

International Journal of Mathematics And its Applications

M^* -open Sets in Topological Spaces

Research Article

A.Devika^{1*} and A.Thilagavathi¹

1 Department of Mathematics, PSG College of Arts and Science, Coimbatore, Tamilnadu, India.

Abstract: The aim of this paper is to introduce a new class of open sets called M^* -Open sets and investigate some properties of these sets in topological spaces.

MSC: 54A05, 54C08, 54C10.

Keywords: Open sets, M^* -open sets, M^* -closed sets. © JS Publication.

1. Introduction

In 1968, N.V.Velicko exhibited and studied some new types of open sets called θ -open sets [12] and δ -open sets [12]. N.Levine in 1963 initiated a new type of open set called semi-open set [6]. In 1993, S.Raychaudhuri and N.Mukherjee defined δ -preopen sets [10]. In 1997, δ -semi-open sets was obtained by J.H.Park [9], and M.Caldas obtained θ -semi-open sets in 2008 [1]. E.Ekici in 2008 introduced *e*-open sets [2] and also later in 2008 he introduced *a*-open sets [3]. In the year 2008 E.Ekici invented *e**-open sets [3]. The notion of *M*-open sets was introduced by A.I.El.Maghrabi and M.A.Al.Juhani in 2011 [5]. This paper is devoted to introduce and investigate a new class of open set namely *M**-open sets.

1.1. Preliminaries

Throughout this paper (X, τ) and (Y, σ) (Simply X and Y) represent topological spaces on which no separation axioms are assumed unless or otherwise mentioned. For a subset A of a space (X, τ) the closure of A, the interior of A, and the complement of A are represented by cl(A),int(A), and $X \setminus A$ respectively. A subset A of a space X is said to be regular open [11] if A = int(cl(A)). A point $x \in X$ is said to be θ -interior point of A [12] if there exists an open set U containing x such that $U \subseteq cl(U) \subseteq A$. The set of all θ -interior points of A is said to be the θ -interior of A and denoted by $int_{\theta}(A)$. A subset A of X is said to be θ -open if $A = int_{\theta}(A)$.

Definition 1.1. A subset A of X is said to be,

- (1). pre-open if $A \subseteq int(cl(A))[7]$.
- (2). semi-open if $A \subseteq cl(int(A))[6]$.
- (3). α -open if $A \subseteq int(cl(int(A))).[8]$

^{*} E-mail: devirakavi@gmail.com

- (4). θ -semi-open if $A \subseteq cl(int_{\theta}(A)).[1]$
- (5). M-open if $A \subseteq cl(int_{\theta}(A) \cup int(cl_{\delta}(A).[5])$

Definition 1.2. The complement of a pre-open(resp. semi-open, α -open, θ -semi-open, M-open) set is called pre-closed(resp. semi-closed, α -closed, θ -semi-closed, M-closed).

Definition 1.3. The intersection of all pre-closed(resp. semi-closed, α -closed, θ -semi-closed, M-closed) sets containing A is called the pre-closure(resp.semi-closure, α -closure, θ -semi-closure, M-closure) of A and is denoted by pcl(A)(resp. scl(A), α -cl(A), scl_ θ (A), Mcl-(A).).

Definition 1.4. The union of all pre-open(resp. semi-open, α -open, θ -semi-open, M-open)sets contained in A is called the pre-interior(resp. semi-interior, α -interior, θ -semi-interior, M-interior) of A and is denoted by pint(A)(resp. sint(A), α -int(A), sint_{θ}(A), M-int(A).).

Lemma 1.5 ([5]).

- (1). A is open if and only if $A = int_{\theta}(A)$.
- (2). $int_{\theta}(A)$ is the union of all θ -open sets of X whose closures are contained in A.
- (3). For any subset A of X $A \subseteq Cl(A) \subseteq Cl_{\delta}(A) \subseteq Cl_{\theta}(A)$ (resp. $int_{\theta}(A) \subseteq int_{\delta}(A) \subseteq int(A) \subseteq A$).
- (4). $int_{\theta}(A \cap B) = int_{\theta}(A) \cap int_{\theta}(B)$. $int_{\theta}(A) \cup int_{\theta}(B) \subseteq int_{\theta}(A \cup B)$.
- (5). $Cl_{\theta}(A \cap B) = Cl_{\theta}(A) \cap Cl_{\theta}(B)$. $Cl_{\theta}(A \cup B) = Cl_{\theta}(A) \cup Cl_{\theta}(B)$.

