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1. Introduction

The Weibull distribution, having exponential and Rayleigh as special cases, is one of the most commonly used distributions

for modeling lifetime data and for modeling phenomenon with monotone failure rates. When modeling monotone hazard

rates, the Weibull distribution may be an initial choice because of its positively and negatively skewed density shapes.

However, this distribution does not provide a good fit to data sets with bathtub shaped or upside down bathtub shaped

(unimodal) failure rates. These cases are quite common in reliability and biological studies. Such bathtub hazard curves

have nearly flat middle portions and the corresponding densities have a positive anti-mode. We can observe the unimodal

hazard rates in course of a disease whose mortality reaches a peak after some finite period and then declines gradually.

Many generalization of the Weibull distribution is proposed, such as the exponentiated Weibull distribution introduced

by Mudholkar and Srivastava [16], the additive Weibull distribution proposed by Xie et al. [21], the modified Weibull

extension distribution introduced by Xie et al. [22] and the new modified Weibull distribution introduced by Lai et al. [14].

Bebbington et al. [2] proposed a new two-parameter ageing distribution called the flexible Weibull extension distribution.

This new distribution is shown to be quite flexible, being able to model both IFR and IFRA ageing classes. The cumulative

distribution function of the flexible Weibull extension distribution is given as follows

F (x) = 1− e−e
αx− β

x
, x > 0, α, β > 0,

and the corresponding density function is given in the form

f(x) =

(
α+

β

x2

)
eαx−

β
x e−e

αx− β
x
, x > 0, α, β > 0.
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El-Gohary et al. [8] introduced the three parameters exponentiated flexible Weibull extension distribution and discussed

some of its properties. The aim of this paper is to introduce a new generalization of the flexible Weibull extension called

the Kumaraswamy flexible Weibull extension. The paper by Kumaraswamy [12] introduced a two-parameter distribution

on (0,1), so-called Kumaraswamy distribution. The Kumaraswamy cumulative distribution function (cdf) is defined in the

form

G(x, a, b) = 1− (1− xa)b, x ∈ (0, 1) , a, b > 0,

and the corresponding probability density function

g(x, a, b) = abxa−1(1− xa)b−1, x ∈ (0, 1) , a, b > 0.

It should be noted that the Kumaraswamy probability density function can be unimodal, increasing, decreasing or constant

depending on the choice of the parameters a and b. Jones [11] explored the background and genesis of the Kumaraswamy

distribution and more importantly, highlighted some advantages and disadvantages of the beta and Kumaraswamy distribu-

tions. For an arbitrary baseline cumulative function G(x), of a random variable X, Cordeiro and de Castro [4] defined the

Kumaraswamy-G (KW-G for short) distribution by

F (x) = 1− [1−G
a

(x)]b, (1)

where a > 0 and b > 0 are two additional shape parameters. Since the cdf is quite tractable then KW-G distribution can be

used quite effectively even if the data are censored. Correspondingly, the probability density function of KW-G distribution

is given as follow

f(x) = abg(x)G
a−1

(x)[1−G
a

(x)]b−1, (2)

where g(x) = d
dx
G(x). The KW-G distribution has the same parameters of the G(x) distribution plus two additional shape

parameters a > 0 and b > 0. Also we note that the probability density function of the family given in (2) has many

of the same properties of the class of Beta-G distributions introduced by Eugene et al. [7]. Using probability density

function (2), many Kumaraswamy generalized distributions were proposed in recent years. Cordeiro et al. [5] introduced

the Kumaraswamy Weibull distributon, Bourguignon et al. [3] introduced the Kumaraswamy Pareto distributon, Paranaba

et al. [19] introduced the Kumaraswamy Burr XII distribution, Gomes et al. [10] introduced the Kumaraswamy generalized

Rayleigh distribution, de Pascoa et al. [6] introduced the Kumaraswamy generalized gamma distribution etc.

This paper is organized as follows. In Section 2 we define the cumulative distribution function, probability density function,

reliability function and hazard function of the Kumaraswamy flexible Weibull extension distribution. In Section 3 we study

some different properties of Kumaraswamy flexible Weibull extension distribution include, the quantile function, the median,

the mode, the moments and the moment generating function. Section 4 discusses the distribution of the order statistics

for Kumaraswamy flexible Weibull extension distribution. Moreover, maximum likelihood estimation of the parameters is

determined in Section 5. Also, an application of Kumaraswamy flexible Weibull extension distribution using a real data set

is presented in Section 6.

