

International Journal of Mathematics And its Applications

On **b-t**-sets and **b-**t-sets in Topological Spaces

Research Article

A.Devika^{1*} and P.Perianayaki¹

1 Department of Mathematics, PSG College of Arts and Science, Coimbatore, Tamilnadu, India.

Abstract: The aim of this paper is to introduce the new concepts of **t-sets and t**-sets, **b-t**- sets, **b-**t-sets in the topological space and discuss some properties and characterization of these new notions.

MSC: 54A05, 54D05.

Keywords: **b-open sets, B-sets, B*-sets, t-sets, t*-sets. (c) JS Publication.

1. Introduction

Levine [10], [1963] introduced the notion of semi-open sets and semi-continuity in topological spaces and studied their properties. Andrijevic [3] [1996] introduced a class of generalised open sets in a topological space called *b*-open sets. The class of b-open sets is contained in the class of semi-open sets and pre-open sets.Mashhour [11] [1982] introduced pre-open sets in topological spaces. From this he introduced some theorems on pre-continuous and weak pre-continuous mappings in topological space. The concept of semi-pre open sets was introduced by D.Andrijevic [4] [1986] and studied the properties of semi-pre-open sets,which is equivalent to the β -open sets. The notion of β -open sets was introduced by M.E.Abd El.Monsef [1]. Tong [15] [1989] introduced the concepts of t-set and B-set in topological spaces. Indira and Rekha [8] [2012] introduced the concepts of "*b*-open set,***b*-open set,*t**-set *B**-set, locally "*b*-closed set, locally "**b*-closed set, "*b*-continuous, "**b*continuous, *t**-continuous, locally "**b*-closed continuous, D(c,*b)-continuous, D(c,*b)-continuous functions in topological space it is also proved in [8], the class of "*b*-open set is both semi-open and pre-open and discussed the properties of the above sets. Rekha and Indira [13] [2013] introduced the notion of ***b*-*t*-set, ***b*-*t**-set, ***b*-*B*-set, ***b*-*B**-set, ***b*-semi open and ***b*-pre open sets in topological space and discuss the properties of the above sets.

1.1. Preliminaries

Definition 1.1 ([9]). Given a subset A of a topological space (X, τ) , the interior of A is defined as the union of all open sets contained in A, it is denoted by int (A). And the closure of A is defined as the intersection of all closed sets containing A, it is denoted by cl (A)

Definition 1.2. A subset A of a space (X, τ) is said to be,

(1). semi-open [10] if $A \subseteq cl$ (int (A)).

^{*} E-mail: devirakavi@gmail.com

- (2). pre-open [11] if $A \subseteq int(cl(A))$.
- (3). an α -open [12] if $A \subseteq int(cl(int(A)))$.
- (4). semi-pre-open [1, 4] if $A \subseteq cl$ (int (cl (A))).
- (5). regular-open [3] if A = int (cl(A)).

Definition 1.3 ([3]). A subset A of a space (X, τ) the semi-interior(resp. pre-interior, semi-pre-interior) of A, denoted by Sint (A) (resp.Pint (A), Spint (A)), is the union of all semi-open(resp.pre-open, semi-pre-open) subsets of X contained in A.

Definition 1.4 ([3]). A subset A of a space (X, τ) the semi-closure(resp. pre-closure, semi-pre-closure) of A, denoted by Scl(A) (resp. Pcl(A), Spcl(A)) is the intersection of all semi-closed(resp. pre-closed, semi-pre-closed) subsets of X containing A.

Definition 1.5. A subset A of a space (X, τ) is said to be,

- (1). b-open [3] if $A \subseteq cl$ (int (A)) \cup int (cl (A)).
- (2). *b-open [6] if $A \subseteq cl (int (A)) \cap int (cl (A))$.
- (3). b^{**} -open [5] if $A \subseteq int(cl(int(A))) \cup cl(int(cl(A)))$.
- (4). **b-open [6] if $A \subseteq int (cl (int (A))) \cap cl (int (cl (A)))$.

