$ starting from arbitrary $x_1 \in K$. Define the sequence

$$x_{n+1} = P((1 - \alpha_n)Tx_n \oplus \alpha_nTy_n)$$
$$y_n = P((1 - \beta)x_n \oplus \beta_nTx_n) \quad \forall n \ge 1$$

Then $\lim_{n \to \infty} d(x_n, x^*)$ exists.

Proof.

36

$$d(x_{n+1}, x^*) = d(P((1 - \alpha_n)Tx_n \oplus \alpha_nTy_n, x^*))$$

$$\leq d((1 - \alpha_n)Tx_n \oplus \alpha Ty_n x^*)$$

$$\leq (1 - \alpha_n)d(Tx_n, x^*) \oplus \alpha_n d(Ty_n, x^*)$$

$$\leq (1 - \alpha_n)d(x_n, x^*) + \alpha_n d(y_n, x^*)$$

$$\leq (1 - \alpha_n)d(x_n, x^*) + \alpha_n d(P(1 - \beta_n)x_n \oplus \beta_nTx_n, x^*)$$

$$\leq (1 - \alpha_n)d(x_n, x^*) + \alpha_n d((1 - \beta_n)x_n \oplus \beta_nTx_n, x^*)$$

$$\leq (1 - \alpha_n)d(x_n, x^*) + \alpha_n(1 - \beta_n)d(x_n, x^*) + \alpha_n\beta_n(Tx_n, x^*)$$

$$\leq (1 - \alpha_n)d(x_n, x^*) + \alpha_n(1 - \beta_n)d(x_n, x^*) + \alpha_n\beta_n d(x_n, x^*)$$

$$= (1 - \alpha_n + \alpha_n - \alpha_n\beta_n + \alpha_n\beta_n)d(x_n, x^*)$$

Hence $d(x_{n+1}, x^*) \le d(x_n, x^*) \quad \forall n \ge 1$

So the sequence $\{d(x_n, x^*)\}_{=1}^{\infty}$ is bounded and decreasing. Hence $\lim_{n \to \infty} d(x_n, x^*)$ exists.

Theorem 2.3. Let K be a nonempty closed convex subset of complete CAT(0) space X and $T : K \to X$ be a nonself mapping satisfying condition E with $F(T) \neq \phi$. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be sequences in $[\in, 1-\epsilon]$ for some $\epsilon \in (0, 1)$. Starting from arbitrary $x_1 \in K$. Define the sequence

$$x_{n+1} = P((1 - \alpha_n)Tx_n \oplus \alpha_nTy_n)$$
$$y_n = P((1 - \beta)x_n \oplus \beta_nTx_n) \quad \forall n \ge 1$$

Then $\lim_{n \to \infty} d(x_n, Tx_n) = 0.$

Proof. By theorem sequence $\{d(x_n, x^*)\}_{n=}^{\infty}$ bounded and decreasing so $\lim_{n\to\infty} d(x_n, x^*)$ exists where $x^* \in F(T)$. Let

$$\lim_{n \to \infty} d(x_n, x^*) = r$$

Now $d(x_n, Tx_n) \le d(x^*, x_n) + d(x^*Tx_n)$ (a) If r = 0

$$d(x_n, Tx_n) \le d(x^*, Tx_n)$$

By conditions E for some $\mu \geq 1$

$$d(x_n, Tx_n) \leq d(x^*, Tx_n)$$
$$\leq \mu(dx^*, Tx^*) + d(x^*, x_n)$$

Here r = 0 is $d(x_n, x^*) = 0$ So $Lt_{n\to\infty}d(x_n, Tx_n) = 0$. (b) If r > 0

$$d(y_n, x^*)^2 = d(P(1 - \beta_n)x_n \oplus \beta_n T x_n), x^*)^2$$

$$\leq d((1 - \beta_n)x_n \oplus \beta_n T x_n), x^*)^2 \quad as \quad ||Tx - Ty|| \leq ||x - y||$$

$$\leq (1 - \beta_n)d(x_n, x^*)^2 + \beta_n d(Tx_n, x^*)^2 - \beta_n (1 - \beta_n)d(x_n, Tx_n)^2$$