2. The Kumaraswamy Flexible Weibull Extension Distribution

In this section, we introduce a new four parameters distribution called the Kumaraswamy flexible Weibull extension( KW-

FWE) distribution with parameters a, α, β and b written in the form KW-FWE(Φ), where the vector Φ is defined by

2
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Φ = (a, α, β, b). The cumulative distribution function(cdf) of KW-FWE model is defined as follows

F (x) = 1−
[
1−

[
1− e−e

αx− β
x

]a]b
, x > 0, a, b, α, β > 0. (3)

The probability density function(pdf) corresponding to (3) is given by

f(x) = ab

(
α+

β

x2

)
eαx−

β
x e−e

αx− β
x

[
1− e−e

αx− β
x

]a−1 [
1−

[
1− e−e

αx− β
x

]a]b−1

, (4)

where x > 0, a, b, α, β > 0.

2.1. Survival and Hazard Functions

The survival function corresponding to the cdf of KW-FWE(Φ) given in (3), is obtained in the form

s(x) =

[
1−

[
1− e−e

αx− β
x

]a]b
. (5)

The hazard function of KW-FWE(Φ) is defined in the form

h(x) =

ab
(
α+ β

x2

)
eαx−

β
x e−e

αx− β
x

[
1− e−e

αx− β
x

]a−1

1−
[
1− e−eαx−

β
x

]a . (6)

Figure 1-3, show the CDF, PDF and hazard of various KW-FWE distributions for different values of parameters.

Figure 1: The CDF of various KW-FME distributions for some values of the parameters.

Figure 2: The pdf of various KW-FWE distributions for different values of parameters.
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Figure 3: The hazard of various KW-FWE distributions for different values of parameters.

From Figures 1-3, the KW-FWE is a unimodal distribution and has increasing, decreasing and constant hazard rate function.

3. Statistical Properties

In this section we study and discuss some statistical properties for the Kumaraswamy flexible Weibull extension (KW-FWE),

specially the quantile function, the median, the mode, the moments and the moment generating function.

3.1. Quantile, Median and Mode

The quantile of the KW-FWE distribution is obtained by solving the following equation, with respect to xq

P
(
X ≤ xq

)
= q, 0 < q < 1. (7)

Then we have

1−

[
1−

[
1− e−e

αxq−
β
xq

]a]b
= q. (8)

By solving the above equation, we obtain xq as follow

xq =
1

2α

ln

[
− ln

[
1−

(
1− (1− q)

1
b

) 1
a

]]
±

√[
ln

[
− ln

[
1−

(
1− (1− q)

1
b

) 1
a

]]]2
+ 4αβ

 . (9)

Since the quantile xq is positive, then we obtain xq as follow

xq =
1

2α

ln

[
− ln

[
1−

(
1− (1− q)

1
b

) 1
a

]]
+

√[
ln

[
− ln

[
1−

(
1− (1− q)

1
b

) 1
a

]]]2
+ 4αβ

 . (10)

The median of KW-FWE can be obtained from equation (10) be setting q = 1
2
. That is, the median is obtained in the

following form

Med =
1

2α

ln

− ln

1−

(
1−

(
1

2

) 1
b

) 1
a

+

√√√√√ln

− ln

1−

(
1−

(
1

2

) 1
b

) 1
a

2

+ 4αβ

 . (11)
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Also, the mode of the KW-FWE distribution can be obtained by deriving its pdf given in (4) with respect to x and equal it

to zero. Thus the mode of the KW-FWE distribution can be obtained as a nonnegative solution of the following nonlinear

equation

−2β

x3
(
α+ β

x2

)2 +
[
1− eαx−

β
x

]
+ eαx−

β
x e−e

αx− β
x

[
1− e−e

αx− β
x

]a−1

× a− 1[
1− e−eαx−

β
x

]a +
a(b− 1)

1−
[
1− e−eαx−

β
x

]a
 = 0. (12)

It is not possible to get an explicit solution of the above equation in the general case and therefore numerical methods should

be used such as bisection method or fixed-point method to solve it.