Definition 1.6. A subset A of a space (X, τ) is called,

- (1). t-set [15] if int(A) = int(cl(A)).
- (2). B-set [15] if $A = U \cap V$, where $U \in \tau$ and V is a t-set.
- (3). $t^*-set [6] if cl(A)=cl(int(A)).$
- (4). B^* -set [6] if $A=U \cap V$, where $U \in \tau$ and V is a t*-set.

Definition 1.7 ([7]). A subset A of a space (X, τ) is said to be,

- (1). *b-t-set if int(A) = int(*bcl(A)).
- (2). *b-t *-set if cl(A) = cl(*bint(A)).
- (3). *b-B-set if $A = U \cap V$, where $U \in \tau$ and V is a *b-t-set.
- (4). *b-B*-set if $A = U \cap V$, where $U \in \tau$ and V is a *b-t*-set.
- (5). *b-semi-open if $A \subseteq cl$ (*bint (A)).
- (6). *b-pre-open if $A \subseteq int (*bcl(A))$.

Definition 1.8 ([14]). A subset A of a space (X, τ) is said to be,

- (1). **b-t-set if int (A) = int (**bcl(A)).
- (2). **b-t*-set if cl(A) = cl(**bint(A)).
- (3). **b-B-set if $A = U \cap V$, where $U \in \tau$ and V is a **b-t-set.

- (4). **b-B*-set if $A = U \cap V$, where $U \in \tau$ and V is a **b-t*-set.
- (5). **b-semi-open if $A \subseteq cl$ (**bint (A)).
- (6). **b-pre-open if $A \subseteq int (^{**}bcl (A))$.

Lemma 1.9 ([2]). Let A be a subset of a space (X, τ) . Then

(1). bcl(int(A)) = int(bcl(A)) = int(cl(int(A))).

(2). bint(cl(A)) = cl(bint(A)) = cl(int(cl(A))).

Result 1.10 ([2]). In a extremally disconnected space (X, τ) ,

- (1). int(cl(A)) = cl(int(A)).
- (2). closure of every open set is open.

Result 1.11 ([8]).

- (1). Every regular open set is a t-set.
- (2). Every regular closed set is a t*-set.
- (3). Every locally closed set is a B-set.

Result 1.12 ([14]).

- (1). Every **b-closed set is a **b-t-set.
- (2). Every **b-open set is a **b-t*-set.
- (3). Every open set is a **b-pre-open set.

2. Properties of t^{**} -sets and **t-Sets

Definition 2.1. A subset A of a space (X, τ) is called

- (1). t^{**-set} if int(A) = int(cl(int(A)))
- (2). *******t*-set if cl(A) = cl(int(cl(A)))

Definition 2.2. A subset A of a space (X, τ) is called

(1). B^{**} -set if $A = U \cap V$, where $U \in \tau$ and V is a t^{**} -set.

(2). ******B-set if $A = U \cap V$, where $U \in \tau$ and V is a ******t-set.

Example 2.3. Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ and $\tau' = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$

 $(1). The collection of t^{**}-sets = \{X, \phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}\}$

 $(2). The collection of **t-sets = \{X, \phi, \{c\}, \{d\}, \{a, c\}, \{b, c\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{b, c, d\}, \{a, c, d\}, \{a, b, d\}\}$

Result 2.4.

- (1). Every regular open set is a **t-set.
- (2). Every regular closed set is a t^{**}-set.

Theorem 2.5. Let A be a subset of (X, τ) . Then to prove the following,

- (1). A is a t^{**}-set iff it is semi-pre-closed.
- (2). A is a **t-set iff it is semi-pre-open.

Proof.

- (1). Let A be a t^{**} -set. Then we have int(A) = int(cl(int(A))). $\Rightarrow int(cl(int(A))) \subseteq A$. Therefore A is semi-pre-closed. Conversely, assume that A is semi-pre-closed. we have $int(cl(int(A))) \subseteq A$. $\Rightarrow int(cl(int(A))) \subseteq int(A)$. Since we also have $int(A) \subseteq int(cl(int(A)))$. We have, int(A) = int(cl(int(A))). $\Rightarrow A$ is t^{**} -set.
- (2). Let A be a **t-set. Then we have cl(A) = cl(int(cl(A))). $\Rightarrow A \subseteq cl(int(cl(A)))$. Therefore A is semi-pre-open. Conversely, assume that A is semi-pre-open. We have $A \subseteq cl(int(cl(A)))$. $\Rightarrow cl(A) \subseteq cl(int(cl(A)))$. Since we also have $cl(int(cl(A))) \subseteq A$. We have, cl(A) = cl(int(cl(A))). $\Rightarrow A$ is **t-set.

