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1. Introduction

Let A, denote the class of functions normalized by

f (Z) =P 4+ Z an+pz"+1’> (p eN:=1,2,3, )7 (1)
n=1

which are analytic in the open unit disk U.

Let f and F' be members of H(U), the function f(z) is said to be subordinate to F'(z), or F(z) is said to be superordinate
to f(z), if there exists a function w(z) analytic in U with w(0) = 0 and w(z) < 1(z € U), such that f(z) = F(w(z)). In such
a case we write f(z) < F(z). In particular, if F is univalent, then f(z) < F(z) if and only if f(0) = F(0) and f(U) C F(U)
(see [4]).

For two functions f (z) given by (1) and
g(2) zzp-l—anerz"H’ (peN:=1,2,3,...), (2)
n=1
The Hadamard product (or convolution) of f and g is defined by

(f*g)(2) =2"+ Z an+pbn+pzn+p = (g% f)(2). 3)

n=1

We recall the definitions of the fractional derivative and integral operators introduced and studied by Saigo (cf. [14, 15]).
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Definition 1.1. let a > 0 and B,v € R, then the generalized fractional integral operator, IO By of order a of a function

f(2) is defined by
—a—p

Igiaff‘/ _ zF (a) / (Z _ t)a—l o Fy (a + ﬁ7 —v; 1— 2) f (t) dt, (4)

0

where the function f(z) is analytic in a simply-connected region of the z - plane containing the origin and the multiplicity

of (z —t)*~! is removed by requiring log(z — t) to be real when (zt) > 0 provided further that
f(z)=0(z,2z—=0 for e>max(0,5—7)—1. (5)

Definition 1.2. Let 0 < a < 1 and B, € R, then the generalized fractional derivative operator Ja’f” of order a of a
function f (z) defined by

z

1 d | o _ t
o,B,y _ el a—f _ [e _ Al — a1 — 2
O T A L ARt B GRS B B B PICL T B
0
dinjgz"“f(). (n<a<n+1;neN) (6)

where the function f (z) is analytic in a simply-connected region of the z - plane containing the origin, with the order as

given in (5) and multiplicity of and multiplicity of (z — ) is removed by requiring log (z — t) to be real when (z —t) > 0.

Definition 1.3. For real number a.(—oo < ae < 1) and 8 (—oo < 8 < 1) and a positive real number ~y, the fractional operator

Uss P Ay — Ay is defined in terms of Ja’f’"’ and I&’ZB” by (see [8] and [11])

aﬁ'yi (1+p 1+p+ﬂy—/6)n n+p
=2+ n ) 7

which for f (z) = 0 may be written as

P(1+p—B)T(1+p+ ) B g ,8,
F(lip)l"(l«i»pi’y’ya)a J ’Yf (Z) (0 <ac< 1)7
Uél,’zﬁ’wf (2) = (8)
T(14+p—B)T(1+p+y—a) a,B,
Tt e 2 los "7 (2) (-0 < <0).

Definition 1.4. Using the operator Ug"ﬂ’” Ahmed S. Galiz [3] introduce the following linear operator q&;né:\/f A, > A,

If f € Ap, then from (1) and (7), we can easily see that

e =+ 2 [P g e ®
where m € No = NUO0,l >0,\ >0, and p € N . The above operator generates several operators studied by many authors
such as El-Ashwah and Aouf [6], Selvaraj and Karthikeyan [15], DziokSrivastava operator [5], Kamali and Orhan [7], Kumar
et al. [9], Salagean [12], Al-Oboudi [1] and others.

It is easily verified from (8) that
/
Mz (O0A0 () = 0+ D OUAE () = [ (1= N) + 1 6040 (2) (10)

By making use of the differintegral operator, qﬁ;"éi f, and the above mentioned principle of subordination between analyt-

icfunctions, we introduce and investigate the following subclass of the class of p -valent analytic functions.
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For fixed parameters A and B (-1 < B < A < 1) and 0 < o < p, we say that a function f € A, is in the class

S{,"’l’k(a, B,7,0; A, B) if it satisfies the following condition:

m, LA !
1 z (%,B,vf(z)) R RS & Az
v=a | oo T+Bs

or, equivalently, if

S OO I 1)
(A= B) (0 — o) 672 1) — Bz (9752 1(2)) — ot £ (=)}

<1 (2€0).

