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1. Introduction and Preliminaries

Let (X, d) be a metric space. We denote by 2X the class of all nonempty subsets of X, by CL(X) the class of all nonempty

closed subsets of X, by CB(X) the class of all nonempty closed bounded subsets of X. A functional H : CL(X)×CL(X)→

R+ ∪ {+∞} is said to be the Pompeiu-Hausdorff generalized metric induced by d is given by

H(A, B) =

 max
{

supa∈AD(a, B), supb∈B D(b, A)
}
, if maximum exists,

+∞, otherwise,

for all A, B ∈ CB(X), where D(x, A) = infa∈A d(x, a) denote the distance from x to A ⊂ X. For simplicity, if x ∈ X, we

shall denote g(x) by gx.

The existence of fixed points for multivalued contractions and non-expansive mappings using the Hausdorff metric studied by

many authors under different contractive conditions. The theory of multivalued mappings has found application in control

theory, convex optimization, differential inclusions and economics.

The idea of the coupled fixed point was initiated by Guo and Lakshmikantham [22] in 1987, which was well followed

by Bhaskar and Lakshmikantham [5] where the authors introduced the notion of mixed monotone property for a linear

contraction (mapping) F : X2 → X (wherein X is an ordered metric space) and utilized the same to study the existence
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and uniqueness of solution for periodic boundary value problems. In 2009, Lakshmikantham and Ciric [26] generalized these

results for nonlinear contraction mappings by introducing the notions of coupled coincidence point and mixed g-monotone

property. Very recently, Samet et al. [36] have shown that the coupled fixed results can be more easily obtained using

well-known fixed point theorems on ordered metric spaces. In recent years, the existence results on coupled fixed point were

generalized and improved by various authors [4, 6, 10, 11, 19, 20, 23, 30, 31, 35, 39].

Abbas et al. [2] obtained coupled fixed/coincidence point theorems involving hybrid pair of mappings satisfying generalized

contractive conditions in complete metric spaces by extending the coupled fixed point theory to multivalued mappings. For

more details on coupled fixed point theory for hybrid pair of mappings, one can refer [2, 12, 14–18, 28, 38] and the references

involved therein.

In [2], Abbas et al. introduced the following for multivalued mappings:

Definition 1.1. Let X be a nonempty set, F : X ×X → 2X and g be a self-mapping on X. An element (x, y) ∈ X ×X is

called

(1) a coupled fixed point of F if x ∈ F (x, y) and y ∈ F (y, x).

(2) a coupled coincidence point of hybrid pair {F, g} if gx ∈ F (x, y) and gy ∈ F (y, x).

(3) a common coupled fixed point of hybrid pair {F, g} if x = gx ∈ F (x, y) and y = gy ∈ F (y, x).

We denote the set of coupled coincidence points of mappings F and g by C(F, g). Note that if (x, y) ∈ C(F, g), then (y, x)

is also in C(F, g).

Definition 1.2. Let F : X ×X → 2X be a multivalued mapping and g be a self-mapping on X. The hybrid pair {F, g} is

called w−compatible if gF (x, y) ⊆ F (gx, gy) whenever (x, y) ∈ C(F, g).

Definition 1.3. Let F : X × X → 2X be a multivalued mapping and g be a self-mapping on X. The mapping g is called

F−weakly commuting at some point (x, y) ∈ X ×X if g2x ∈ F (gx, gy) and g2y ∈ F (gy, gx).

Aamri and ElMoutawakil [1] defined (EA) property for self-mappings which contained the class of noncompatible mappings.

Kamran [25] extended the property (EA) for hybrid pair g : X → X and T : X → 2X . Liu et al. [27] introduced common

(EA) property for a hybrid pair of single and multivalued mappings and gave some new common fixed point theorems under

hybrid contractive conditions. In [24], Jungck and Rhoades introduced the notion of occasionally weakly compatibility

for self mappings. Abbas and Rhoades [3] extended the concept of occasionally weakly compatible mappings for hybrid

pair g : X → X and T : X → 2X . Deshpande and Handa [13] introduced the concept of (EA) property and occasionally

w−compatibility for hybrid pair g : X → X and F : X × X → 2X . They also introduced the concept of common (EA)

property for hybrid pairs f, g : X → X and F, G : X ×X → 2X .

Definition 1.4 ([13]). Mappings g : X → X and F : X ×X → CB(X) are said to satisfy the (EA) property if there exist

sequences {xn} and {yn} in X, some s, t in X and A, B in CB(X) such that

lim
n→∞

gxn = s ∈ A = lim
n→∞

F (xn, yn),

lim
n→∞

gyn = t ∈ B = lim
n→∞

F (yn, xn).

Definition 1.5 ([13]). Let f, g : X → X and F, G : X ×X → CB(X). The pairs {F, f} and {G, g} are said to satisfy the

common (EA) property if there exist sequences {xn}, {yn}, {un} and {vn} in X, some u, v in X and A, B, C, D in CB(X)
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such that

lim
n→∞

F (xn, yn) = A, lim
n→∞

G(un, vn) = B,

then lim
n→∞

fxn = lim
n→∞

gun = u ∈ A ∩B,

and lim
n→∞

F (yn, xn) = C, lim
n→∞

G(vn, un) = D,

then lim
n→∞

fyn = lim
n→∞

gvn = v ∈ C ∩D.

Definition 1.6 ([13]). Mappings F : X ×X → 2X and g : X → X are said to be occasionally w−compatible if and only if

there exists some point (x, y) ∈ X ×X such that gx ∈ F (x, y), gy ∈ F (y, x) and gF (x, y) ⊆ F (gx, gy).