Lemma 1.6 ([5]). Let A be a subset of a space (X, τ) . Then the following statements are hold.

- (1). $pint(\delta pcl(A) = \delta pcl(A) \cap int(cl(A))$ and $pcl(\delta - pint(A) = \delta - pint(A) \cap cl(int(A))$
- (2). $pint_{\theta}(\delta pcl(A)) = \delta pcl(A) \cap int(cl_{\theta}(A))$ and $pcl_{\theta}(\delta - pint(A)) = \delta - pint(A) \cap cl(int_{\theta}(A))$
- (3). $scl_{\theta}(int_{\theta}(A)) = scl(int_{\theta}(A)) = int(cl(int_{\theta}(A)))$
- (4). $sint_{\theta}(cl_{\theta}(A)) = sint(cl_{\theta}(A)) = cl(int(cl_{\theta}(A)))$

2. M^* -open Sets

Definition 2.1. Let (X, τ) be topological space. Then a subset A of a space (X, τ) is said to be,

- (1). an M^* -open set if $A \subseteq int(cl(int_{\theta}(A)))$.
- (2). an M^* -closed set if $A \supseteq cl(int(cl_{\theta}(A)))$.

Lemma 2.2. Let A be a subset of a space (X, τ) . Then the following statements are hold:

- (1). Every θ -open set is an M^* -open set.
- (2). Every M^* -open set is a θ -semi-open set.

(3). Every M*-open set is an M-open set.

Proof.

- (1). Let A be an θ -open set. Then $A = int_{\theta}(A)$ and by Lemma 1.5 $int_{\theta}(A) \subseteq int(A) \subseteq A$. Hence, A = int(A). Since $A = int_{\theta}(A) \subseteq cl(int_{\theta}(A))$, then $A = int(A) \subseteq int(cl(int_{\theta}(A)))$. Thus A is M^* -open.
- (2). Obvious from the definition.
- (3). Let A be M*-open. Then $A \subseteq int(cl(int_{\theta}(A))) \subseteq cl(int_{\theta}(A)) \subseteq cl(int_{\theta}(A)) \cup int(cl_{\delta}(A))$.

Hence A is an M-open set.

But the converse of the above results (2) and (3) need not be true as shown by the following examples.

Example 2.3. Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Then $A = \{a, c\}$ is an *M*-open set and θ -semi-open-set but it is not *M**-open.

Lemma 2.4. Let (X, τ) be a topological space. Then the following statements are hold:

(1). The arbitrary union of M^* -open sets is M^* -open.

(2). The arbitrary intersection of M^* -closed sets is M^* -closed.

Proof. (1). Let $\{A_i : i \in I\}$ be a family of M^* -open sets. Then $A_i \subseteq int(cl(int_{\theta}(A_i)))$ for all $i \in I$. Then, $\bigcup_{i \in I} A_i \subseteq \bigcup_{i \in I} int(cl(int_{\theta}(A_i))) \subseteq int(cl(int_{\theta}(\bigcup_{i \in I} A_i)))$. Hence $\bigcup_{i \in I} A_i$ is M^* -open.

Lemma 2.5. For a topological space (X, τ) the family of all M*-open sets of X forms a topology denoted by τ_{M^*} for X.