(11)

(12)

Furthermore, we say that a function f € Sy""*(a, 8,7, 0; A, B) is in the analogous class 7,"*(a, 8,7, 05 A, B) if f is

of the following form:

f(Z) :Zp72|a‘n+l7‘zn+p (peN: 172735"')3

n=1

To prove our results, we need the following definitions and lemmas.

2. Preliminary Lemmas

In proving our main results, we need each of the following lemmas.

(13)

Lemma 2.1. (Miller and Mocanu [10]). Let —=1 < B < A <1, and > 0. Also let the complex number vy be constrained by

B-4)
R =2-S—p

Then the following differential equation:

(z € U)

has a univalent solution in U given by

25+7<1+Bz)5(A*B)/B

8 [ 1B+ =1(14Bt)B(A=B)/B g
0

zﬁ+’yezp(BAz)
B [tB+7—lexp(BAt)dt
0

@

Furthermore, if

d(2)=1+crz+cz> +---

is analytic in U and satisfies the following differential subordination:

2 (z) 1+ Az
Bo(2)+~v 1+ Bz

¢ (2) + (z €U)

then
1+ Az

0(2) <4 (2) < 1

(z €U)

and q(z) is the best dominant of (15).

(14)

(15)
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Lemma 2.2. (Wilken and Feng [18]). Let v be a positive measure on [0, 1]. Also let h(z,t) be a complez-valued function
defined on U x [0,1] such that h(z,t) is analytic in U for each t € [0,1], and h(z,t) is v-integrable on t € [0,1] for all z € U.
In addition, suppose that R(h(z,t)) > 0, h(—r,t) is real and

*(5es) = i

If

then

%(L)éL (2l <r < 1).

n(2) n(=r)

Each of the identities (asserted by Lemma 3 below) is well known (see, for example, [[14], Chapter 14]).

Lemma 2.3. For real or complex parameters a1, az, 51 (ﬁl ¢ Zg) .

1
/t"‘?*l (1—t) 727t (1 — zt) " dt = L(a2) T (B — az) a2)2F1 (a1, az; f1; 2)
0

I'61
R(B1) > R(a2) >0); (16)
21 (a1, a2 B1;2) = 21 (2, 013 B 2) (17)
o F1 (a1, 25 B152) = (1 —2)" ' o A (am@l — ;B ﬁ) . (18)

3. Inclusion Relationships for the Class S;n’l’/\(oz,ﬁ,fy, 0; A, B)

Unless otherwise mentioned, we assume throughout this section that 0 <o <p,and 1 < B< A< 1.

Theorem 3.1. If f € S "' (a, B,7,0; A, B), and

1-2o-0)+ -5 (5 - p-0) 20 (19)
then
1 [ (ﬁél:f(z))l 1 1 P+ —(@—a) A\ _
p—o ¢Z‘é’;f(z) 7 <]?—U(Q(Z)i( A ))_Q(Z)
E 2
where
oo L\ (A=B)(p—0)/B
/t(T’l) (1117;) dt. (B£0),
Q(2) = (21)
/t(pT“ Yexp (A(p— o) (t— 1) 2) dt, (B =0)
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and q(z) is the best dominant of (20). If, in addition to (19),

—B(Et —p+o+1)

A< P (-1< B <0) (22)

then
S;"“’l‘/\(a, B,7v,0;A,B) C S;n’l’A(Oé, B,7,0;1—2p,—1), (23)

where

The result is the best possible.