Theorem 2.6.

- (1). If A and B are t^{**} -sets, then $A \cap B$ is a t^{**} -set.
- (2). If A and B are **t-sets, then $A \cup B$ is a **t-set.

Proof.

(1). Let A and B be a t^{**} -set. Since

$$int(A \cap B) \subseteq int[cl(int(A \cap B))]$$
$$\subseteq int[cl(int(A)) \cap cl(int(B))]$$
$$= int(cl(int(A))) \cap int(cl(int(B))) = int(A \cap B)$$
$$int(A \cap B) \subseteq int(cl(int(A \cap B))) \subseteq int(A \cap B)$$
$$int(A \cap B) = int(cl(int(A \cap B))) \Rightarrow A \cap B \text{ is a } t^{**} - \text{set.}$$

(2). Let A and B be a **t-set. Since

$$\begin{aligned} cl(A \cup B) &= cl(int(cl(A) \cup cl(B))) \\ &\subseteq cl[int(cl(A)) \cup int(cl(B))] \\ &cl(A \cup B) \subseteq cl(int(cl(A \cup B))) \end{aligned}$$

Since, $int(cl(A \cup B)) \subseteq (A \cup B) \\ &\Rightarrow cl(int(cl(A \cup B))) \subseteq cl(A \cup B) \\ &cl(A \cup B) = cl(int(cl(A \cup B))) \Rightarrow A \cup B \text{ is a }^{**}t - \text{set} \end{aligned}$

Theorem 2.7. A set A is a t**-set iff its complement is a **t-set.

Proof. Let A be a t^{**} -set.

Then
$$int(A) = int(cl(int(A)))$$

 $\Leftrightarrow X - int(A) = X - int(cl(int(A)))$
 $\Leftrightarrow cl(X - A) = cl(int(cl(X - A)))$
 $\Leftrightarrow cl(A^c) = cl(int(cl(A^c)))$

 $\Leftrightarrow A^c$ is a **t-set.

Theorem 2.8. For a subset A of a space (X, τ) , the following are equivalent:

(1). A is open.

(2). A is α -open and B^{**} -set.

Proof. To prove: $(1) \Rightarrow (2)$:Let A be open,

$$A = int(A)$$

$$cl(A) = cl(int(A)).$$

$$\Rightarrow A \subseteq cl(int(A))$$

$$int(A) \subseteq int(cl(int(A))).$$

$$\Rightarrow A \subseteq int(cl(int(A)))$$

 $\Rightarrow A \text{ is } \alpha \text{-open.let } U = A \in \tau \text{ and } V = X \text{ be a } t^{**}\text{-set containing } A \Rightarrow A = U \cap V$ $\Rightarrow A \text{ is } B^{**}\text{-set.}$

To prove: (2) \Rightarrow (1): Let A be a α -open and a B^{**} -set. $\Rightarrow A = U \cap V$, where $U \in \tau$ and V is a t^{**} -set. Since V is a t^{**} -set. We have int(V) = int(cl(int(V))). Since A is α -open.

$$A \subseteq int(cl(int(A)))$$

= $int(cl(int(U \cap V)))$
= $int(cl(int(U))) \cap int(cl(int(V)))$
 $\Rightarrow U \cap V = int(cl(U)) \cap int(V)$
consider, $U \cap V = (U \cap V) \cap U$
 $U \cap V \subseteq U \cap int(V)$
 $\Rightarrow V \subseteq int(V)$
Also $int(V) \subseteq V$
 $int(V) = V$
 $A = U \cap int(V)$
 $A = int(A)$

 $\Rightarrow A$ is open.

73

Theorem 2.9. If A is regular open. Then it is semi-pre-open and **t-set.