Proof. It is obvious that X, ϕ are in $M^*O(X)$ and from Lemma 2.5 we've arbitrary union of M^* -open sets is M^* -open. Let A and B be M^* -open sets. Then, $A \subseteq int(cl(int_{\theta}(A)))$ and $B \subseteq int(cl(int_{\theta}(B)))$. And hence,

 $A \cap B \subseteq int(cl(int_{\theta}(A))) \cap int(cl(int_{\theta}(B)))$ $\subseteq int(cl(int_{\theta}(A)) \cap cl(int_{\theta}(B)))$ $\subseteq int(cl(int_{\theta}(A) \cap int_{\theta}(B)))$ $\subseteq int(cl(int_{\theta}(A \cap B)))$

Hence the finite intersection of M^* -open sets is M^* -open and hence τ_{M^*} is a topology for X.

Definition 2.6. Let A be a subset of a space (X, τ) . Then,

- (1). The intersection of all M^* -closed sets containing A is called the M^* -closure of A and is denoted by M^* -cl(A).
- (2). The union of all M^* -open sets contained in A is called the M^* -interior of A and is denoted by M^* -int(A).

Theorem 2.7. The following hold for a subset of a space (X, τ) :

- (1). A is M^* -open if and only if $A = A \cap int(cl(int_{\theta}(A)))$.
- (2). A is M^* -closed if and only if $A = A \cup cl(int(cl_{\theta}(A)))$.

Proof. (1). Let A be an M^* -open. Then $A \subseteq int(cl(int_{\theta}(A)))$. Hence $A \cap int(cl(int_{\theta}(A))) = A$. Conversely let $A = A \cap int(cl(int_{\theta}(A))$. Then, $A \subseteq int(cl(int_{\theta}(A)))$. Hence A is M^* -open.

Theorem 2.8. The following hold for a subset of a space (X, τ) :

- (1). $M^*-int(A) = A \cap int(cl(int_{\theta}(A)))$
- (2). $M^*-cl(A) = A \cup cl(int(cl_\theta(A)))$

Proof. (1). Since M^* -int(A) is M^* -open, $M^* - int(A) \subseteq int(cl(int_{\theta}(M^* - int(A)))) \subseteq int(cl(int_{\theta}(A)))$ Also, $A \cap M^* - int(A) \subseteq A \cap int(cl(int_{\theta}(A)))$. Hence, $M^* - int(A) \subseteq A \cap int(cl(int_{\theta}(A)))$. Conversely since,

 $int(cl(int_{\theta}(A \cap int(cl(int_{\theta}(A)))))) \supseteq int(cl(int_{\theta}(A \cap int_{\theta}(cl(int_{\theta}(A)))))))$ $\supseteq int(cl(int_{\theta}(A) \cap int_{\theta}(cl(int_{\theta}(A))))))$ $\supseteq int(cl(int_{\theta}(A) \cap int_{\theta}(int_{\theta}(A)))))$ $= int(cl(int_{\theta}(A \cap int_{\theta}(A))))$ $= int(cl(int_{\theta}(A)))$ $= A \cap int(cl(int_{\theta}(A)))$

Hence, $int(cl(int_{\theta}(A \cap int(cl(int_{\theta}(A)))))) \supseteq A \cap int(cl(int_{\theta}(A)))$. This implies that, $A \cap int(cl(int_{\theta}(A)))$ is an M^* -open set contained in A. Hence, $A \cap int(cl(int_{\theta}(A))) \subseteq M^* - int(A)$. Therefore M^* - $int(A) = A \cap int(cl(int_{\theta}(A)))$.

Theorem 2.9. For a subset A of a topological space (X, τ) ,

- (1). A is an M^* -open set if and only if $A = M^*$ -int(A).
- (2). A is an M^* -closed set if and only if $A = M^*$ -cl(A).