Proof. By setting

1 [=(emire)
¢(Z)_ p—o ¢>Zl,’é”f;f(2) -0 (ZGU) (24)

we note that ¢(z) is analytic in U with ¢(0) = 1. Using the identity (6) in (24), and then differentiating the resulting

equation logarithmically with respect to z, we obtain

L (= (emine)
p=o | GlEAf(z)

Az (2) 1+ Az

= e+t ) - —o)N 14 Bz

(z € ). (25)

which shows that ¢(z) satisfies the differential subordination (15). Hence, by applying Lemma 1, we get

1+ Az

¢(Z)<Q(Z)<m

(=€),

where ¢(z) is given by (14) with 8 = po and v = w and this ¢(z) is the best dominant of (20). This proves the

assertion (19) of Theorem 1. Next we show that

inf {R(g(2)} = q(-1). (26)
If, in Lemma 3, we set
— B-—A l l
o] = —(p U)Bg )7 Qo = pii_ and ﬁl = pii— + 1

then 81 > a2 > 0. By using (16) to (18), we see from (21) that, for B # 0,

Q(z) =1+ Bz)™ /to""*l (1+ Btz) “tdt
0

_ r (012) . . Bz
= 1_‘51 2F1 (1,041,61,7BZ+1) . (27)
In order to prove (26), we need to show that
&e( ! )> ! (z € U) (28)
Q&) 7 e '
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Since the hypothesis (22) implies that 81 > a1 > 0, by using (16), (27) yields

1

Q(2) :/h(z7t)dv(t)

0

14+ Bz
- <t <
h(z:1) 1+(1—-¢)Bz Ost<1)

and

I (a2)

@)= T T (B —on)

ter (1 — )P gy,

where d(t) is a positive measure on ¢t € [0,1]. For 1 < B < 0, it may be noted that R {h(z,t)} > 0 and h(—r,t) is real for

0<r<1andte€][0,1]. Therefore, by Lemma 2, we have

%(ﬁ)Zﬁ (ol <r<1).

Thus, by letting » — 1—, we obtain (28). Moreover, by letting

B (2 — 1
A—><— (B —p+o+ ))+

p—0

for the case when
A B —pro+1)
= o ,

and using (20), we get the inclusion relationship (23) asserted by Theorem 1.
The result is the best possible as the function ¢(z) is the best dominant of (20). This completes the proof of Theorem 1. [
Setting A =1 and B = —1 in Theorem 1, we get the following consequence.

Corollary 3.2. For mazx pT“ —p, % (2p — pT“ - 1)} <o <p,

SN, B,y,031,-1) € SN, B, 7y, 031, 1) (29)

where
p+1 p+1 Nl p+l!
=P LR (1,2 -0) B 1 P
P= {21(, (p—0);= +,2>} TP
The result is the best possible.

For a function f € A,, the generalized BernardiLiberaLivingston integral operator Fx p, (f) is defined by

1

Fan () =Fap (f) (2) = B2 / L F (1) dt

ZH
0
- (z + Z ui:in“> xf(z) (> -p) (30)

Theorem 3.3. let p be a real number satisfying the following inequality:

1-A)(p-0)+(1-B)(p+0)=0. (31)
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1. If f € S;”’Z’A(oe,ﬁ,’y,a;A7B), then the function Fap defined by (3.12) belongs to the class S;"’l’k(mﬁ,'y,a; A, B).

Furthermore,
m, LA !
I GG B ( - U)) =3(2)
p—o I E) p—o \Q(2)
14+ Az
1+ B> (€U, (32)
where
1
/14 Bte\(A-B)w=0)/B
ptp—1
[t <1+Bz) d, (B #0),
0
Qz) = (33)
1
/t“+p—1exp(A (p—o)(t—1)z)dt, (B=0).
0
and q(z) is the best dominant of (32).
2. If-1<B<0and
(B-A)(p—o) (1-A4)(p—o)
> WwWmAWTI) g )P TI)
uimam{ B p—1, T—B oy, (34)
then for [ € Si"(a, B,7,0: A, B),
]:NP (f) € S;n’l%(a75777 1-— 2X7 71)7
where
_ (B-A)(p-o). B\
Xi=o— (u+p){2F1<1, 5 R (n+o0)
The result is the best possible.
Proof.  From (5) and (30), it follows that
/
2 (0N Fant (@) = () (082 1(2) = (SR FAL (). (35)

By setting
M !
é(2) = 1 (¢a,ﬂ,7 pr(z)) b (zel), (36)
— O m,l
P\ (61 Fanf(2)

we see that ¢(z) is analytic in U and ¢(0) = 1. Using the identity (35) in (36), and then differentiating the resulting equation

logarithmically with respect to z, we obtain

(e Ere)
P\ (61 Fanf(2)

—o|[=¢(2)+

Thus, by applying Lemma 1, we get

00 <06 = 2 (gr - W+0)) < T (<),

where Q(z) is given by (33). This proves the first part of Theorem 2.