3.2. The Moments

Moments are necessary and very important in any statistical analysis, especially in the applications. It can be used to study

the most important features and characteristics of the distribution (e.g., tendency,dispersion, skewness and kurtosis). The

rth moments of KW-FWE(Φ) is introduced by the following theorem.

Theorem 3.1. The rth moments of a random variable X ∼ KW − FWE(Φ), where Φ = (a, α, β, b) is given by

µ
′
r =

∞∑
i=0

∞∑
j=0

∞∑
k=0

∞∑
`=0

(−1)i+j+k+`abβ`(j + 1)k

k!`!

(
b− 1

i

)(
a(i+ 1)− 1

j

)
×

[
(r − `)!

αr−`(k + 1)r−2`+1
+

β(r − `− 2)!

αr−`−1(k + 1)r−2`−1

]
.

Proof. The rth moment of the positive random variable X with probability density function f(x) is given by

µ
′
r =

∫ ∞
0

xrf(x)dx. (13)

Substituting from (4) into (13), we obtain

µ
′
r = ab

∫ ∞
0

xr
(
α+ β

x2

)
eαx−

β
x e−e

αx− β
x

[
1− e−e

αx− β
x

]a−1 [
1−

[
1− e−e

αx− β
x

]a]b−1

dx. (14)

Since 0 <

[
1−

[
1− e−e

αx− β
x
]a]b−1

< 1, we obtain

[
1−

[
1− e−e

αx− β
x ]a]b−1

=

∞∑
i=0

(
b−1
i

)
(−1)i

[
1− e−e

αx− β
x

]ai
. (15)

Substituting from (15) into (14), we get

µ
′
r =

∞∑
i=0

(
b−1
i

)
(−1)iab

∫ ∞
0

xr
(
α+ β

x2

)
eαx−

β
x e−e

αx− β
x

[
1− e−e

αx− β
x

]a(i+1)−1

dx. (16)

Since 0 <

[
1− e−e

αx− β
x

]a(i+1)−1

< 1, we obtain

[
1− e−e

αx− β
x

]a(i+1)−1

=

∞∑
j=0

(
a(i+1)−1

j

)
(−1)je−je

αx− β
x
. (17)

5



The Kumaraswamy Flexible Weibull Extension

Substituting from (17) into (16), we get

µ
′
r =

∞∑
i=0

∞∑
j=0

(
b−1
i

)(
a(i+1)−1

j

)
(−1)i+jab

∫ ∞
0

xr
(
α+ β

x2

)
eαx−

β
x e−(j+1)e

αx− β
x
dx.

Using series expansion of e−(j+1)e
αx− β

x , we obtain

µ
′
r =

∞∑
i=0

∞∑
j=0

∞∑
k=0

(
b−1
i

)(
a(i+1)−1

j

) (−1)i+j+kab(j + 1)k

k!

∫ ∞
0

xr
(
α+ β

x2

)
e(k+1)αxe

−(k+1)β
x dx.

Using series expansion of e
−β(k+1)

x , we obtain

µ
′
r =

∞∑
i=0

∞∑
j=0

∞∑
k=0

∞∑
`=0

(−1)i+j+k+`abβ`(j + 1)k(k + 1)`

k!`!

(
b− 1

i

)(
a(i+ 1)− 1

j

)
×

[
α

∫ ∞
0

xr−`eα(k+1)xdx+ β

∫ ∞
0

xr−`−2eα(k+1)xdx

]
.

By using the definition of gamma function in the form

Γ(z) = xz
∫ ∞
0

etxtz−1dt, z, x > 0.

Finally, we obtain the rth moment of KW-FWE in the form

µ
′
r =

∞∑
i=0

∞∑
j=0

∞∑
k=0

∞∑
`=0

(−1)i+j+k+`abβ`(j + 1)k

k!`!

(
b− 1

i

)(
a(b− i)− 1

j

)
×

[
(r − `)!

αr−`(k + 1)r−2`+1
+

β(r − `− 2)!

αr−`−1(k + 1)r−2`−1

]
. (18)

This completes the proof.