There exists considerable literature about fixed point properties for two hybrid pairs of mappings, including [3, 7–9, 13, 27,

29, 32, 33, 37, 40]. In [21], Gordji et al. established some fixed point theorems for (ψ, ϕ)-weak contractive mappings in a

complete metric space endowed with a partial order. Ciric et al. [6] proved coupled fixed point theorems for mixed monotone

mappings satisfying a generalized Mizoguchi-Takahashi’s condition in the setting of ordered metric spaces. In [19], Ding et

al. proved coupled coincidence and common coupled fixed point theorems for generalized nonlinear contraction on partially

ordered metric spaces which generalize the results of Lakshmikantham and Ciric [26].

The main objective of this article is to establish some common coupled fixed point theorems for two hybrid pairs of mappings

under weak ψ−ϕ contraction satisfying some weaker conditions on a noncomplete metric space, which is not partially ordered.

It is to be noted that to find coupled coincidence point, we do not employ the condition of continuity of any mapping involved

therein. We improve, extend and generalize the results of Bhaskar and Lakshmikantham [5], Ciric et al. [6], Ding et al. [19],

Gordji et al. [21] and Lakshmikantham and Ciric [26]. The effectiveness of our generalization is demonstrated with the help

of an example.

2. Main Results

Let Ψ denote the set of all functions ψ : [0, +∞)→ [0, +∞) satisfying

(iψ) ψ is continuous and non-decreasing,

(iiψ) ψ(t) = 0⇔ t = 0,

(iiiψ) lim sups→0+
s

ψ(s)
<∞.

Let Φ denote the set of all functions ϕ : [0, +∞)→ [0, +∞) satisfying

(iϕ) ϕ is lower semi-continuous,

(iiϕ) ϕ(t) = 0⇔ t = 0,

(iiiϕ) for any sequence {tn} with limn→∞ tn = 0, there exists k ∈ (0, 1) and n0 ∈ N, such that ϕ(tn) ≥ ktn for each n ≥ n0.

Let Θ denote the set of all functions θ : [0, +∞)→ [0, +∞) satisfying

(iθ) θ is continuous,

(iiθ) θ(t) = 0⇔ t = 0.

For example, if ψ(t) = ln(t+ 1), ϕ(t) = t− ln
(
t
2

+ 1
)

and θ(t) = t
4
. Obviously, then ψ ∈ Ψ, ϕ ∈ Φ and θ ∈ Θ, because ψ is

continuous, non-decreasing (ψ′(t) = 1
t+1

> 0), positive in (0, +∞), ψ(0) = 0 and lim sups→0+
s

ψ(s)
= 1 <∞.

Also, ϕ is continuous, positive in (0, +∞) and ϕ(0) = 0, now let (tn) be a sequence such that tn → 0 as n → ∞, since

limn→∞
ϕ(tn)
tn

= ϕ′(0) = 1
2
, then for any ε > 0, there exists n0 such that

∣∣∣ϕ(tn)
tn
− 1

2

∣∣∣ < ε for all n ≥ n0, hence ϕ(tn) ≥ 1
2
tn
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for all n ≥ n0. Furthermore θ is continuous and θ(0) = 0. For convenience, we denote

M(x, y, u, v) = max



d(fx, gu), D(fx, F (x, y)), D(gu, G(u, v)),

D(fx, G(u, v))+D(gu, F (x, y))
2

,

d(fy, gv), D(fy, F (y, x)), D(gv, G(v, u)),

D(fy, G(v, u))+D(gv, F (y, x))
2


,

and

N(x, y, u, v) = min



D(fx, F (x, y)), D(gu, G(u, v)),

D(fy, F (y, x)), D(gv, G(v, u)),

D(fx, G(u, v)), D(gu, F (x, y)),

D(fy, G(v, u)), D(gv, F (y, x))


.

Theorem 2.1. Let (X, d) be a metric space. Assume F, G : X ×X → CB(X) and f, g : X → X be mappings satisfying

(i) {F, f} and {G, g} satisfy the common (EA) property.

(ii) For all x, y, u, v ∈ X, there exist some ψ ∈ Ψ, ϕ ∈ Φ and θ ∈ Θ such that

ψ (H(F (x, y), G(u, v))) ≤ ψ (M(x, y, u, v))− ϕ (ψ (M(x, y, u, v))) + θ (N(x, y, u, v)) .

(iii) f(X) and g(X) are closed subsets of X. Then

(a) F and f have a coupled coincidence point,

(b) G and g have a coupled coincidence point,

(c) F and f have a common coupled fixed point, if f is F−weakly commuting at (x, y) and f2x = fx and f2y = fy

for (x, y) ∈ C(F, f),

(d) G and g have a common coupled fixed point, if g is G−weakly commuting at (x̃, ỹ) and g2x̃ = gx̃ and g2ỹ = gỹ for

(x̃, ỹ) ∈ C(G, g),

(e) F, G, f and g have common coupled fixed point provided that both (c) and (d) are true.

Proof. Since {F, f} and {G, g} satisfy the common (EA) property, there exist sequences {xn}, {yn}, {un} and {vn} in

X, some u, v in X and A, B, C, D in CB(X) such that

lim
n→∞

F (xn, yn) = A, lim
n→∞

G(un, vn) = B,

lim
n→∞

fxn = lim
n→∞

gun = u ∈ A ∩B,

lim
n→∞

F (yn, xn) = C, lim
n→∞

G(vn, un) = D, (1)

lim
n→∞

fyn = lim
n→∞

gvn = v ∈ C ∩D.

