

International Journal of Mathematics And its Applications

Weaker Form of δ -open Sets via Ideals

Research Article

A.Anis Fathima^{1*}, V.Inthumathi² and M.Maheswari²

1 Department of Mathematics(CA), Sri GVG Visalakshi College for Women, Udumalpet, Tamil Nadu, India.

1 Department of Mathematics, N.G.M College, Pollachi, Tamil Nadu, India.

Abstract: In this paper, the notions of $\delta_{\mathcal{I}}$ -semi-open sets and $\delta_{\mathcal{I}}$ -semi-closed sets are introduced and investigated in ideal topological spaces.

MSC: 54A05.

Keywords: $\delta_{\mathcal{I}}$ -semi-open sets and $\delta_{\mathcal{I}}$ -semi-closed sets. © JS Publication.

1. Introduction

The concept of ideals in topological spaces has been introduced and studied by Kuratowski [12] and Vaidyanathasamy [19]. An ideal \mathcal{I} on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. For a subset A of X, $A^*(\mathcal{I}, \tau) = \{x \in X : A \cap U \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$ is called the *local function* [12] of A with respect to \mathcal{I} and τ . We simply write A^* in case there is no chance for confusion. A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(\mathcal{I}, \tau)$ finer than τ is defined by $cl^*(A)=A \cup A^*$ [19]. Throughout this paper, (X, τ, \mathcal{I}) (or simply X), always mean ideal topological space on which no separation axiom is assumed. In this paper we introduce weaker form of δ -open sets in ideal topological spaces.

2. Preliminaries

Definition 2.1 ([18]). A subset A of a topological space (X, τ) is said to be

- (1). regular open if A = int(cl(A)),
- (2). regular closed if A = cl(int(A))).

A is called δ -open [20] if for each $x \in A$, there exists a regular open set G such that $x \in G \subset A$. The complement of a δ -open set is called δ -closed. A point $x \in X$ is called a δ -cluster point of A if $int(cl(V)) \cap A \neq \emptyset$ for each open set V containing X. The set of all δ -cluster points of A is called the δ -closure of A and is denoted by $\delta cl(A)$. The δ -interior of A is the union of all regular open sets of X contained in A and it is denoted by $\delta int(A)$.

^{*} E-mail: anisnazer2009@gmail.com

Definition 2.2. A subset A of a topological space (X, τ) is said to be

- (1). semi-open [13] if $A \subseteq cl(int(A))$,
- (2). pre-open [14] if $A \subseteq int(cl(A))$,
- (3). α -open [15] if $A \subseteq int(cl(int(A)))$,
- (4). β -open [2] if $A \subseteq cl(int(cl(A)))$,
- (5). b-open [4] if $A \subseteq int(cl(A)) \cup cl(int(A))$,
- (6). δ -semi-open [16] if $A \subseteq cl(int_{\delta}(A))$,
- (7). δ -pre-open [17] if $A \subseteq int(cl_{\delta}(A))$,
- (8). δ - β -open [10] if $A \subseteq cl(int(cl_{\delta}(A)))$,
- (9). a-open [8] if $A \subseteq int(cl(int_{\delta}(A)))$.

Definition 2.3. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be

- (1). \mathcal{I} -open [3] if $A \subseteq int(A^*)$,
- (2). δ - \mathcal{I} -open [1] if $int(cl^*(A)) \subseteq cl^*(int(A))$,
- (3). pre- \mathcal{I} -open [6] if $A \subseteq int(cl^*(A))$,
- (4). semi- \mathcal{I} -open [9] if $A \subseteq cl^*(int(A))$,
- (5). α - \mathcal{I} -open [9] if $A \subseteq int(cl^*(int(A)))$,
- (6). β - \mathcal{I} -open [9] if $A \subseteq cl(int(cl^*(A)))$,
- (7). b- \mathcal{I} -open [5] if $A \subseteq int(cl^*(A)) \cup cl^*(int(A))$,
- (8). α_* - \mathcal{I} -open [7] if $A \subseteq int(cl^*(int_{\delta}(A)))$,
- (9). $\beta_{\mathcal{I}}^*$ -open [7] if $A \subseteq cl^*(int(cl_{\delta}(A))),$
- (10). t- \mathcal{I} -set [10] if $int(cl^*(A)) = int(A)$,
- (11). δ_{β} -t-set [10] if $cl(int(cl_{\delta}(A))) = int(A)$.