3.3. Moment Generating Function

In this subsection we derive the moment generating function of KW-FWE distribution as infinite series expansion.

Theorem 3.2. The moment generating function MX(t) of a random variable X ∼ KW −FWE(Φ), where Φ = (a, α, β, , b)

is given by

MX(t) =

∞∑
r=0

∞∑
i=0

∞∑
j=0

∞∑
k=0

∞∑
`=0

(−1)i+j+k+`abβL(j + 1)ktr

r!k!L!

(
b− 1

i

)(
a(b− i)− 1

j

)
×

[
(r − `)!

αr−`(k + 1)r−2`+1
+

β(r − `− 2)!

αr−`−1(k + 1)r−2`−1

]
.

Proof. The moment generating function MX(t) is defined by

MX(t) =

∫ ∞
0

etxf(x)dx.

Using series expansion of etx, we obtain

MX(t) =

∞∑
r=0

tr

r!

∫ ∞
0

xrf(x)dx =

∞∑
r=0

tr

r!
µ
′
r (19)

Substituting from (18) into (19), we obtain

MX(t) =

∞∑
r=0

∞∑
i=0

∞∑
j=0

∞∑
k=0

∞∑
`=0

(−1)i+j+k+`abβ`(j + 1)ktr

r!k!`!

(
b− 1

i

)(
a(b− i)− 1

j

)
×

[
(r − `)!

αr−`(k + 1)r−2`+1
+

β(r − `− 2)!

αr−`−1(k + 1)r−2`−1

]
.

This completes the proof.
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4. Order Statistics

Let X1:n, X2:n, · · · , Xn:n denote the order statistics obtained from a random sample X1, X2, · · · , Xn which taken from a

continuous population with cumulative distribution function F (x,Φ) and probability density function f(x,Φ), then the

probability density function of Xr:n is given by

fr:n(x,Φ) =
1

B(r, n− r + 1)
[F (x,Φ)]r−1 [1− F (x,Φ)]n−r f(x,Φ), (20)

where f(x,Φ) and F (x,Φ) are the probability density function and the cumulative distribution function of KW-FWE(Φ)

distribution given by (3) and (4) respectively and B(., .) is the beta function, also we define first order statistics X1:n =

min(X1, X2, · · · , Xn), and the last order statistics as Xn:n = max(X1, X2, · · · , Xn). Since 0 < F (x,Φ) < 1 for x > 0, we

can use the binomial expansion of [1− F (x,Φ)]n−r given as follows

[1− F (x,Φ)]n−r =

n−r∑
i=0

(
n− r
i

)
(−1)i [F (x,Φ)]i . (21)

Substituting from (21) into (20), we obtain

fr:n(x,Φ) =
f(x; Φ)

B(r, n− r + 1)

n−r∑
i=0

(
n− r
i

)
(−1)i [F (x,Φ)]i+r−1 . (22)

Substituting from (3) and (4) into (22), we obtain the probability density function for Xr:n.

5. Estimation and inference

In this section we discussed the estimation of the KW-FWE parameters by using the method of maximum likelihood based

on a complete sample.

5.1. Maximum Likelihood Estimators

Let X1, X2, · · · , Xn be a random sample of size n from KW-FWE(a, α, β, b ) with observed values x1, x2, · · · , xn, then the

likelihood function can be written as

L =

n∏
i=1

f(xi, a, b, α, β). (23)

Substituting from (4) into (23), we get

L =

n∏
i=1

ab

(
α+

β

x2i

)
e
αxi−

β
xi e−e

αxi−
β
xi

[
1− e−e

αxi−
β
xi

]a−1 [
1−

[
1− e−e

αx− β
x

]a]b−1

.