Since f(X) and g(X) are closed subsets of X, then there exist x, y, x̃, ỹ ∈ X, we have

u = fx = gx̃ and v = fy = gỹ. (2)

Now, by using condition (ii) and (iψ), we get

ψ (H(F (x, y), G(un, vn))) ≤ ψ (M(x, y, un, vn))− ϕ (ψ (M(x, y, un, vn))) + θ (N(x, y, un, vn)) ,
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where

M(x, y, un, vn) = max



d(fx, gun), D(fx, F (x, y)), D(gun, G(un, vn)),

D(fx, G(un, vn))+D(gun, F (x, y))
2

,

d(fy, gvn), D(fy, F (y, x)), D(gvn, G(vn, un)),

D(fy, G(vn, un))+D(gvn, F (y, x))
2


,

and

N(x, y, un, vn) = min



D(fx, F (x, y)), D(gun, G(un, vn)),

D(fx, G(un, vn)), D(gun, F (x, y)),

D(fy, F (y, x)), D(gvn, G(vn, un)),

D(fy, G(vn, un)), D(gvn, F (y, x))


.

Letting n→∞ in the above inequality, by using (iψ), (iϕ), (iθ), (iiθ), (1), (2), fx ∈ A and fy ∈ C, we get

ψ (D(F (x, y), fx)) ≤ ψ (max {D(fx, F (x, y)), D(fy, F (y, x))})− ϕ (ψ (max {D(fx, F (x, y)), D(fy, F (y, x))})) .

Similarly, we can obtain that

ψ (D(F (y, x), fy)) ≤ ψ (max {D(fx, F (x, y)), D(fy, F (y, x))})− ϕ (ψ (max {D(fx, F (x, y)), D(fy, F (y, x))})) .

Combining them, we get

max{ψ (D(F (x, y), fx)) , ψ (D(F (y, x), fy))} ≤ ψ (max {D(fx, F (x, y)), D(fy, F (y, x))})

− ϕ (ψ (max {D(fx, F (x, y)), D(fy, F (y, x))})) .

Since ψ is non-decreasing, therefore

ψ (max {D(fx, F (x, y)), D(fy, F (y, x))}) ≤ ψ (max {D(fx, F (x, y)), D(fy, F (y, x))})

− ϕ (ψ (max {D(fx, F (x, y)), D(fy, F (y, x))})) ,

which, by (iiϕ) and (iiψ), implies that max {D(fx, F (x, y)), D(fy, F (y, x))} = 0, it follows that fx ∈ F (x, y) and fy ∈

F (y, x), that is, (x, y) is a coupled coincidence point of F and f. This proves (a). Again, by using condition (ii) and (iψ),

we get

ψ (H(F (xn, yn), G(x̃, ỹ))) ≤ ψ (M(xn, yn, x̃, ỹ))− ϕ (ψ (M(xn, yn, x̃, ỹ))) + θ (N(xn, yn, x̃, ỹ)) ,

where

M(xn, yn, x̃, ỹ) = max



d(fxn, gx̃), D(fxn, F (xn, yn)), D(gx̃, G(x̃, ỹ)),

D(fxn, G(x̃, ỹ))+D(gx̃, F (xn, yn))
2

,

d(fyn, gỹ), D(fyn, F (yn, xn)), D(gỹ, G(ỹ, x̃)),

D(fyn, G(ỹ, x̃))+D(gỹ, F (yn, xn))
2


,

and

N(xn, yn, x̃, ỹ) = min



D(fxn, F (xn, yn)), D(gx̃, G(x̃, ỹ)),

D(fxn, G(x̃, ỹ)), D(gx̃, F (xn, yn)),

D(fyn, F (yn, xn)), D(gỹ, G(ỹ, x̃)),

D(fyn, G(ỹ, x̃)), D(gỹ, F (yn, xn))


.
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Letting n→∞ in the above inequality, by using (iψ), (iϕ), (iθ), (iiθ), (1), (2), gx̃ ∈ B and gỹ ∈ D, we get

ψ (D(gx̃, G(x̃, ỹ))) ≤ψ (max {D(gx̃, G(x̃, ỹ)), D(gỹ, G(ỹ, x̃))})

− ϕ (ψ (max {D(gx̃, G(x̃, ỹ)), D(gỹ, G(ỹ, x̃))})) .

Similarly, we can obtain that

ψ (D(gỹ, G(ỹ, x̃))) ≤ ψ (max {D(gx̃, G(x̃, ỹ)), D(gỹ, G(ỹ, x̃))})

− ϕ (ψ (max {D(gx̃, G(x̃, ỹ)), D(gỹ, G(ỹ, x̃))})) .

Combining them, we get

max{ψ (D(gx̃, G(x̃, ỹ))) , ψ (D(gỹ, G(ỹ, x̃)))} ≤ ψ (max {D(gx̃, G(x̃, ỹ)), D(gỹ, G(ỹ, x̃))})

− ϕ (ψ (max {D(gx̃, G(x̃, ỹ)), D(gỹ, G(ỹ, x̃))})) .