Theorem 2.10. Let A and B be subsets of a space (X, τ) . Then the following are hold:

- (1). $M^*-cl(X \setminus A) = X \setminus M^*-int(A)$
- (2). $M^*-int(X \setminus A) = X \setminus M^*-cl(A)$
- (3). If $A \subseteq B$ then $M^*-cl(A) \subseteq M^*-cl(B)$ and $M^*-int(A) \subseteq M^*-int(B)$.
- (4). $M^*-cl(M^*-cl(A)) = M^*-cl(A)$ and $M^*-int(M^*-int(A)) = M^*-int(A)$.
- (5). $M^*-cl(A) \cup M^*-cl(B) \subseteq M^*-cl(A \cup B)$ and $M^*-int(A) \cup M^*-int(B) \subseteq M^*-int(A \cup B)$.
- (6). $M^*-cl(A) \cap M^*-cl(B) \supseteq M^*-cl(A \cap B)$ and $M^*-int(A) \cap M^*-int(B) \supseteq M^*-int(A \cap B)$.
- *Proof.* (1). By Theorem 2.9,

$$M^* - cl(X \setminus A) = (X \setminus A) \cup (cl(int(cl_{\theta}(X \setminus A)))$$
$$= (X \setminus A) \cup ((X \setminus int(cl(int_{\theta}(A)))))$$
$$= X \setminus (A \cap int(cl(int_{\theta}(A))))$$
$$= X \setminus M^* - int(A)$$

(2) and (3) follows from the definition.

(4). By Theorem 2.9(1),

$$M^* - cl(M^* - cl(A)) = cl(int(cl_{\theta}(M^* - cl(A)$$
$$= cl(int(cl_{\theta}(A \cup cl(int(cl_{\theta}(A))))))$$
$$\subseteq cl(int(cl_{\theta}(A) \cup cl_{\theta}(int(cl_{\theta}(A)))))$$
$$\subseteq cl(int(cl_{\theta}(A)))$$
$$\subseteq M^* - cl(A)$$

But $M^*-cl(A) \subseteq M^*-cl(M^*-cl(A))$. Hence $M^*-cl(A) = M^*-cl(M^*-cl(A))$. (5). By Theorem 2.9(2),

$$M^* - cl(A) \cup M^* - cl(B) = (A \cup cl(int(cl_{\theta}(A)))) \cup (B \cup cl(int(cl_{\theta}(B))))$$
$$= (A \cup B) \cup (cl(int(cl_{\theta}(A))) \cup cl(int(cl_{\theta}(B))))$$
$$= (A \cup B) \cup cl(int(cl_{\theta}(A \cup B)))$$
$$= M^* - cl(A \cup B)$$

(6). By Theorem 2.9(2),

$$M^* - int(A \cap B) = (A \cap B) \cap int(cl(int_{\theta}(A \cap B)))$$
$$= (A \cap B) \cap int(cl(int_{\theta}(A) \cap int_{\theta}(B)))$$
$$\subseteq (A \cap int(cl(int_{\theta}(A)))) \cap (B \cap int(cl(int_{\theta}(B))))$$
$$= M^* - int(A) \cap M^* - int(B)$$

Lemma 2.11. Let A be a subset of a space (X, τ) . Then,

- (1). $M^*-cl(A) = A \cup sint_{\theta}(cl_{\theta}(A))$
- (2). $M^*-int(A) = A \cap scl_{\theta}(int_{\theta}(A))$

Proof. (1). From lemma 1.6(4), $A \cup sint_{\theta}(cl_{\theta}(A)) = A \cup (cl(int(cl_{\theta}(A)))) = M^* - cl(A)$ (2). From Lemma 1.6(3), $A \cap scl_{\theta}(int_{\theta}(A)) = A \cap (int(cl(int_{\theta}(A)))) = M^* - int(A)$

Theorem 2.12. The following are equivalent for a subset A of (X, τ) :

- (1). A is an M^* -open set.
- (2). $A \subseteq scl_{\theta}(int_{\theta}(A))$
- (3). $scl_{\theta}(A) = scl_{\theta}(int_{\theta}(A))$

Proof. (1) \Rightarrow (2): Let A be an M*-open set. Then by Theorem 2.10, $A = M^*-int(A)$. By lemma 2.12, $A = A \cap scl_{\theta}(int_{\theta}(A)) \subseteq scl_{\theta}(int_{\theta}(A))$. Hence $A \subseteq scl_{\theta}(int_{\theta}(A))$.