The log-likelihood function can be written as

L = n ln(a) + n ln(b) +

n∑
i=1

ln

[
α+

β

x2i

]
+

n∑
i=1

[
αxi −

β

xi

]
−

n∑
i=1

[
e
αxi−

β
xi

]

+(a− 1)

n∑
i=1

ln

[
1− e−e

αxi−
β
xi

]
+ (b− 1)

n∑
i=1

ln

[
1−

[
1− e−e

αxi−
β
xi

]a]
(24)
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The maximum likelihood estimates of the parameters are obtained by differentiating the log-likelihood function L with

respect to the parameters b, a, α, β and setting the result to zero

∂L
∂b

=
n

b
+

n∑
i=1

ln(1−Da
i ) = 0, (25)

∂L
∂a

=
n

a
+

n∑
i=1

ln(Di)− (b− 1)
∑
i=1

n
Da
i ln(Di)

1−Da
i

= 0, (26)

∂L
∂α

=

n∑
i=1

x2i
αx2i + β

+

n∑
i=1

xi −
n∑
i=1

xie
αxi−

β
xi + (a− 1)

n∑
i=1

xie
αxi−

β
xi

Ri

−a(b− 1)

n∑
i=1

xie
αxi−

β
xi (1−Di)Da−1

i

1−Da
i

= 0, (27)

∂L
∂β

=

n∑
i=1

1

αx2i + β
−

n∑
i=1

1

xi
+

n∑
i=1

1

xi
e
αxi−

β
xi − (a− 1)

n∑
i=1

e
αxi−

β
xi

xiRi

+a(b− 1)

n∑
i=1

e
αxi−

β
xi (1−Di)Da−1

i

xi(1−Da
i )

= 0, (28)

where the nonlinear functions Di and Ri are given by

Di = 1− e−e
αxi−

β
xi
, Ri = ee

αxi−
β
xi − 1.

From equation (25), we obtain the maximum likelihood estimate of b in a closed form as follow

b̂ =
−n∑n

i=1 ln(1−Da
i )
.

Substituting from (25) into (26), (27) and (28), we get the MLEs of a, α, β by solving the following system of non-linear

equations

n

â
+

n∑
i=1

ln(Di)− (b̂− 1)

n∑
i=1

Dâ
i ln(Di)

1−Dâ
i

= 0,

n∑
i=1

x2i

α̂x2i + β̂
+

n∑
i=1

xi −
n∑
i=1

xie
α̂xi−

β̂
xi + (â− 1)

n∑
i=1

xie
α̂xi−

β̂
xi

Ri
− â(b̂− 1)×

n∑
i=1

xie
α̂xi−

β̂
xi (1−Di)Dâ−1

i

1−Dâ
i

= 0,

n∑
i=1

1

α̂x2i + β̂
−

n∑
i=1

1

xi
+

n∑
i=1

1

xi
e
α̂xi−

β̂
xi − (â− 1)

n∑
i=1

e
α̂xi−

β̂
xi

xiRi
+ â(b̂− 1)×

n∑
i=1

e
α̂xi−

β̂
xi (1−Di)Dâ−1

i

xi(1−Dâ
i )

= 0.

There is no closed form solution to these equations, so statistical software or numerical technique must be applied.

5.2. Asymptotic Confidence Bounds

In this subsection, we derive the asymptotic confidence intervals of the unknown parameters a, α, β, b when a, α, β > 0 and

b > 0. The simplest large sample approach is to assume that the MLEs(a, α, β, b) are approximately multivariate normal

with mean (a, α, β, b) and covariance matrix I−1
0 where I−1

0 the inverse of the observed information matrix which is defined

8
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by

I−1
0 = −



∂2L
∂a2

∂2L
∂a∂α

∂2L
∂a∂β

∂2L
∂a∂b

∂2L
∂α∂a

∂2L
∂α2

∂2L
∂α∂β

∂2L
∂α∂b

∂2L
∂β∂a

∂2L
∂β∂α

∂2L
∂β2

∂2L
∂β∂b

∂2L
∂b∂a

∂2L
∂b∂α

∂2L
∂b∂β

∂2L
∂b2



−1

.