Proof. Given A is regular open. $A = int (cl(A)) \Rightarrow cl(A) = cl(int(cl(A)))$. We have $A \subseteq cl(int(cl(A))) \Rightarrow A$ is semi-preopen. Also $cl(A) \subseteq cl(int(cl(A)))$. And $int(cl(A)) \subseteq A \Rightarrow cl(int(cl(A))) \subseteq cl(A)$. We get $cl(A) = cl(int(cl(A))) \Rightarrow A$ is semi-pre-open and **t-set.

Example 2.10. The converse of the above theorem is not true is verified by the following example. Let $X = \{a, b, c, d\}$ $\tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ $\tau' = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. The set $\{a, c\}$ is a semi-pre-open and **t-set but it is not a regular open set.

Theorem 2.11. If A is regular closed. Then it is semi-pre-closed and t**-set.

Proof. Given A is regular closed. $A = cl (int (A)) \Rightarrow int (A) = int (cl (int (A)))$. We have $(int (cl (int (A))) \subseteq A \Rightarrow A$ is semi-pre-closed. Also $int (cl (int (A))) \subseteq int (A)$. And $A \subseteq cl (int (A)) \Rightarrow int (A) \subseteq int (cl (int (A)))$. We get $int (A) = int (cl (int (A))) \Rightarrow A$ is semi-pre-closed and t^{**} -set.

Example 2.12. The converse of the above theorem is not true is verified by the following example. Let $X = \{a, b, c, d\}$ $\tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ $\tau' = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Here $\{a\}$ is a semi-pre-closed and t^{**} -set but it is not a regular closed set.

Result 2.13.

- (1). The intersection of t-set and t^* -set is a t-set.
- (2). The intersection of t^{**}-set and ^{**}t-set is a t^{**}-set.

Result 2.14.

- (1). The union of t-set and t^* -set is a t^* -set.
- (2). The union of t^{**}-set and ^{**}t-set is a ^{**}t-set.

Theorem 2.15. Let (X, τ) be a extremally disconnected space. Let A be a t-set iff it is a t^{**}-set.

 $Proof. \quad \text{Given that } (X,\tau) \text{ be a extremally disconnected space. Let } A \text{ be a } t\text{-set. int}(A) = \operatorname{int}(\operatorname{cl}(A)) = \operatorname{cl}(\operatorname{int}(A)).$

 $int(A)=int(cl(int(A))) \Rightarrow A$ is a t^{**} -set. Conversely, Assume that A be a t^{**} -set.

 $int(A)=int(cl(int(A)))=int(int(cl(A)))=int(cl(A)) \Rightarrow A$ is a t-set.

Theorem 2.16. Let A be a t**-set and open set. Then it is a b**-open.

Proof. Given that A is a t^{**} -set and open set.*int* (A) = int (cl (int (A))).Since A is open. \Rightarrow *int* (A) = A. From this we get, A = int (cl (int (A))). $\Rightarrow A \subseteq int (cl (int (A)))$.Therefore A is b^{**} -open.

Example 2.17. The converse of the above theorem is not true is verified from the following example.

Let $X = \{a, b, c, d\}$

 $\tau = \{X, \phi, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, d\}, \{a, c, d\}\}$

- $\tau' = \left\{X, \phi, \left\{b\right\}, \left\{c\right\}, \left\{a, c\right\}, \left\{b, c\right\}, \left\{c, d\right\}, \left\{a, c, d\right\}, \left\{b, c, d\right\}, \left\{a, b, c\right\}\right\}$
- (1). The collection of t^{**} -set and open = $\{x, \phi, \{a\}, \{b\}, \{d\}, \{a, b\}, \{b, d\}, \{a, c, d\}\}$
- $(2). The collection of b^{**}-sets = \{X, \phi, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}\}$

From the above $\{a, d\}$ be a b^{**}-open but it is not t^{**}-set and open.

3. **b-**t-Sets and **b-t**-Sets in the Topological Space

Definition 3.1. A subset A of a space (X, τ) is called **b-t**-set if int(A) = int(cl(**bint(A))).

Definition 3.2. A subset A of a space (X, τ) is called **b-**t-set if cl(A) = cl(int(**bcl(A))).