(2) \Rightarrow (1): Let $A \subseteq scl_{\theta}(int_{\theta}(A))$. This implies that $A \subseteq A \cap scl_{\theta}(int_{\theta}(A)) = M^* - int(A)$. Hence $A \subseteq M^*$ -int(A) and hence $A = M^*$ -int(A) and M^* -open.

 $(2) \Rightarrow (3)$: Let $A \subseteq scl_{\theta}(int_{\theta}(A))$. Then $scl_{\theta}(A) \subseteq scl_{\theta}(int_{\theta}(A))$. But $int_{\theta}(A) \subseteq A$. Hence $scl_{\theta}(int_{\theta}(A)) \subseteq scl_{\theta}(A)$. Hence $scl_{\theta}(int_{\theta}(A)) \subseteq scl_{\theta}(A)$.

 $(3) \Rightarrow (2): \text{Let } scl_{\theta}(A)) = scl_{\theta}(int_{\theta}(A)). \text{ Then } scl_{\theta}(A)) \subseteq scl_{\theta}(int_{\theta}(A)). \text{ But } A \subseteq scl_{\theta}(A). \text{ And therefore } A \subseteq scl_{\theta}(int_{\theta}(A)).$

Theorem 2.13. Let A be a subset of a space (X, τ) . Then the following are equivalent:

- (1). A is an M*-closed set.
- (2). $A \supseteq sint_{\theta}(cl_{\theta}(A))$
- (3). $sint_{\theta}(A) = sint_{\theta}(cl_{\theta}(A))$

Definition 2.14. A subset A of a topological space (X, τ) is said to be locally M^* -closed if $A = U \cap F$ for each $U \in \tau$ and $F \in M^*C(X)$.

Theorem 2.15. Let H be a subset of a space (X, τ) . Then H is locally M^* -closed if and only if $H = U \cap M^*$ -cl(H).

Proof. Let H be an locally M^* -closed set. Then $H = U \cap F$ for each $U \in \tau$ and $F \in M^*C(X)$. Hence $H \subseteq M^*$ - $cl(H) \subseteq M^*$ -cl(F) = F. Thus $U \cap H \subseteq U \cap M^*$ - $cl(H) \subseteq U \cap M^*$ -cl(F) = H. This implies that $H \subseteq U \cap M^*$ - $cl(H) \subseteq U \cap M^*$ -cl(F) = H. Hence $H = U \cap M^*$ -cl(H)

Converse is obvious, since $M^*-cl(H) \in M^*C(X)$.

Theorem 2.16. Let A be a locally M^* -closed subset of a topological space (X, τ) . Then the following are hold:

- (1). $M^*-cl(A)\setminus A$ is an $M^*-closed$ set.
- (2). $(A \cup (X \setminus M^*-cl(A)))$ is an M^* -open set.
- (3). $A \subseteq M^*$ -int $(A \cup (X \setminus M^*$ -cl(A))).

Definition 2.17. Let (X, τ) be a topological space and $A \subseteq X$. Then the M^* -boundary of $A(Briefly \ M^*-b(A))$ is given by $M^*-b(A) = M^*-cl(A) \cap M^*-cl(X \setminus A)$.

Theorem 2.18. If A is a subset of a space (X, τ) then the following statements hold:

- (1). $M^*-b(A) = M^*-b(X \setminus A)$
- (2). $M^{*}-b(A) = M^{*}-cl(A) \setminus M^{*}-int(A)$
- (3). $M^{*}-b(A) \cap M^{*}-int(A) = \phi$
- (4). $M^{*}-b(A) \cup M^{*}-int(A) = M^{*}-cl(A)$

Definition 2.19. Let (X, τ) be a topological space and $A \subseteq X$. Then the set $X \setminus M^*$ -cl(A) is called the M^* -exterior of A and is denoted by M^* -ext(A). Each point $p \in X$ is called an M^* -exterior point of A if it is a M^* -interior point of $X \setminus A$.