Since ψ is non-decreasing, therefore

ψ (max {D(gx̃, G(x̃, ỹ)), D(gỹ, G(ỹ, x̃))}) ≤ ψ (max {D(gx̃, G(x̃, ỹ)), D(gỹ, G(ỹ, x̃))})

− ϕ (ψ (max {D(gx̃, G(x̃, ỹ)), D(gỹ, G(ỹ, x̃))})) ,

which, by (iiϕ) and (iiψ), implies that max {D(gx̃, G(x̃, ỹ)), D(gỹ, G(ỹ, x̃))} = 0, it follows that gx̃ ∈ G(x̃, ỹ) and

gỹ ∈ G(ỹ, x̃), that is, (x̃, ỹ) is a coupled coincidence point of G and g. This proves (b).

Furthermore, from condition (c), we have f is F−weakly commuting at (x, y), that is, f2x ∈ F (fx, fy) and f2y ∈ F (fy,

fx), f2x = fx and f2y = fy. Thus fx = f2x ∈ F (fx, fy) and fy = f2y ∈ F (fy, fx), that is, u = fu ∈ F (u, v) and

v = fv ∈ F (v, u). This proves (c). A similar argument proves (d). Then (e) holds immediately.

If we put θ(t) = 0 in the Theorem 2.1, we get the following result:

Corollary 2.2. Let (X, d) be a metric space. Assume F, G : X ×X → CB(X) and f, g : X → X be mappings satisfying

(i) of Theorem 2.1 and

(i) for all x, y, u, v ∈ X, there exist some ψ ∈ Ψ and ϕ ∈ Φ such that

ψ (H(F (x, y), G(u, v))) ≤ ψ (M(x, y, u, v))− ϕ (ψ (M(x, y, u, v))) .

If (iii) of Theorem 2.1 holds. Then

(a) F and f have a coupled coincidence point,

(b) G and g have a coupled coincidence point,

(c) F and f have a common coupled fixed point, if f is F−weakly commuting at (x, y) and f2x = fx and f2y = fy for (x,

y) ∈ C(F, f),

(d) G and g have a common coupled fixed point, if g is G−weakly commuting at (x̃, ỹ) and g2x̃ = gx̃ and g2ỹ = gỹ for (x̃,

ỹ) ∈ C(G, g),

(e) F, G, f and g have common coupled fixed point provided that both (c) and (d) are true.

If we put ϕ(t) = t− tϕ̃(t) for all t ≥ 0 in Corollary 2.2, then we get the following result:
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Corollary 2.3. Let (X, d) be a metric space. Assume F, G : X ×X → CB(X) and f, g : X → X be mappings satisfying

(i) of Theorem 2.1 and

(i) for all x, y, u, v ∈ X, there exist some ψ ∈ Ψ and ϕ̃ ∈ Φ such that

ψ (H(F (x, y), G(u, v))) ≤ ϕ̃ (ψ (M(x, y, u, v)))ψ (M(x, y, u, v)) .

If (iii) of Theorem 2.1 holds. Then

(a) F and f have a coupled coincidence point,

(b) G and g have a coupled coincidence point,

(c) F and f have a common coupled fixed point, if f is F−weakly commuting at (x, y) and f2x = fx and f2y = fy for (x,

y) ∈ C(F, f),

(d) G and g have a common coupled fixed point, if g is G−weakly commuting at (x̃, ỹ) and g2x̃ = gx̃ and g2ỹ = gỹ for (x̃,

ỹ) ∈ C(G, g),

(e) F, G, f and g have common coupled fixed point provided that both (c) and (d) are true.

If we put ψ(t) = 2t for all t ≥ 0 in Corollary 2.3, then we get the following result:

Corollary 2.4. Let (X, d) be a metric space. Assume F, G : X ×X → CB(X) and f, g : X → X be mappings satisfying

(i) of Theorem 2.1 and

(i) for all x, y, u, v ∈ X, there exists some ϕ̃ ∈ Φ such that

H(F (x, y), G(u, v)) ≤ ϕ̃ (2ψ (M(x, y, u, v)))M(x, y, u, v).

If (iii) of Theorem 2.1 holds. Then

(a) F and f have a coupled coincidence point,

(b) G and g have a coupled coincidence point,

(c) F and f have a common coupled fixed point, if f is F−weakly commuting at (x, y) and f2x = fx and f2y = fy for (x,

y) ∈ C(F, f),

(d) G and g have a common coupled fixed point, if g is G−weakly commuting at (x̃, ỹ) and g2x̃ = gx̃ and g2ỹ = gỹ for (x̃,

ỹ) ∈ C(G, g),

(e) F, G, f and g have common coupled fixed point provided that both (c) and (d) are true.

If we put ϕ̃(t) = k where 0 < k < 1, for all t ≥ 0 in Corollary 2.4, then we get the following result:

Corollary 2.5. Let (X, d) be a metric space. Assume F, G : X ×X → CB(X) and f, g : X → X be mappings satisfying

(i) of Theorem 2.1 and

(i) for all x, y, u, v ∈ X, where 0 < k < 1,

H(F (x, y), G(u, v)) ≤ kM(x, y, u, v).

If (iii) of Theorem 2.1 holds. Then

(a) F and f have a coupled coincidence point,

(b) G and g have a coupled coincidence point,

(c) F and f have a common coupled fixed point, if f is F−weakly commuting at (x, y) and f2x = fx and f2y = fy for (x,

y) ∈ C(F, f),

35



Employing weak ψ − ϕ Contraction in Common Coupled Fixed Point Results for Hybrid Pairs of Mappings Satisfying (EA) Property

(d) G and g have a common coupled fixed point, if g is G−weakly commuting at (x̃, ỹ) and g2x̃ = gx̃ and g2ỹ = gỹ for (x̃,

ỹ) ∈ C(G, g),

(e) F, G, f and g have common coupled fixed point provided that both (c) and (d) are true.