Definition 3.3. A subset A of a space (X, τ) is called **b-B**-set if $A = U \cap V$, where $U \in \tau$ and V is a **b-t**-set.

Definition 3.4. A subset A of a space (X, τ) is called **b-**B-set if $A = U \cap V$, where $U \in \tau$ and V is a **b-**t-set.

Definition 3.5. A subset A of a space (X, τ) is called **b- α -open if $A \subseteq int (cl (**bint (A)))$.

Definition 3.6. A subset A of a space (X, τ) is called **b-semi-pre-open if $A \subseteq cl$ (int (**bcl (A))).

Result 3.7.

(1). Every **b-closed set is a **b-t**-set.

(2). Every **b-open set is a **b-**t-set.

Theorem 3.8. Let A be a subset of (X, τ) . Then to prove the following,

- (1). A is a **b-t **-set iff it is **b-semi-pre-closed.
- (2). A is a **b-**t-set iff it is **b-semi-pre-open.

Proof.

- (1). Let A be a **b-t**-set. Then we have int(A) = int(cl(**bint(A))). $\Rightarrow int(cl(**bint(A))) \subseteq A$. Therefore A is **b-semi-pre-closed. Conversely, assume that A is **b-semi-pre-closed. We have $int(cl(**bint(A))) \subseteq A$. $\Rightarrow int(cl(**bint(A))) \subseteq int(A)$. Since we also have $int(A) \subseteq int(cl(**bint(A)))$. We have, int(A) = int(cl(**bint(A))). $\Rightarrow A$ is **b-t**-set.
- (2). Let A be a **b-**t-set. Then we have cl(A) = cl(int(**bcl(A))). $\Rightarrow A \subseteq cl(int(**bcl(A)))$. Therefore A is **b-semi-preopen. Conversely, assume that A is **bsemi-pre-open. We have $A \subseteq cl(int(**bcl(A)))$. $\Rightarrow cl(A) \subseteq cl(int(**bcl(A)))$. Since we also have $cl(int(**bcl(A))) \subseteq A$. We have, cl(A) = cl(int(**cl(A))). $\Rightarrow A$ is a **b-**t-set.

Theorem 3.9.

(1). If A and B are **b-t**-sets, then $A \cap B$ is a **b-t**-set.

(2). If A and B are **b-**t-sets, then $A \cup B$ is a **b-**t-set.

Proof.

(1). Let A and B be a **b-t**-set.

```
Since int(A \cap B) \subseteq int[cl(^{**}bint(A \cap B))]
= int(A \cap B)
int(A \cap B) \subseteq int(cl(^{**}bint(A \cap B))) \subseteq int(A \cap B)
int(A \cap B) = int(cl(^{**}bint(A \cap B)))
```

 $\Rightarrow A \cap B$ is a **b-t**-set.

(2). Let A and B be a **b-**t-set.

Since
$$cl(A \cup B) = cl(A) \cup cl(B)$$

 $\subseteq cl[int(^{**}bcl(A)) \cup int(^{**}bcl(B))]$
 $cl(A \cup B) \subseteq cl(int(^{**}bcl(A \cup B)))$
Since $int(^{**}bcl(A \cup B)) \subseteq (A \cup B)$
 $\Rightarrow cl(int(^{**}bcl(A \cup B))) \subseteq cl(A \cup B)$
 $cl(A \cup B) = cl(int(^{**}cl(A \cup B)))$

 $\Rightarrow A \cup B$ is a **b-**t-set.

Theorem 3.10. For a subset A of a space (X, τ) , the following properties hold:

- (1). If A is a t^{**}-set, then it is ^{**}b-t^{**}-set.
- (2). If A is a **b-t**-set, then it is **b-B**-set.
- (3). If A is a B^{**}-set, then it is ^{**}b-B^{**}-set.

Proof.