Lemma 2.4. [[11]] Let (X, τ, \mathcal{I}) be an ideal topological space and let $A \subseteq X$. Then $U \in \tau \Rightarrow U \cap A^* \subseteq (U \cap A)^*$.

3. $\delta_{\mathcal{I}}$ -semi-open Sets

Definition 3.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be $\delta_{\mathcal{I}}$ -semi-open if $A \subseteq cl^*(int_{\delta}(A))$.

The family of all $\delta_{\mathcal{I}}$ -semi-open sets of (X, τ, \mathcal{I}) is denoted by $\delta_{\mathcal{I}}SO(X)$.

Theorem 3.2. Every δ -open set is $\delta_{\mathcal{I}}$ -semi-open.

Theorem 3.3. For a space (X, τ, \mathcal{I}) , the following hold:

- (1). Every $\delta_{\mathcal{I}}$ -semi-open set is semi-open, β -open and b-open.
- (2). Every $\delta_{\mathcal{I}}$ -semi-open set is δ -semi-open and δ - β -open.
- (3). Every $\delta_{\mathcal{I}}$ -semi-open set is δ - \mathcal{I} -open, semi- \mathcal{I} -open, β - \mathcal{I} -open, b- \mathcal{I} -open and $\beta_{\mathcal{I}}^*$ -open.

Remark 3.4. The converses of the above theorems need not be true as seen from the following examples.

Example 3.5. Let $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$, and $\mathcal{I} = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then $A = \{b\}$ is semi-open, β -open, b-open, b-open, δ - \mathcal{I} -open, δ - \mathcal{I} -open, β - \mathcal{I} -open, b- \mathcal{I} -open and $\beta_{\mathcal{I}}^{\pm}$ -open but it is not $\delta_{\mathcal{I}}$ -semi-open.

Example 3.6. Let $X = \{a, b, c, d\}$ with topologies $\tau = \{\emptyset, \{d\}, \{a, c\}, \{a, c, d\}, X\}$, and $\mathcal{I} = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}$. Then the set $A = \{b, d\}$ is δ -semi-open but not $\delta_{\mathcal{I}}$ -semi-open.

Example 3.7. Let $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$, and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then $A = \{a, b\}$ is $\delta_{\mathcal{I}}$ -semi-open but not δ -open.

Remark 3.8. From the following examples, we see that in a space (X, τ, \mathcal{I}) ,

- (1). The notions of $\delta_{\mathcal{I}}$ -semi-open sets and open (resp. \mathcal{I} -open)sets are independent.
- (2). The notions of $\delta_{\mathcal{I}}$ -semi-open sets and pre open (resp. δ -pre open and pre- \mathcal{I} -open)sets are independent.
- (3). The notions of $\delta_{\mathcal{I}}$ -semi-open sets and α -open (resp. α - \mathcal{I} -open)sets are independent.
- (4). The notions of $\delta_{\mathcal{I}}$ -semi-open sets and $\alpha_* \cdot \mathcal{I}$ -open sets (resp.t- \mathcal{I} -sets and δ_{β} -t-sets) are independent.

Example 3.9. In Example 3.5, the set $A = \{b\}$ is open and \mathcal{I} -open but not $\delta_{\mathcal{I}}$ -semi-open. In Example 3.7, the set $B = \{a, c\}$ is $\delta_{\mathcal{I}}$ -semi-open but not open, \mathcal{I} -open, pre open, δ -pre open, pre- \mathcal{I} -open and δ_{β} -t-set.