Theorem 2.6. Let (X, d) be a metric space. Assume F, G : X ×X → CB(X) and f, g : X → X be mappings satisfying

(i), (ii) of Theorem 2.1 and

(i) {F, f} and {G, g} are w−compatible.

(ii) Suppose that either

(a) f(X) is a closed subset of X and F (X ×X) ⊆ g(X) or

(b) g(X) is a closed subset of X and G(X ×X) ⊆ f(X).

Then F, G, f and g have a common coupled fixed point.

Proof. Since {F, f} and {G, g} satisfy the common (EA) property, there exist sequences {xn}, {yn}, {un} and {vn} in

X, some u, v in X and A, B, C, D in CB(X) satisfying (1) of Theorem 2.1. Suppose (a) holds, that is, f(X) is a closed

subset of X, then there exist x, y ∈ X, we have

u = fx and v = fy. (3)

As in Theorem 2.1, we can prove that

fx ∈ F (x, y) and fy ∈ F (y, x),

that is, (x, y) is a coupled coincidence point of F and f. Hence (x, y) ∈ C(F, f). From w−compatibility of {F, f}, we have

fF (x, y) ⊆ F (fx, fy), hence f2x ∈ F (fx, fy) and f2y ∈ F (fy, fx), that is, fu ∈ F (u, v) and fv ∈ F (v, u). Now, by

condition (ii) of Theorem 2.1 and (iψ), we get

ψ (H(F (u, v), G(un, vn))) ≤ ψ (M(u, v, un, vn))− ϕ (ψ (M(u, v, un, vn))) + θ (N(u, v, un, vn)) ,

where

M(u, v, un, vn) = max



d(fu, gun), D(fu, F (u, v)), D(gun, G(un, vn)),

D(fu, G(un, vn))+D(gun, F (u, v))
2

,

d(fv, gvn), D(fv, F (v, u)), D(gvn, G(vn, un)),

D(fv, G(vn, un))+D(gvn, F (v, u))
2


,

and

N(u, v, un, vn) = max



D(fu, F (u, v)), D(gun, G(un, vn)),

D(fv, F (v, u)), D(gvn, G(vn, un)),

D(fu, G(un, vn)), D(gun, F (u, v)),

D(fv, G(vn, un)), D(gvn, F (v, u))


.

Letting n→∞ in the above inequality, by (iψ), (iϕ), (iθ), (iiθ), (1), (3), we get

ψ (H(F (u, v), B)) ≤ ψ (max {d(fu, u), d(fv, v)})− ϕ (ψ (max {d(fu, u), d(fv, v)})) .
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Since fu ∈ F (u, v) and u ∈ B, therefore by triangle inequality, we have

ψ (d(fu, u)) ≤ ψ (max {d(fu, u), d(fv, v)})− ϕ (ψ (max {d(fu, u), d(fv, v)})) .

Similarly, we can obtain that

ψ (d(fv, v)) ≤ ψ (max {d(fu, u), d(fv, v)})− ϕ (ψ (max {d(fu, u), d(fv, v)})) .

Combining them, we get

max {ψ (d(fu, u)) , ψ (d(fv, v))} ≤ ψ (max {d(fu, u), d(fv, v)})− ϕ (ψ (max {d(fu, u), d(fv, v)})) .

Since ψ is non-decreasing, we have

ψ (max {d(fu, u), d(fv, v)}) ≤ ψ (max {d(fu, u), d(fv, v)})− ϕ (ψ (max {d(fu, u), d(fv, v)})) ,

which, by (iiϕ) and (iiψ), implies that max {d(fu, u), d(fv, v)} = 0. Hence, we have d(fu, u) = d(fv, v) = 0. Thus

u = fu ∈ F (u, v) and v = fv ∈ F (v, u). Since F (X ×X) ⊆ g(X), then there exist x̃, ỹ ∈ X such that gx̃ = u = fu ∈ F (u,

v) and gỹ = v = fv ∈ F (v, u). Now, by condition (ii) of Theorem 2.1 and (iψ), we get

ψ (D(u, G(x̃, ỹ))) ≤ ψ (H(F (u, v), G(x̃, ỹ)))

≤ ψ (M(u, v, x̃, ỹ))− ϕ (ψ (M(u, v, x̃, ỹ))) + θ (N(u, v, x̃, ỹ))

≤ ψ (max {D(u, G(x̃, ỹ)), D(v, G(ỹ, x̃))})− ϕ (ψ (max {D(u, G(x̃, ỹ)), D(v, G(ỹ, x̃))})) .

Thus

ψ (D(u, G(x̃, ỹ))) ≤ ψ (max {D(u, G(x̃, ỹ), D(v, G(ỹ, x̃)})− ϕ (ψ (max {D(u, G(x̃, ỹ), D(v, G(ỹ, x̃)})) .

Similarly, we can obtain that

ψ (D(v, G(ỹ, x̃))) ≤ ψ (max {D(u, G(x̃, ỹ)), D(v, G(ỹ, x̃))})− ϕ (ψ (max {D(u, G(x̃, ỹ)), D(v, G(ỹ, x̃))})) .

Combining them, we get

max {ψ (D(u, G(x̃, ỹ))) , ψ (D(v, G(ỹ, x̃)))} ≤ ψ (max {D(u, G(x̃, ỹ)), D(v, G(ỹ, x̃))})

− ϕ (ψ (max {D(u, G(x̃, ỹ)), D(v, G(ỹ, x̃))})) .