- (1). Let A be a t^{**} -set.int(A) = int(cl(int(A))). $\Rightarrow int(cl(int(A))) \subseteq A$. $\Rightarrow A$ is semi-pre-closed. Since every semi-pre-closed set is a **b-semi-pre-closed set. $int(cl(**bint(A))) \subseteq A$. $\Rightarrow A$ is a **b- t^{**} -set.[by using theorem 3.8]
- (2). Let A be a **b-t**-set. int(A) = int(cl(**bint(A))). Let $U = X \in \tau$ be sn open set containing A and V = A be a **b-t**-set. $\Rightarrow A = U \cap V$. Therefore A is a **b-B**-set.
- (3). Let A be a B^{**} -set. $A = U \cap V$, where $U \in \tau$ be an open set and V is a t^{**} -set.since every t^{**} -set is a **b- t^{**} -set. $\Rightarrow A$ is a **b- t^{**} -set.

Theorem 3.11. For a subset A of a space (X, τ) , the following properties hold:

- (1). If A is a **t-set, then it is **b-**t-set.
- (2). If A is a **b-**t-set, then it is **b-**B-set.
- (3). If A is a **B-set, then it is **b-**B-set.

Theorem 3.12. For a subset A of a space (X, τ) , the following are equivalent:

- (1). A is **b-open.
- (2). A is **b- α -open and **b-B**-set.

Proof. To prove: $(1) \Rightarrow (2)$:Let A be **b-open,

$$A = {}^{**}bint(A).$$

$$cl(A) = cl({}^{**}bint(A)).$$

$$\Rightarrow A \subseteq cl({}^{**}bint(A))$$

$$int(A) \subseteq int(cl({}^{**}bint(A)))$$

since every **b-open set is an open set.

$$\Rightarrow A \subseteq int(cl(^{**}bint(A)))$$

⇒ A is **b- α -open.let $U = A \in \tau$ be an open set containing A and V = X be a **b-t**-set containing $A \Rightarrow A = U \cap V$ ⇒ A is **b-B**-set.Hence A is **b- α -open and **b-B**-set. To prove: (2) ⇒ (1): Let A be a **b- α -open and a **b-B**-set.⇒ $A = U \cap V$, where $U \in \tau$ and V is a **b-t**-set.since V

To prove: (2) \Rightarrow (1): Let A be a **b- α -open and a **b-B**-set. $\Rightarrow A = U \cap V$, where $U \in \tau$ and V is a **b-t**-set.since V is a **b-t**-set.we have int(V) = int(cl(**bint(V))). since A is **b- α -open.

$$A \subseteq int(cl(**bint(A)))$$

= $int(cl(**bint(U \cap V)))$
= $int(cl(**bint(U))) \cap int(cl(**bint(V)))$
 $\Rightarrow U \cap V = int(**bcl(U)) \cap int(V)$
consider $U \cap V = (U \cap V) \cap U$
 $\Rightarrow V \subseteq int(V)$
 $int(V) = V$
 $A = U \cap int(V)$
 $A = int(A)$

 $\Rightarrow A$ is open. We know that every open set is a **b-open set $\Rightarrow A$ is a **b-open set.

Theorem 3.13. If A is **b-regular open. Then it is **b-semi-pre-open and **b-**t-set.

Proof. Given A is **b-regular open. $A = int (**bcl(A)) \Rightarrow cl(A) = cl(int (**bcl(A)))$. We have $A \subseteq cl(int (**bcl(A))) \Rightarrow A$ is **b-semi-pre-open. Also $cl(A) \subseteq cl(int (**bcl(A)))$. And $int (**bcl(A)) \subseteq A \Rightarrow cl(int (**bcl(A))) \subseteq cl(A)$. We get $cl(A) = cl(int (**bcl(A))) \Rightarrow A$ is **b-semi-pre-open and **b-**t-set.

Example 3.14. The converse of the above theorem is not true. Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ and $\tau' = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. The set $\{b, c\}$ is a **b-semi-pre-open and **t-**t-set but it is not a **b-regular open set.

Theorem 3.15. If A is **b-regular closed. Then it is **b-semi-pre-closed and **b-t**-set.

Proof. Given A is **b-regular closed. $A = cl (**bint (A)) \Rightarrow int (A) = int (cl (**bint (A)))$. We have $(int (cl (**bint (A))) \subseteq A \Rightarrow A$ is **b-semi-pre-closed. Also $int (cl (**bint (A))) \subseteq int (A)$. And $A \subseteq cl (**bint (A)) \Rightarrow int (A) \subseteq int (cl (**bint (A)))$. We get $int (A) = int (cl (**bint (A))) \Rightarrow A$ is **b-semi-pre-closed and **b-t**-set.