=



var(â) cov(â, α̂) cov(â, β̂) cov(â, b̂)

cov(α̂, â) var(α̂) cov(α̂, β̂) cov(α̂, b̂)

cov(β̂, â) cov(β̂, α̂) var(β̂) cov(β̂, b̂)

cov(b̂, â) cov(b̂, α̂) cov(b̂, β̂) var(b̂)


. (29)

The second partial derivatives included in I−1
0 are given as follows

∂2L
∂b2

=
−n
b2
,

∂2L
∂b∂a

= −
n∑
i=1

Da
i ln(Di)

1−Da
i

,

∂2L
∂b∂α

= −a
n∑
i=1

xie
αxi−

β
xi (1−Di)Da−1

i

1−Da
i

,

∂2L
∂b∂β

= a

n∑
i=1

e
αxi−

β
xi (1−Di)Da−1

i

xi(1−Da
i )

,

∂2L
∂a2

=
−n
a2
− (b− 1)

n∑
i=1

Da
i [ln(Di)]

2

(1−Da
i )2

,

∂2L
∂a∂α

=

n∑
i=1

xie
αxi−

β
xi

Ri
− (b− 1)

n∑
i=1

xie
αxi−

β
xi (1−Di)Da−1

i Li
(1−Da

i )2
,

∂2L
∂a∂β

= −
n∑
i=1

e
αxi−

β
xi

xiRi
+ (b− 1)

n∑
i=1

e
αxi−

β
xi (1−Di)Da−1

i Li
xi(1−Da

i )2
,

∂2L
∂α2

= −
n∑
i=1

x4i
(αx2i + β)2

−
n∑
i=1

x2i e
αxi−

β
xi + (a− 1)

n∑
i=1

x2i e
αxi−

β
xiKi

R2
i

−a(b− 1)

n∑
i=1

x2i e
αxi−

β
xi (1−Di)Da−2

i

(1−Da
i )2

[
DiNi + e

αxi−
β
xi (1−Di)Wi

]
,

∂2L
∂α∂β

= −
n∑
i=1

x2i
(αx2i + β)2

+

n∑
i=1

e
αxi−

β
xi − (a− 1)

n∑
i=1

e
αxi−

β
xiKi

R2
i

+a(b− 1)

n∑
i=1

e
αxi−

β
xi (1−Di)Da−2

i

(1−Da
i )2

[
DiNi + e

αxi−
β
xi (1−Di)Wi

]
,

∂2L
∂β2

= −
n∑
i=1

1

(αx2i + β)2
−

n∑
i=1

1

x2i
e
αxi−

β
xi + (a− 1)

n∑
i=1

e
αxi−

β
xiKi

x2iR
2
i

+a(b− 1)

n∑
i=1

e
αxi−

β
xi (1−Di)Da−2

i

x2i (1−Da
i )2

[
DiNi + e

αxi−
β
xi (1−Di)Wi

]
,

where the nonlinear functions Di, Ri, Li,Ki, Ni and Wi are given by

Di = 1− e−e
αxi−

β
xi
, Ri = ee

αxi−
β
xi − 1,

Li = a ln

[
1− e−e

αxi−
β
xi

]
−
[
1− e−e

αxi−
β
xi

]a
+ 1, Ki = ee

αxi−
β
xi

[
1− eαxi−

β
xi

]
− 1

Ni =

[
1− eαxi−

β
xi

] [
1−

[
1− e−e

αxi−
β
xi
]a]

, Wi =

[
1− e−e

αxi−
β
xi

]a
+ a− 1.
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The above approach is used to derive the (1−δ)100% confidence intervals for the parameters a, α, β and b as in the following

forms

â± Z δ
2

√
var(â), α̂± Z δ

2

√
var(α̂), β̂ ± Z δ

2

√
var(β̂), b̂± Z δ

2

√
var(b̂),

where is Z δ
2

the upper ( δ
2
)th percentile of the standard normal distribution.

6. Data Analysis

Now we use a real data set to show that the KW-FWE distribution can be a better model, comparing with many known

distributions such as flexible Weibull extension distribution (FWED), Weibull distribution (WD), linear failure rate distri-

bution (LFRD), generalized exponential distribution (GED), exponentiated Weibull distribution (EWD) and exponentiated

flexible Weibull distribution(EFWD). Consider the data have been obtained from Aarset [1], and widely reported in many

literatures. It represents the lifetimes of 50 devices, and also, possess a bathtub-shaped failure rate property.

Table 1: The data from Aarset [1].