Since ψ is non-decreasing, we have

ψ (max {D(u, G(x̃, ỹ)), D(v, G(ỹ, x̃))}) ≤ ψ (max {D(u, G(x̃, ỹ)), D(v, G(ỹ, x̃))})

− ϕ (ψ (max {D(u, G(x̃, ỹ)), D(v, G(ỹ, x̃))})) ,

which, by (iiϕ) and (iiψ), implies that max {D(u, G(x̃, ỹ)), D(v, G(ỹ, x̃))} = 0. Hence, we have D(u, G(x̃, ỹ) = D(v,

G(ỹ, x̃) = 0. Thus u = gx̃ ∈ G(x̃, ỹ) and v = gỹ ∈ G(ỹ, x̃), that is, (x̃, ỹ) is a coupled coincidence point of G and g. Hence
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(x, y) ∈ C(G, g). From w−compatibility of {G, g}, we have gG(x̃, ỹ) ⊆ G(gx̃, gỹ), hence g2x̃ ∈ G(gx̃, gỹ) and g2ỹ ∈ G(gỹ,

gx̃), that is, gu ∈ G(u, v) and gv ∈ G(v, u). Again, by condition (ii) of Theorem 2.1, we get

ψ (H(F (u, v), G(u, v))) ≤ ψ (M(u, v, u, v))− ϕ (ψ (M(u, v, u, v))) + θ (N(u, v, u, v))

≤ ψ (max {d(u, gu), d(v, gv)})− ϕ (ψ (max {d(u, gu), d(v, gv)})) .

Since u ∈ F (u, v) and gu ∈ G(u, v). Therefore, by (iψ) and triangle inequality, we get

ψ (d(u, gu)) ≤ ψ (max {d(u, gu), d(v, gv)})− ϕ (ψ (max {d(u, gu), d(v, gv)})) .

Similarly, we can get

ψ (d(v, gv)) ≤ ψ (max {d(u, gu), d(v, gv)})− ϕ (ψ (max {d(u, gu), d(v, gv)})) .

Combining them, we get

max {ψ (d(u, gu)) , ψ (d(v, gv))} ≤ ψ (max {d(u, gu), d(v, gv)})− ϕ (ψ (max {d(u, gu), d(v, gv)})) .

Since ψ is non-decreasing, we have

ψ (max {d(u, gu), d(v, gv)}) ≤ ψ (max {d(u, gu), d(v, gv)})− ϕ (ψ (max {d(u, gu), d(v, gv)})) ,

which, by (iiϕ) and (iiψ), implies that max {d(u, gu), d(v, gv)} = 0. Hence, we have d(u, gu) = d(v, gv) = 0. Thus

u = gu ∈ G(u, v) and v = gv ∈ G(v, u). Therefore (u, v) is a common coupled fixed point of F, G, f and g. The proof is

similar when (b) holds.

If we put θ(t) = 0 in the Theorem 2.6, we get the following result:

Corollary 2.7. Let (X, d) be a metric space. Assume F, G : X ×X → CB(X) and f, g : X → X be mappings satisfying

(i) of Theorem 2.1, (i) of Corollary 2.2, (i) and (ii) of Theorem 2.6. Then F, G, f and g have a common coupled fixed

point.

If we put ϕ(t) = t− tϕ̃(t) for all t ≥ 0 in Corollary 2.7, then we get the following result:

Corollary 2.8. Let (X, d) be a metric space. Assume F, G : X ×X → CB(X) and f, g : X → X be mappings satisfying

(i) of Theorem 2.1, (i) of Corollary 2.3, (i) and (ii) of Theorem 2.6. Then F, G, f and g have a common coupled fixed

point.

If we put ψ(t) = 2t for all t ≥ 0 in Corollary 2.8, then we get the following result:

Corollary 2.9. Let (X, d) be a metric space. Assume F, G : X ×X → CB(X) and f, g : X → X be mappings satisfying

(i) of Theorem 2.1, (i) of Corollary 2.4, (i) and (ii) of Theorem 2.6. Then F, G, f and g have a common coupled fixed

point.

If we put ϕ̃(t) = k where 0 < k < 1, for all t ≥ 0 in Corollary 2.9, then we get the following result:
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Corollary 2.10. Let (X, d) be a metric space. Assume F, G : X ×X → CB(X) and f, g : X → X be mappings satisfying

(i) of Theorem 2.1, (i) of Corollary 2.5, (i) and (ii) of Theorem 2.6. Then F, G, f and g have a common coupled fixed

point.

Theorem 2.11. Let (X, d) be a metric space. Assume F, G : X ×X → CB(X) and f, g : X → X be mappings satisfying

(ii) of Theorem 2.1 and

(i) {F, f} and {G, g} are occasionally w−compatible. Then F, G, f and g have a common coupled fixed point.

Proof. Since the pairs {F, f} and {G, g} are occasionally w−compatible, therefore there exists some point (x, y), (x̃,

ỹ) ∈ X ×X such that

fx ∈ F (x, y), fy ∈ F (y, x) and fF (x, y) ⊆ F (fx, fy), (4)

gx̃ ∈ G(x̃, ỹ), gỹ ∈ G(ỹ, x̃) and gG(x̃, ỹ) ⊆ G(gx̃, gỹ).

It follows that

f2x ∈ F (fx, fy) and f2y ∈ F (fy, fx), (5)

g2x̃ ∈ G(gx̃, gỹ) and g2ỹ ∈ G(gỹ, gx̃).

