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Abstract: Many problems that occur in physics and engineering can be modelled by linear or nonlinear differential equations. In this
paper we find the solution of Blasius type equations which are nonlinear ordinary differential equations on a semi-infinite

interval. The Blasius equation is a third-order non-linear ordinary differential equation. The non-linear mathematical

model of the problem prohibits the use of the analytical methods. A numerical solution is the single approach for these
problems. The two-point boundary problem was solved by a Runge-Kutta method and shooting method. Matlab functions

make numerical solution of the mathematical models of the fluid flow relatively simple and quick solutions are presented

for Blasius equations with additional computations based on the numerical results obtained by the Matlab function.
Numerical study on boundary layer equation due to stationary flat plate, Matlab is the mathematical programming that

used to solve the boundary layer equation applied toolbox method. The numerical results show a good agreement with

the exact solution of Blasius equation and consistent with prior published result. The accuracy of the proposed method
is higher than other approximation analytical solutions; hence suggest that proposed method is efficient and practical.
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1. Introduction

1.1. Blasius Equation

If a fluid flows past a solid, a fluid layer is formed adjacent to the boundary of the solid. This layer is called a boundary layer

and strong viscous effects exist within this layer. Consider a uniform flow over a flat surface, y = 0, x ≥ 0, −∞ < z < ∞

Equations of the flow in the boundary layer are the continuity equation

∂u

∂x
+
∂v

∂y
= 0 (1)

and the reduced Navier-Stokes equation

u
∂u

∂x
+ v

∂v

∂y
= ν

∂2u

∂y2
(2)

where u and v are respectively the components of the velocity vector and v represents the viscosity of the fluid. Boundary

conditions are

u(x, 0) = 0 x ≥ 0 (3a)

v(x, 0) = 0 x ≥ 0 (3b)

u(x, y)→ U as y →∞ (3c)
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where U is the constant speed of the flow outside the boundary Layer. Define a stream function ψ(x, y) such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
(4)

then equation (1) is satisfied identically and equation (2) becomes

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
= v

∂3ψ

∂y3
(5)

Blasius used a similarity transformation to reduce (1.5) to an ordinary differential equation. A similarity transformation is

based on the symmetry analysis of a differential equation [11? ]. When a symmetry property of a differential equation is

identified it can be exploited to achieve a simplification. If it is an ordinary differential equation then usually the order of

the equation can be reduced. If it is a partial differential equation then usually the dependent and independent variables

can be combined to achieve a reduction of order or a reduction of the partial differential equation to an ordinary differential

equation. In the case of (5) symmetry analysis leads to the following transformation [11]

η = a
y√
x

ψ(x, y) = b
√
x f(η)

where a and b are constants and are chosen to make η and f(η) dimensionless. They are taken as

a =

√
U

ν

b =
√
νU

With this choice, η is called the dimensionless similarity variable and f(η) is called the dimensionless stream function. Now

∂ψ

∂x
= −U

2

y

x
f ′(η) +

1

2

√
νU

f(η)√
x

∂ψ

∂y
= Uf ′(η)

∂2ψ

∂y2
= Uf ′′(η)

a√
x

∂2ψ

∂x∂y
= −U

2

√
U

ν

y

x
3
2

f ′′(η) = − U
2x
ηf ′′(η)

∂3ψ

∂y3
=
U2

νx
f ′′′(η).

A substitution of the above derivatives in equation (5) reduces it to

d3f

dη3
+

1

2
f(η)

d2f

dη2
= 0 (6)

Equation (6) is known as the Blasius equation. The boundary condition (3a) transforms to

f ′(0) = 0 (7a)

while (3b) becomes

f(0) = 0 (7b)
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and (1.3c) reduces to

f ′(η)→ 1 as η →∞ (7c)

Equation (6) together with the boundary conditions (7a), (7b) and (7c) is called the Blasius problem. Several methods have

been used for numerical solution of Falkner-Skan equations. Meksyn [3] solved the Falkner-Skan equation through analytical

approximations. Asaithambi [4, 5] used finite difference method and piecewise linear functions for solving Falkner-Skan

equation switch high accuracy. Recently Shi-JunLiao [6] applied the homotopy analysis to solve the Falkner-Skan equation.