$$\leq (1 - \beta_n)d(x_n, x^*)^2 + \beta_n d(Tx_n, x^*)^2$$

$$\leq (1 - \beta_n)d(x_n, x^*)^2 + \beta_n (\mu d(Tx, x^*) + d(x_n, x^*))^2$$

by condition E for some $\mu \geq 1$

$$\leq d(x_n, x^*)^2 \tag{1}$$

So we have the result

Now consider

$$\begin{aligned} d(x_{n+1}, x^*)^2 &= d(P(1 - \alpha_n)Tx_n \oplus \alpha_n Ty_n, x^*)^2 \\ &\leq d((1 - \alpha_n)Tx_n + \alpha_n Ty_n, x^*)^2 \\ &\leq (1 - \alpha_n)d(Tx_n, x^*)^2 + \alpha_n d(Ty_n, x^*)^2 - \alpha_n (1 - \alpha_n)d(Tx_n, Ty_n)^2 \\ &\leq (1 - \beta_n)d(x_n, x^*)^2 + \alpha_n (\mu d(Tx^*, x^*) + d(y_n, x^*))^2 - \alpha_n (1 - \alpha_n)d(Tx_n, Ty_n)^2 \\ &\leq (1 - \alpha_n)d(x_n, x^*)^2 + \alpha_n d(y_n, x^*)^2 - \alpha_n (1 - \alpha_n)d(Tx_n, Ty_n)^2 \\ &\leq d(x_n, x^*)^2 - \alpha_n (1 - \alpha_n)d(Tx_n, Ty_n)^2 \\ &\leq d(x_n, x^*)^2 - \alpha_n (1 - \alpha_n)d(x_n, y_n)^2 \end{aligned}$$

$$Now \quad d(x_n, y_n) = d(x_n, (1 - \beta_n)x \oplus \beta_n Tx_n) \\ &= (1 - \beta_n)d(x_n, x_n) + \beta_n d(x_n, Tx_n) \\ &= \beta_n d(x_n, Tx_n). \end{aligned}$$

$$So \quad d(x_{n+1}, x^*)^2 \leq d(x_n, x^*)^2 - \alpha_n (1 - \alpha_n)\beta d(x_n, Tx_n)^2 \\ &\leq d(x_n, x^*)^2 - \alpha_n (1 - \alpha_n)\beta d(x_n, Tx_n)^2 \end{aligned}$$

taking limit when $n \to \infty$

$$\lim_{n \to \infty} d(x_n, Tx_n) = 0$$

Theorem 2.4. Let K be nonempty closed convex subset of a complete CAT(0) space X and $T : K \to X$ be a nonself mapping, satisfying condition (E) with $F(T) \neq \phi$. Assume $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in $[\in, 1-\in]$ for some $\in \in (0,1)$. Starting from arbitrary $x_1 \in K$. Define the sequence $\{x_n\}$ by

$$x_{n+1} = P((1 - \alpha_n)Tx_n \oplus \alpha_nTy_n)$$
$$y_n = P((1 - \beta)x_n \oplus \beta_nTx_n) \quad \forall \quad n \ge 1$$

Then $\{x_n\}$ is Δ - convergent to some point x^* in F(T)

Proof. By theorem (2.3) $\lim_{n\to\infty} d(x_n, Tx_n) = 0$. Theorem (2.2) shows that $\{d(x_n, v)\}$ is bounded and decreasing sequence for each $v \in F(T)$ and so it is convergent.

By Lemma (2.1), if K be a nonempty closed convex subset of a complete CAT(0) space X and $T: K \to X$ be a nonself mapping satisfying condition E, suppose $\{x_n\}$ is a bounded sequence in K such that $\lim d(x_n, Tx_n) = 0$ and $\{d(x_n, v)\}$ converges for all $v \in F(T)$ then $w_w(x_n) \subset F(T)$ where $w_w(x_n) = \bigcup A\{u_n\}$ and the union is taken over all subsequences $\{u_n\}$ of $\{x_n\}$, then $w_w(x_n)$ consists exactly one point so the sequence $\{x_n\}$ is Δ - convergent to some point x^* in F(T).