0.1 0.2 1 1 1 1 1 2 3 6 7 11 12 18 18 18 18

18 21 32 36 40 45 46 47 50 55 60 63 63 67 67 67 67

72 75 79 82 82 83 84 84 84 85 85 85 85 85 86 86

The MLEs of the unknown parameters a, α, β, b and the corresponding Kolmogorov–Smirnov(K–S) test statistic with its

corresponding p-value for the seven distributions are given in Table 2. Also, the values of the negative of the log-likelihood

functions (-L), AIC (Akaike Information Criterion), the statistics AICC (Akaike Information Criterion with correction),

BIC (Bayesian Information Criterion) and HQIC (Hannan-Quinn information criterion) are given in Table 3 for the seven

distributions in order to verify which distribution fits better to these data.

Table 2: the MLES of the parameters, the K–S values and p-values.

MLE of the parameters

The model â α̂ β̂ θ̂ b̂ K–S P-value(K-S)

FW(α, β) – 0.0122 0.7002 – – 0.4386 4.29×10−9

W(α, β) – 0.0220 0.949 – – 0.2397 0.0052

LFR(a, b) 0.014 – – – 2.4 ×10−4 0.1955 0.0370

GE(α, β) – 0.0212 0.9012 – – 0.1940 0.0514

EW(α, β, θ) – 91.023 4.6900 0.146 – 0.1841 0.0590

EFW(α, β, θ) – 0.0147 0.1330 4.220 – 0.1433 0.2617

KW-FW(a, α, β, b) 4.648 0.0130 0.1270 – 1.324 0.1196 0.4534

Table 3: -L, AIC, AICC, BIC and HQIC for devices data.

The model -L AIC AICC BIC HQAIC

FW(α, β) 250.81 505.620 505.88 509.448 507.076

W(α, β) 241.002 486.004 486.26 489.828 487.460

LFR(a, b) 238.064 480.128 480.383 483.952 481.584

GE(α, β) 240.3855 484.7710 485.0264 488.5951 486.227

EW(α, β, θ) 235.926 477.852 478.37 483.588 480.036

EFW(α, β, θ) 226.989 459.979 460.65 465.715 462.162

KW-FW(a, α, β, b) 226.674 461.348 462.236 468.996 464.260
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Substituting the MLEs of the unknown parameters into (29), we get estimation of the variance covariance matrix as the

following:

I−1
0 =



6.6761 −0.16724 −0.154609 4.370682

−0.16724 3.651× 10−5 4.002× 10−4 −0.100224

−0.154609 4.002× 10−4 1.7455× 10−3 −0.103647

4.370682 −0.0100224 −0.103647 2.666949


.

The approximate 95% two sided confidence intervals of the unknown parameters a, α, β and b are given respectively as

[0, 9.712] ,
[
1.16× 10−3, 0.0248

]
, [0.0451, 0.2089] , [0, 4.524] .

Based on Tables 2 and 3, it is shown that KW-FWE(a, α, β, b ) model provide better fit to the data rather than other

distributions which we compared with. To show that the likelihood equation have unique solution, we plot the profiles of

the log-likelihood function of a, α, β and b in Figures 4-5.

Figure 4: The profile of the log-likelihood function of a, α.

Figure 5: The profile of the log-likelihood function of β, b.

The estimated survival functions for FWE, W, LFR, GE, EW, EFWE and KW-FWE distributions and the empirical survival

for Aarset data are given in figure 6.
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Figure 6: Empirical survival function and fitted survival functions.

Figure 7 and 8, give the form of the probability density functions and the hazard functions for the FWE, W, LFR, GE, EW,

EFWE and KW-FWE distributions which are used to fit the data after replacing the unknown parameters included in each

distribution by their MLE.

Figure 7: The Fitted hazard functions for the data.

Figure 8: The Fitted probability density functions for the data.

7. Conclusion

In this paper, a new four parameters continuous distribution which generalizes the flexible Weibull extension distribution

we called it the Kumaraswamy flexible-Weibull extension( KW-FWE) distribution. Several mathematical and statistical
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properties have been derived and discussed. We derive expansions for the moments and the moment generating function. The

estimation of parameters is approached by the method of maximum likelihood, also the fisher information matrix is derived.

An application of the KW-FWE distribution to real data show that the new distribution can be used quite effectively to

provide better fits than other distributions we compared with.
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