Khabibrakhmanov and D.Summers [7] used a spectral method with generalized Laguerre polynomials for solving the Blasius

equation (β = 0). Moreover, the Blasius equation was solved by Rosales and Valencia [8] using Fourier series. Also, Vera

and Valencia [9] solved the Falkner-Skan equation with heat transfer through an expansion in Fourier series. In this paper,

write the Blasius equation as a first order differential system and obtain a numerical solution to the differential using 4th

order Runge- Kutta method by using a guess α and find out the solution.

1.2. Method of Solution

The non-linear differential equations (1) subject to the boundary conditions (2) constitute a two-point boundary value

problem. In order to solve these equations numerically, we follow RungeKutta 4th order with shooting technique. In this

method it is most important to choose the appropriate finite values of η →∞. The solution process is repeated with another

large value of η →∞ until two successive values of f ′′(0) differ only after a desired digit signifying the limit of the boundary

along η. The last value of η → ∞ is chosen as appropriate value of the limit η → ∞ for that particular set of parameters.

The ordinary differential equation (1) was first converted into a set of three first-order simultaneous equations. To solve

this system we require three initial conditions but we have only two initial conditions, f(0) and f ′(0) on f(η). The initial

condition f ′′(0) is not prescribed. However the values of f ′(η) is known at η = 0. Now we employ the numerical shooting

technique based where this ending boundary condition is utilized to produce unknown initial conditions at η = 0 finally, the

problem has been solved numerically using Runge-Kutta 4th order.

2. Description of the Method

2.1. Reduction to a First Order System

The solve the falkner-skan equation numerically, the equation is reduced to a first order system by introducing the three

auxiliary variables.

f = u1
∂f

∂η
= u2 and

∂2f

∂η2
= u3,

So that we have the following system of three coupled ODEs:

f1(η, u1, u2, u3) = u′1 = u2

f2(η, u1, u2, u3) = u′2 = u2

f3(η, u1, u2, u3) = u′3 = −u1u3

The first order system can be written more compactly using vector notation.

∂f

∂η
= f1(η, u1, u2, u3). i.e


f1

f2

f3

 =


u2

u3

−u1u3


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it is important to note the ODE system is in normal form and then the boundary condition

u1(0) = 0

u2(0) = 0

u2(η =∞) = 1

Where η = ∞ is the unknown free boundary used to truncate the semi-infinite interval to a finite one. Which is to be

determine as the part of the procedure in addition, an initial condition on the second derivatives is introduced to apply the

Shooting Method,

∂2f

∂η2
= α at η = 0,

where α is the shooting angle. The shooting algorithm therefore consists of the following procedure:

(1). Starting from a relatively large value of α as the initial guess f ′(η) is evaluated by increasing η through steps of h from

zero to ηm.

(2). If at some η, f ′(η) > 1, then α is decreased and f ′(η) evaluated until f ′(η) < 1 for some α. At this point, the asymptotic

profile is bracketed.

(3). A new α is then determined by Newton Method.

(4). If f ′(η) does not cross unity from below as η increases from zero to ηm, then is checked for negativity. If negative, α is

below its correct value and Newton Method again determines the next α.

(5). Finally, when the estimate for α is approximately within an order of magnitude of the desired error, Runge-Kutta 4th

order method can be used to the initial value problems.

2.2. Numerical Solution

A numerical solution of the Blasius problem usually uses the shooting method. In this method it is assumed that

f ′′(0) = σ (8)

and the problem is solved with different values of σ. Such values of σ will lead to different values of df
dη

as η →∞. We seek

that value of σ which will yield an f which satisfies

lim η →∞ df

dη
= 1.

First accurate numerical solution was obtained by Howarth [2]. More recently Asaithambi [4], and Cortell [10] have also

solved the Blasius problem by the shooting method. In practice it is impossible to carry out calculations up to infinity.

Hence an η = η∞ is arbitrarily fixed and we demand that

df

dη
= 1 when η = η∞.