Now, we shall show that u = fx = gx̃ and v = fy = gỹ. Now, by condition (ii) of Theorem 2.1 and (iψ), we have

ψ (H(F (x, y), G(x̃, ỹ))) ≤ ψ (M(x, y, x̃, ỹ))− ϕ (ψ (M(x, y, x̃, ỹ))) + θ (N(x, y, x̃, ỹ)) .

It follows, by (4), (iψ), (iϕ), (iθ), (iiθ) and triangle inequality, that

ψ (d(fx, gx̃)) ≤ ψ (max {d(fx, gx̃), d(fy, gỹ)})− ϕ (ψ (max {d(fx, gx̃), d(fy, gỹ)})) .

Similarly, we can obtain that

ψ (d(fy, gỹ)) ≤ ψ (max {d(fx, gx̃), d(fy, gỹ)})− ϕ (ψ (max {d(fx, gx̃), d(fy, gỹ)})) .

Combining them, we get

max {ψ (d(fx, gx̃)) , ψ (d(fy, gỹ))} ≤ ψ (max {d(fx, gx̃), d(fy, gỹ)})− ϕ (ψ (max {d(fx, gx̃), d(fy, gỹ)})) .

Since ψ is non-decreasing, therefore

ψ (max {d(fx, gx̃), d(fy, gỹ)}) ≤ ψ (max {d(fx, gx̃), d(fy, gỹ)})− ϕ (ψ (max {d(fx, gx̃), d(fy, gỹ)})) ,

which, by (iiϕ) and (iiψ), implies that max {d(fx, gx̃), d(fy, gỹ)} = 0, it follows that d(fx, gx̃) = d(fy, gỹ) = 0. Hence

u = fx = gx̃ and v = fy = gỹ. (6)

Thus, by (5) and (6), we get

fu ∈ F (u, v) and fv ∈ F (v, u), (7)

gu ∈ G(u, v) and gv ∈ G(v, u).
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Now, we shall show that u = fu = gu and v = fv = gv. Again, by condition (ii) of Theorem 2.1 and (iψ), we have

ψ (H(F (u, v), G(x̃, ỹ))) ≤ ψ (M(u, v, x̃, ỹ))− ϕ (ψ (M(u, v, x̃, ỹ))) + θ (N(u, v, x̃, ỹ)) .

It follows, by (7), (iψ), (iϕ), (iθ), (iiθ) and triangle inequality, that

ψ (d(fu, u)) ≤ ψ (max {d(fu, u), d(fv, v)})− ϕ (ψ (max {d(fu, u), d(fv, v)})) .

Similarly, we can obtain that

ψ (d(fv, v)) ≤ ψ (max {d(fu, u), d(fv, v)})− ϕ (ψ (max {d(fu, u), d(fv, v)})) .

Combining them, we get

max {ψ (d(fu, u)) , ψ (d(fv, v))} ≤ ψ (max {d(fu, u), d(fv, v)})− ϕ (ψ (max {d(fu, u), d(fv, v)})) .

Since ψ is non-decreasing, therefore

ψ (max {d(fu, u), d(fv, v)}) ≤ ψ (max {d(fu, u), d(fv, v)})− ϕ (ψ (max {d(fu, u), d(fv, v)})) ,

which, by (iiϕ) and (iiψ), implies that max {d(fu, u), d(fv, v)} = 0, it follows that d(fu, u) = d(fv, v) = 0. Thus

u = fu and v = fv. (8)

Similarly, we can show that

u = gu and v = gv. (9)

Thus, by (7), (8) and (9), we get

u = fu ∈ F (u, v), v = fv ∈ F (v, u),

u = gu ∈ G(u, v), v = gv ∈ G(v, u),

that is, (u, v) is a common coupled fixed point of F, G, f and g.

If we put θ(t) = 0 in the Theorem 2.11, we get the following result:

Corollary 2.12. Let (X, d) be a metric space. Assume F, G : X ×X → CB(X) and f, g : X → X be mappings satisfying

(i) of Corollary 2.2 and (i) of Theorem 2.11. Then F, G, f and g have a common coupled fixed point.

If we put ϕ(t) = t− tϕ̃(t) for all t ≥ 0 in Corollary 2.12, then we get the following result:

Corollary 2.13. Let (X, d) be a metric space. Assume F, G : X ×X → CB(X) and f, g : X → X be mappings satisfying

(i) of Corollary 2.3 and (i) of Theorem 2.11. Then F, G, f and g have a common coupled fixed point.

If we put ψ(t) = 2t for all t ≥ 0 in Corollary 2.13, then we get the following result:

Corollary 2.14. Let (X, d) be a metric space. Assume F, G : X ×X → CB(X) and f, g : X → X be mappings satisfying

(i) of Corollary 2.4 and (i) of Theorem 2.11. Then F, G, f and g have a common coupled fixed point.
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If we put ϕ̃(t) = k where 0 < k < 1, for all t ≥ 0 in Corollary 2.14, then we get the following result:

Corollary 2.15. Let (X, d) be a metric space. Assume F, G : X ×X → CB(X) and f, g : X → X be mappings satisfying

(i) of Corollary 2.5 and (i) of Theorem 2.11. Then F, G, f and g have a common coupled fixed point.

Example 2.1. Suppose that X = [0, 1], equipped with the metric d : X × X → [0, +∞) defined as d(x, y) = max {x, y}

and d(x, x) = 0 for all x, y ∈ X. Let F, G : X ×X → CB(X) be defined as

F (x, y) =

 {0}, for x, y = 1[
0, x4+y4

16

]
, for x, y ∈ [0, 1)

and

G(x, y) =

 {0}, for x, y = 1[
0, x2+y2

32

]
, for x, y ∈ [0, 1).