Following the same lines as in our demonstration of Theorem 1, we can prove the second part of Theorem 2. The result is

the best possible as g(z) is the best dominant. O
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By putting A =1 and B = —1 in Theorem 2, we deduce the following consequence.

Corollary 3.4. If u is a real number satisfying
p>maz{~o,p—2 —1}and f € 8" Na,B,7,0),

then

]:)\,p (f) € S;nyl’A(7767770)7

where

(u+p){2Fl (172(p—0);u+p+1;;>}1—(u+0)

The result is the best possible.

4. Basic Properties of the Class 7;;”” (o, 8,7,0; A, B) and the Gener-
alized Neighbourhoods.

Theorem 4.1. Let m > 0,1 > 0,A >0, a > 0,8 > 0,7 > 0 and —1 < B < 0. Also let f € A, be given by (1.9). Then
f € 7;M7l,>\ (CY,,B,’Y,O’;A,B) lf and only Zf

S e e m e s ) lansl <1

(37)

where Q(n,a,B,7,0) = {p”‘l"‘ﬂn]m( (1+p), I+p+v-75),

p+l l+p=0F),(A+p+y-0a),
The result is sharp.

Proof. First of all, suppose that f € ’7;’"’“ (e, B,7,03 A, B) is given by (1.9). Then the inequality (1.8) readily yields

2 (wg;if(z)) — PO (%)
(A= B)(p—0) i 1) = Bz (0420(2) = o 1))

S 10 (n, 01 8,7,0) [anss| 2"
= =1 <1, (38)
(A-B)(p—o)+ 2_:1 {(A=B)(p—o0) = Bn}Q(n,a,B,7v,0) |antp| 2™

Since ||Re (z)| < |z|, for any z, choosing z to be real and letting z — 1— through real values, we find from (4.2) that

NgE

nfl (’ﬂ, a7ﬂ7’77 U) |an+P‘ (39)
<(A=B)(p-0)= S {(A= B) (o) — B} Q(n,,5,7,0) lants

which gives the desired inequality (4.1).
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To prove the converse part of Theorem 3, we assume that the inequality (4.1) holds true. Letting |z| = 1, we find from (1.9)
and (4.1) that

= (o2 7(2)) — poi 1)
=B oo —p s (o) -miise)

= Z nQ (n7a7 ﬂ777 U) |a’ﬂ+P|
n=1

((A B Z 0) _Bn}Q(n7a767770—)|an+P>

n=1

<0,

by the hypothesis of Theorem 3. Hence, by the Maximum Modulus Theorem, the function f € A, defined by (1.9) belongs
to the class ﬂm’l’k(a, B,7,0; A, B).

Finally, we note that the inequality (4.1) is sharp for the function f defined in U by

_ (A-B)(p—o) net
IO = = Bar A-B - 0ma e N (0
O
Corollary 4.2. If the function f (z) defined by (1.4) belongs to the class
7;m,l,/\(a7 /87 Y, 0; A7 B); then
(A-—B)(p—o) n+p (n eN).

[t S B s (A= B) (0 —o)} UmaBor0)

The estimate is sharp for the function f given by (4.4).