We solve the Blasius equation by the shooting method. We start with α = 0.1 and find that f ′(η) between η = 12 and 13

are practically a constant=0.449287. With α = 0.6. We find the slope for 12 < η < 13 equal to 1.18352. This means the

actual value should lie between 0.1 and 0.6. Therefore our next choice is 0.1+0.6
2

= 0.35 and so on. We present the results

in Table 1 and 2.
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α f ′(12.5)

0.1 0.449287

0.6 1.48352

0.35 1.03571

0.225 0.771459

0.2875 0.908413

0.31875 0.973101

0.334375 1.00465

0.326562 0.988937

0.330468 0.996808

0.3324218 1.00073

0.3314453 0.998771

0.3319335 0.999751

0.3321771 1.00024

0.3320553 0.999996

0.3321162 1.00012

0.3320857 1.00006

0.3320705 1.00003

0.3320629 1.00001

0.3320591 1

Table 1. Sequence of values of α converging to σ

η f(η) f ′(η) f ′′(η)

0.0 0 0 0.332059

0.2 0.00664105 0.0664081 0.331985

0.4 0.02656 0.132765 0.331468

0.6 0.059735 0.198938 0.330081

0.8 0.106109 0.264711 0.327391

1.0 0.165573 0.329782 0.323009

1.2 0.23795 0.393778 0.31659

1.4 0.322983 0.456264 0.307867

1.6 0.420323 0.516759 0.296665

1.8 0.529521 0.574761 0.282932

2.0 0.650028 0.629769 0.266753

2.2 0.781197 0.681314 0.248352

2.4 0.922295 0.728985 0.228092

2.6 1.07251 0.772459 0.206455

2.8 1.23098 0.811513 0.184007

3.0 1.39682 0.846048 0.161359

3.2 1.5691 0.876085 0.139129

3.4 1.74696 0.901765 0.117876

3.6 1.92953 0.923334 0.0980867

3.8 2.11604 0.941122 0.0801258

4.0 2.30576 0.955522 0.0642341

4.2 2.49805 0.966961 0.0505193

4.4 2.69237 0.975875 0.0389731

4.6 2.88826 0.982687 0.0294829

4.8 3.08533 0.987793 0.0218711

5.0 3.28329 0.991546 0.0159068

5.2 3.48188 0.994249 0.0113414

5.4 3.68094 0.996159 0.00792786

5.6 3.88031 0.997481 0.00543169

5.8 4.0799 0.998379 0.00364835

6.0 4.27964 0.998976 0.00240198

6.2 4.47948 0.999366 0.00155022

6.4 4.67938 0.999615 0.000980419
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η f(η) f ′(η) f ′′(η)

6.6 4.87932 0.999711 0.000608191

6.8 5.07928 0.999867 0.000369599

7.0 5.27926 0.999925 0.000220207

7.2 5.47925 0.999959 0.000128431

7.4 5.67924 0.999979 0.0000737176

7.6 5.87924 0.99999 0.0000413441

7.8 6.07924 0.999996 0.0000227099

8.0 6.27924 1 0.0000122503

8.2 6.47924 1 6.4618×10−6

8.4 6.67924 1 3.28575×10−6

Table 2. Numerical values of f(η), f ′(η) and f ′′(η)

η Approximation solution Numerical solution

0 0 0

0.4 0.0266 0.02656

0.8 0.1061 0.106109

1.2 0.2379 0.23795

2.0 0.6500 0.650028

2.8 1.2311 1.23098

3.0 1.396 1.39682

4.0 2.3058 2.30576

5.0 3.2827 3.2832

8.0 6.2793 6.2792

Table 3. Comparisons the values of f(η) for different authors

3. Conclusion

In this study, we have considered the classical Blasius problem. This nonlinear differential equation is successfully solved by

employing Runge-Kutta method with shooting method to obtain numerical solutions. It is found that present results are

in good agreement compared to exact solutions by Blasius [1] for the values f(η) and f ′(η) as well as the values of f ′′(η)

in comparison with Howarth [2] as shown in Table 1-3 and Figure 1-3. The numerical results strongly display the efficiency

and accuracy of the proposed method in solving the nonlinear equation.
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