Theorem 2.20. If A and B are two subsets of a space (X, τ) . Then the following statements hold:

- (1). $M^*-ext(A) = M^*-int(X \setminus A)$
- (2). $M^*-ext(A) \cap M^*-b(A) = \phi$
- (3). $M^*-ext(A) \cup M^*-b(A) = M^*-cl(X \setminus A)$
- (4). $\{M^*-int(A), M^*-b(A), and M^*-ext(A)\}\$ form a partition of X
- (5). If $A \subseteq B$ then $M^*-ext(B) \subseteq M^*-ext(A)$
- (6). $M^*-ext(A \cup B) \subseteq M^*-ext(A) \cup M^*-ext(B)$
- (7). $M^*-ext(A \cap B) \supseteq M^*-ext(A) \cap M^*-ext(B)$
- (8). $M^*-ext(\phi) = X$ and $M^*-ext(X) = \phi$

Definition 2.21. If A is a subset of a space (X, τ) . Then a point $x \in X$ is called M^* -limit point of a set $A \subseteq X$ if every M^* -open set $G \subseteq X$ containing x contains a point other than x.

Definition 2.22. The set of all M^* -limit points of A is called M^* -derived set of A and is denoted by M^* -d(A).

Theorem 2.23. If A and B are two subsets of a space X. Then the following statements hold:

- (1). If $A \subseteq B$ then $M^*-d(A) \subseteq M^*-d(B)$.
- (2). A is an M*-closed set if and only if it contains each of its limit points.
- (3). $M^*-cl(A) = A \cup M^*-d(A)$.

Definition 2.24. A subset A of a space (X, τ) is said to be a M^* -neighbourhood (Briefly M^* -nbd) of a point $p \in X$ if there exists an M^* -open set W such that $p \in W \subseteq N$. The class of M^* -neighbourhoods of $p \in X$ is called the M^* -neighbourhood system of p and denoted by M^* -N_p.

Theorem 2.25. A subset G of a space X is M^* -open if and only if it is M^* -nbd for every point $p \in G$.

Proof. Let G be an M^* -open set. Then G is a M^* -nbd for each $p \in G$. Conversely let G be an M^* -nbd for each $p \in G$. Then there exists an M^* -open set W_p containing p such that $p \in W_p \subseteq G$. So $G = \bigcup_{p \in G} W_p$. Therefore G is an M^* -open set.

References

- M.Caldas, M.Ganster, D.N.Georgiou, S.Jafari and T.Noiri, On θ-semi-open sets and separation axioms in topological spaces, Carpathian. J.Math., 24(1)(2008), 13-22.
- [2] E.Ekici, On e-open sets, DP*-sets and DPE*-sets and decompositions of continuity, Arabian Journal for Science and Engineering 33(2A)(2008) 269-282.
- [3] E.Ekici, A note on a-open sets and e*-open sets, Filomat, 22(1)(2008), 89-96.
- [4] E.Ekici, On e^* -open sets, $(D, S)^*$ -sets, Mathematica Moravica, 13(1)(2009), 29-36.
- [5] A.I.El-Maghrabi and M.A.Al-Juhani, *M*-open sets in topological spaces, Pioneer Journal of Mathematics and Mathematical Sciences 4(2)(2011), 213-230.

- [6] N.Levine, Semi-open sets and Semi-continuity in topological spaces, American Mathematical Monthly, 70(1963), 36-41.
- [7] A.S.Mashour, M.E.Abd.El-Monsef and S.N.El-Deeb, On pre-continuous and weak pre-continuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [8] O.Njastad, On Some classes of nearly open sets, Pacific.J.Math., 15(1965), 961-970.
- [9] J.H.Park, B.Y.Lee and M.J.Son, On δ-semi-open sets in topological spaces, Journal of the Indian Academy of Mathematics 19(1)(1997), 59-67.
- [10] S.Raychaudhhuri and N.Mukherjee, On δ -almost continuity and δ -pre-open sets, Bull. Inst. Math. Acad. Sinica, 21(1993), 357-366.
- [11] M.H.Stone, Application of the theory of Boolean rings to general topology, Toms, 41, 375-381.
- [12] N.V.Velicko, H-closed topological spaces, Amer. Math. Soc. Transl., 78(1968), 103-118.