77

Example 3.16. The converse of the above theorem is not true. Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ and $\tau' = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Here $\{a\}$ is a **b-semi-pre-closed and **b-**t-set but it is not a **b-regular closed set.

Theorem 3.17. Let (X, τ) be a extremally disconnected space. Let A beb a **b-t-set iff it is a **b-t*-set.

Proof. Given that (X, τ) be a extremally disconnected space. int(cl(A)) = cl(int(A))Let A be a **b-t-set.

$$int(A) = int(^{**}bcl(A))$$
$$= int(cl(A))$$
$$= cl(int(A))$$
$$int(A) = int(cl(int(A)))$$
$$int(A) = int(cl(^{**}int(A)))$$

 $\Rightarrow A$ is a **b-t**-set.Conversely, Assume that A be a **b-t**-set.

$$int(A) = int(cl(**bint(A)))$$

$$\Rightarrow int(A) = int(cl(int(A)))$$

$$= int(int(cl(A)))$$

$$= int(cl(A))$$

$$int(A) = int(**bcl(A))$$

 $\Rightarrow A$ is a **b-t-set.

Theorem 3.18. Let (X, τ) be a extremally disconnected space. Let A be a **b-t*-set iff it is a **b-**t-set

Theorem 3.19. A set A is a **b-t**-set iff its complement is a **b-**t-set.

Proof. Let A be a **b-t**-set.

Then
$$int(A) = int(cl(**bint(A)))$$

 $\Leftrightarrow X - int(A) = X - int(cl(**bint(A)))$
 $\Leftrightarrow cl(X - A) = cl(int(**bcl(X - A)))$
 $\Leftrightarrow cl(A^c) = cl(int(**bcl(A^c)))$

 $\Leftrightarrow A^c$ is a **b-**t-set.

References

M.E.Abd El-Monsef, S.N.El-Deeb and R.A.Mohmoud,β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.

 ^[2] Ahmad Al-Omari and Mohd.Salmi Md, Decomposition of continuity via b-open set, Bcl. Soc. Paran. Mat., 26(1-2)(2008), 53-64.

- [3] D.Andrijevic, On b-open sets, Mat. Vesnik, 48(1996), 59-64.
- [4] D.Andrijevic, semi-pre-open sets, Mat. Vesnik, 38(1)(1986), 24-32.
- [5] S.Bharathi, K.Bhuvaneshwari and N.Chandramathi, On locally b**-closed sets, International Journal of Mathematical sciences and Applications, 1(2)(2011), 636-641.
- [6] T.Indira and K.Rekha, On locally **b-closed sets, Proceeding of the Heber International Conference on Applications of Mathematics and Statistics, (HICAMS 2012), 74-80.
- [7] T.Indira and K.Rekha, *b-t-sets in topological spaces, Antarctica Journal of Mathematics, 9(7)(2012), 599-605.
- [8] T.Indira and K.Rekha, Applications of *b-open sets in topological spaces, Annals of pure and Applied Mathematics, 1(1)(2012), 44-56.
- [9] R.James Munkres, Topology, Pearson Education Inc., Prentice Hall, (2013).
- [10] N.Levine, Semi-open sets and Semi-continuity in topological spaces, Amer Math.Monthly, 70(1963), 36-41.
- [11] A.S.Mashhour, M.E.Abd El-Monsef and S.N.Deep, On pre-continuous and Weak pre-continuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [12] A.S.Mashhour, I.A.Hasanein and S.N.El.Deep, α-continuity and α-open mappings, Acta Math. Hunger, 41(1983), 213-218.
- [13] K.Rekha and T.Indira, b**-t-sets in topological spaces, Archimedes J.Math., 3(3)(2013), 209-216.
- [14] K.Rekha and T.Indira, **b-t-sets in topological spaces, International Journal og Applied mathematics and Statistical sciences(IJAMSS), 2(2)(2013), 55-64.
- [15] J.Tong, On decomposition of continuity in topological spaces, Acta Math. Hunger, 54(1-2)(1989), 51-55.