5. Distortion Bounds

Theorem 5.1. A function f (z) defined by (1.4) is in S]T’l’)‘(a,,@,'y, o; A, B), then for |z| = r, we have

o (P+)"(1+p)(1+p+7-P)(A-B)(p—0) < ()]
P+1+N)"Q+p-B)(1+p+y—-a){l-B)n+(A-B)(p-o)} B
<Py P+D"(A+p)(A+p+v—B(A-B)(p—o) 1 (a1)
- (P+i+N)"A+p-B)1+p+y—a){(l-B)n+(A-DB)(p-o)}
for z € U. The result is sharp.
Proof. Since f (z) belongs to the class S{,”’l”\(a, B,7,0; A, B) in view of Theorem 2.1, we obtain
(p+l+k)m(1+p7ﬁ)(1+p+vfa){(1*B)n+(A*B)(pr)}ia
P+)" (L+p)A+p+y—H) "
Z B)n+(A-B)(p—0)}Q2(n,opB,7,0)antp < (A—B) (p—o0)
which is equivalent to
Z“ (P+D"(A+p)(A+p+y—B)(A-B)(p-o) (42)
S G AN (A p-B) (L +ptr-a){(1-B)n+(A-B)(p—o)]

n=1
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Using (1.4) (5.2), we obtain

1
[F < J2A” + 277 ) any

n=1

Srp+rp+1§:an+p
n=1
p+D)"(1+p)(A+p+v-B)(A-B)(p—o) sy

S TN (4p-B(1+p+7-a){1-B)nt (A-B) (r—0)]

Similarly,

S P (P+D"(A+p)(A+p+y—B(A-B)(p-o) !
- P+l+XN"A+p=B)A+p+ty—a){(l-B)n+(A-B)(p—0o)}

This completes the proof of Theorem 5.1.

Theorem 5.2. A function f (z) defined by (1.4) is in S{,”’l”\(a,ﬂ,’y, 0; A, B), then for |z| = r, we have

oot P+D"A+p)(A+p+y-P)(A-B)(p-0)(p+1) P
P+I+N"(A+p=-B)A+p+y-a){(1-B)n+(A-B)(p-0)}

<|fr(2)l <

! P+D"(A+p)(A+p+y=P)(A=B)(p=0)(p+1) P

P+I+N)"(1+p-B)(1+p+v—a){1-B)n+(A-B)(p—o0)}
for z € U. The result is sharp.

Proof. Since f (z) belongs to the class S;”’l’)‘(a, B,7,0; A, B) in view of Theorem 2.1, we obtain

oo

(p+i+N"A+p-BU+pty-—a){l-B)n+(A=-B)(p-0) Z?H—p Antp

p+D)"A+p)(1+p+vy—pB)

n=1

Z B)n+ (A= B)(p—0)}Q2(n,,B,7,0) anp < (A= B)(p—o0)

which is equivalent to

e}

p+)"A+p)Q+p+1v-B(A-B)(p—0)(p+1)

Z (P sy < T N T p—B) (Lt p iy ) {(1-B)nt(A—B)(p—

— o)}

Using (1.4) (5.4), we obtain

[ )] <pllP™H + 127D (0 +p) anp

<prPt 1" (n+p) anty

<ty (P+)" (1+p)(1+p+7=PF)(A=B)(p—0)(p+1) P

- (P+1+N)"A+p=-B)(A+p+y—a){1-B)n+(A-B)(p—0)}
Similarly,

|7 (2)]

S (P+D)"(A+p)(A+p+y=B)(A=B)(p—0)(p+1) P

- p+1+N"A+p=-B)(A+p+y—a){(1-B)n+(A-B)(p—o)}
This completes the proof of Theorem 5.2.

(43)

(44)
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6. Closure Theorems

Theorem 6.1. Let the functions

z) =2 — Z Gntp,2" T (antp; 2 0) (45)

be in the class S;"‘Z’A(a,ﬂ,%a;A, B) for every j =1,2,3,...,m. Then the function h(z) defined by

hz) =) ¢ifi(z) (¢ 20) (46)
j=1
1s also in the same class S;“’l’)‘(a,ﬁ,'y,a;A,B), where
> e =1 (47)
j=1