Definition 2.5. A mapping $T : K \to X$ is said to satisfy condition if there exists a nondecreasing function $f : [0, \infty) \to [0, \infty)$ with f(0) = 0 and $f(r) > 0 \forall r > 0$. Such that

$$d(x, Tx) \le f(d(x, F(T)))$$

Theorem 2.6. Let K be nonempty closed convex subset of a complete CAT(0) space X and $T : K \to X$ be a nonself mapping satisfying condition E with $F(T) \neq \phi$, Assume $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in $[\in, 1-\in]$ for some $\in \in (0,1)$. Starting from arbitrary $x_1 \in K$. Define the sequence $\{x_n\}$ by

$$x_{n+1} = P((1 - \alpha_n)Tx_n \oplus \alpha_nTy_n)$$
$$y_n = P((1 - \beta)x_n \oplus \beta_nTx_n) \quad \forall \le 1$$

If T satisfies condition E then $\{x_n\}$ is converges strongly to a fixed point of T.

Theorem 2.7. Let K be nonempty compact convex subset of a complete CAT(0) space X and $T : K \to X$ be a nonself mapping satisfying condition E with $F(T) \neq \phi$, Assume $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in $[\in, 1-\in]$ for some $\in \in (0,1)$. Starting from arbitrary $x_1 \in K$. Define the sequence $\{x_n\}$ by

$$x_{n+1} = P((1 - \alpha_n)Tx_n \oplus \alpha_nTy_n)$$
$$y_n = P((1 - \beta)x_n \oplus \beta_nTx_n) \quad \forall \quad n \ge 1$$

Then $\{x_n\}$ converges strongly to a fixed point of T.

Theorem 2.8. Let K be nonempty closed convex subset of a complete CAT(0) space X and $S, T : K \to X$ be two nonself mappings satisfying condition E with $F(T) \neq \phi$, Assume $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in $[\in, 1-\in]$ for some $\in \in (0,1)$. Starting from arbitrary $x_1 \in K$. Define the sequence $\{x_n\}$ by

$$x_{n+1} = P((1 - \alpha_n)Tx_n \oplus \alpha_nTy_n)$$
$$y_n = P((1 - \beta)x_n \oplus \beta_nTx_n) \quad \forall \le 1$$

Then $\{x_n\}$ is convergent to a common fixed point of S and T.

'Above theorems defines the Δ - convergence of a defined sequence to a common fixed point of two nonself nonexpansive mappings.

References

- Ravi P. Agrawal, D.O.Regan and D.R.Sahu, Fixed Point theory for Lipschitzian type mapping with applications, springer, London/ Newyork, (2009).
- W.Haowong and B.Panyanak, Approximating fixed points of nonexpansive nonself mapping in CAT(0) space, Fixed Point Th. Appl. ID 367274(2010).
- [3] T.Suzuki, Fixed point theorem and convergence theorems for some generalized nonexpansive mappings Math. Anal. Appl., 340(2008), 1088-1095.
- [4] G.Falset, J.C.Fuster and T.Suzuki, Fixed point theory for a class of generalized nonexpansive mapping, J. Math. Anal. Appl., 375(2011), 185-195.
- [5] Razani and Shabani, Approximating fixed points for nonself mappings in CAT(0) space 2011-65, Fixed point theory and appl, springer open journal.
- [6] Shabani and S.J.Hoseini Ghoricheh, Approximating fixed point of generalized nonexpansive nonself mappings in CAT(0) spaces, Math. Sci. Journal, 7(1)(2011), 89-95.

- [7] Kirk and W.Panyanak, A concept of convergence in geodesic space, Nonlinear Anal., 68-36893696 (2008) doc (10.1016/na 2007.04.011).
- [8] Dhompongsa, S.Kirk and W.A.Panyanak, Nonexpansive set valued mapping in metric and Banach space, J. Nonlinear convex anal., 8(2007), 35-45.