Suppose f, g : X → X be defined as

fx =

 x2, x 6= 1,

3
2
, x = 1,

for all x ∈ X

and

gx =


x
2
, x 6= 1,

1, x = 1,
for all x ∈ X.

Define ψ : [0, +∞)→ [0, +∞) by

ψ(t) = ln(t+ 1), for all t ≥ 0,

and ϕ : [0, +∞)→ [0, +∞) by

ϕ(t) = t− ln

(
t

2
+ 1

)
, for all t ≥ 0,

and θ : [0, +∞)→ [0, +∞) by

θ(t) =
t

4
, for all t ≥ 0.

Now, for all x, y, u, v ∈ X with x, y, u, v ∈ [0, 1), we have

Case (a). If x4+y4

16
= u2+v2

32
, then

d(F (x, y), G(u, v)) =
1

16
(x4 + y4)

≤ 1

4
ln
(
x2 + 1

)
+

1

4
ln
(
y2 + 1

)
≤ 1

4
ln
(

max
{
x2,

u

2

}
+ 1
)

+
1

4
ln
(

max
{
y2,

v

2

}
+ 1
)

≤ 1

4
ln (d(fx, gu) + 1) +

1

4
ln (d(fy, gv) + 1)

≤ 1

4
ln (M(x, y, u, v) + 1) +

1

4
ln (M(x, y, u, v) + 1)

≤ 1

2
ln(M(x, y, u, v) + 1),

which implies that

ψ (d(F (x, y), G(u, v))) = ln (d(F (x, y), G(u, v)) + 1)

≤ ln

(
1

2
ln (M(x, y, u, v) + 1) + 1

)
≤ ln (M(x, y, u, v) + 1)−

[
ln (M(x, y, u, v) + 1)− ln

(
1

2
ln (M(x, y, u, v) + 1) + 1

)]
≤ ψ (M(x, y, u, v))− ϕ (ψ (M(x, y, u, v))) + θ (N(x, y, u, v)) .
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Case (b). If x4+y4

16
6= u2+v2

32
with x4+y4

16
< u2+v2

32
, then

d(F (x, y), G(u, v)) =
1

32
(u2 + v2)

≤ 1

4
ln
(u

2
+ 1
)

+
1

4
ln
(v

2
+ 1
)

≤ 1

4
ln
(

max
{
x2,

u

2

}
+ 1
)

+
1

4
ln
(

max
{
y2,

v

2

}
+ 1
)

≤ 1

4
ln (d(fx, gu) + 1) +

1

4
ln (d(fy, gv) + 1)

≤ 1

4
ln (M(x, y, u, v) + 1) +

1

4
ln (M(x, y, u, v) + 1)

≤ 1

2
ln(M(x, y, u, v) + 1),

which implies that

ψ (d(F (x, y), G(u, v))) = ln (d(F (x, y), G(u, v)) + 1)

≤ ln

(
1

2
ln (M(x, y, u, v) + 1) + 1

)
≤ ln (M(x, y, u, v) + 1)−

[
ln (M(x, y, u, v) + 1)− ln

(
1

2
ln (M(x, y, u, v) + 1) + 1

)]
≤ ψ (M(x, y, u, v))− ϕ (ψ (M(x, y, u, v))) + θ (N(x, y, u, v)) .

Similarly, we obtain the same result for u2+v2

32
< x4+y4

16
. Thus the contractive condition (ii) of Theorem 2.1 is satisfied for

all x, y, u, v ∈ X with x, y, u, v ∈ [0, 1). Again, for all x, y, u, v ∈ X with x, y ∈ [0, 1) and u, v = 1, we have

d(F (x, y), G(u, v)) =
1

16
(x4 + y4)

≤ 1

4
ln
(
x2 + 1

)
+

1

4
ln
(
y2 + 1

)
≤ 1

4
ln
(

max
{
x2,

u

2

}
+ 1
)

+
1

4
ln
(

max
{
y2,

v

2

}
+ 1
)

≤ 1

4
ln (d(fx, gu) + 1) +

1

4
ln (d(fy, gv) + 1)

≤ 1

4
ln (M(x, y, u, v) + 1) +

1

4
ln (M(x, y, u, v) + 1)

≤ 1

2
ln(M(x, y, u, v) + 1),

which implies that

ψ (d(F (x, y), G(u, v))) = ln (d(F (x, y), G(u, v)) + 1)

≤ ln

(
1

2
ln (M(x, y, u, v) + 1) + 1

)
≤ ln (M(x, y, u, v) + 1)−

[
ln (M(x, y, u, v) + 1)− ln

(
1

2
ln (M(x, y, u, v) + 1) + 1

)]
≤ ψ (M(x, y, u, v))− ϕ (ψ (M(x, y, u, v))) + θ (N(x, y, u, v)) .

Thus the contractive condition (ii) of Theorem 2.1 is satisfied for all x, y, u, v ∈ X with x, y ∈ [0, 1) and u, v = 1. Similarly,

we can see that the contractive condition (ii) of Theorem 2.1 is satisfied for all x, y, u, v ∈ X with x, y, u, v = 1. Hence,

the hybrid pairs {F, f} and {G, g} satisfy the condition (ii) of Theorem 2.1, for all x, y, u, v ∈ X. In addition, all the other

conditions of Theorem 2.1, Theorem 2.6 and Theorem 2.11 are satisfied and z = (0, 0) is a common coupled fixed point of

F, G, f and g.
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