Proof. By means of the definition of h(z), we can write

h(z) = 2" — Z (Z Cjan-&-pyj) 2P (48)

n=1
Now, since f;(z) € Sp*'"* (e, B,7,0; A, B) for every j = 1,2,3,...,m. We obtain
> Q(n,a,8,7,0)[(1=B)n+ (A= B)(p—0)|anip; < (A= B) (p—o0), (49)
n=1

for every j =1,2,3,...,m, by virtue of theorem (4.1). Consequently, with the aid of (6.5) we can see that

Q(n,a, 8,7,0)[(1 = B)n+ (A - B) (Z Cjlnip )

M

{ZQ (n,a,8,7,0)[(1=B)n+(A-B)(p- )]an+p,j}

IN

2
Zq) (A=B)(p—0)=(A=-B)(p—-o0)

This proves that the function h(z) belongs to the class S;”’l’)‘(a, B,7v,0; A, B). O

Theorem 6.1. Let the functions

fo(z) = 2% and (50)

frap (2) =2 — {1-=B)n+(A-B) (p—a)}Q(n,a,ﬂ,%U)Z

for -1 < B < A< 1,-1<B<0,0< o0 <pandQ(n,a/pb,~v0) is defined by (4.1). Then f(z) is in the class

S;"’I’A(a,ﬂ,fy, o; A, B) if and only if it can be expressed in the form

z) = Z Entpfrtrp (Z) (&n+p > 0) (52)

and

Z‘gner =1 (53)
n=0
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Proof.  Assume that

f(z) = Z Entpfrip (2)

oo

o (A= B)(p—o0) o
=L T B A B - 0) 0 a s o) 59
Then, we get
ZQ("’%O‘?Bv’%U) {(1 _B)n+ (A_B) (p—O')}
y (A=B)(p—0) -

{-B)n+(A-B)(p—0)}2(n,a,B,7,0)
<(A-B)(p-o).

By virtue of theorem (4.1). This proves that the function f(z) belongs to the class S;"’Z’A(a, B,7v,0; A, B).

Conversely, assume that f(z) belongs to the class S;”’l‘/\(oz, B,7,0; A, B). Again, by virtue of theorem (4.1). We have

(A-B)(p—0)
{A=B)n+(A=B)(p—0)}Q2(n,ap,7,0)

An+p <

Next, setting

{(1—B)n+(A—B)(p—a)}Q(n,a,ﬁ,fy,a)

€+P_ (A_B)(p_o_) a+p an
§P =1- Z 571“1’]33
n=1
We have the representation (6.8). This complete the proof of the theorem. O

7. Radii of Close-to-Convexity, Starlikeness and Convexity

Theorem 7.1. Let f € S;"’l’A(a,ﬂxy, 0; A, B).Then f is p-valently close-to-convex of ordern (0 < n < p) in|z| < R1, where

e J[H0=B)n+ (A= B) (p -0} 2.0, 8,7.0) (p=n\]"
= f“ (A-B)(p—0) (53] } (%)

and Q (n, o, B,7,0) is defined by (37).

Theorem 7.2. Let f € SJ""*(a, B,7,0; A, B).Then f is p-valently starlike of order n(0 < n < p) in |z| < R2, where

_ o [{U=B)n+(A=B)(p-0)}2(n,a.8,7,0) (_p—n \]*
fia = f{{ (A-B) (o) ()] } (%)

and Q (n,a, B,7,0) is defined by (37).

Theorem 7.3. Let f € S;”’l’A(mﬁ,'y,a;A,B).Then f is p-valently convex of order

n(0 <n < p)in|z| < Rs, where

3=

R3 = inf

n

[{(1*B)nJr(A*B)(P*U)}Q(nvaaﬂv%g)< p(p—n) )}
(A-=B)(p—o0) m+p)(n+p—n)

} (57)
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and Q (n, o, B,7,0) is defined by (37).

In order to establish the required results in Theorems 7.1, 7.2 and 7.3, it is sufficient to show that

!

FC) _pl<p—n  for |d<Ru

zp~1

!

2yl <poy for  p|<Rs and

f(2)

zf" (2)

1 —pl<p—

(+ an p|<p—-n  for |2| < Rs,
respectively.
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