Example 3.10. In Example 3.5, the set $A = \{b\}$ is pre open, δ -pre open, pre- \mathcal{I} -open α -open and α - \mathcal{I} -open but not $\delta_{\mathcal{I}}$ -semiopen. In Example 3.7, the set $B = \{a\}$ is δ_{β} -t-set and t- \mathcal{I} -set but not $\delta_{\mathcal{I}}$ -semi-open.

Example 3.11. In Example 3.7, the set $B = \{a, b\}$ is $\delta_{\mathcal{I}}$ -semi-open but not α -open and α - \mathcal{I} -open. Moreover, the set $C = \{b, c\}$ is $\delta_{\mathcal{I}}$ -semi-open but not t- \mathcal{I} -set.

Remark 3.12. If A is $\delta_{\mathcal{I}}$ -semi-open and open, then it is a-open and α_* - \mathcal{I} -open.

Theorem 3.13. If $A_{\alpha} \in \delta_{\mathcal{I}}SO(X)$ for each $\alpha \in \Delta$, then $\bigcup_{\alpha \in \Delta} \{A_{\alpha} : \alpha \in \Delta\} \in \delta_{\mathcal{I}}SO(X)$.

Proof. Let A_{α} be $\delta_{\mathcal{I}}$ -semi-open for each $\alpha \in \Delta$. Then, we have $A_{\alpha} \subseteq cl^*(int_{\delta}(A_{\alpha}))$. Thus

 $\bigcup_{\alpha \in \Delta} A_{\alpha} \subseteq \bigcup_{\alpha \in \Delta} [cl^{*}(int_{\delta}(A_{\alpha}))] = \bigcup_{\alpha \in \Delta} [int_{\delta}(A_{\alpha}) \cup (int_{\delta}(A_{\alpha}))^{*}] \subseteq int_{\delta}(\bigcup_{\alpha \in \Delta} A_{\alpha}) \cup (int_{\delta}(\bigcup_{\alpha \in \Delta} A_{\alpha}))^{*} = cl^{*}(int_{\delta}(\bigcup_{\alpha \in \Delta} A_{\alpha}))$

This shows that $\bigcup_{\alpha \in \Delta} \{A_{\alpha} : \alpha \in \Delta\} \in \delta_{\mathcal{I}} SO(X).$

Remark 3.14. From the following example, we observe that the intersection of two $\delta_{\mathcal{I}}$ -semi-open sets need not be $\delta_{\mathcal{I}}$ -semi-open.

Example 3.15. In Example 3.7, the sets $A = \{a, b\}$ and $B = \{a, c\}$ are $\delta_{\mathcal{I}}$ -semi-open sets but $A \cap B = \{a\}$ is not $\delta_{\mathcal{I}}$ -semi-open.

Theorem 3.16. For a subset A of a space (X, τ, \mathcal{I}) ,

- (1). If $\mathcal{I} = \emptyset$, then A is $\delta_{\mathcal{I}}$ -semi-open if and only if A is δ -semi-open.
- (2). If $\mathcal{I} = P(X)$, then A is $\delta_{\mathcal{I}}$ -semi-open if and only if A is δ -open.

Proof. The proof of (1) follows from the fact that $A^*(\{\emptyset\}) = cl(A)$ and (2) follows from the fact that $A^*(P(X)) = \{\emptyset\}$. \Box

Corollary 3.17. If $\mathcal{I} = P(X)$ and A be $\delta_{\mathcal{I}}$ -semi-open then A is pre-open (resp. δ -pre-open and pre- \mathcal{I} -open.)

Theorem 3.18. A subset A of a space (X, τ, \mathcal{I}) is $\delta_{\mathcal{I}}$ -semi-open if and only if $cl^*(A) = cl^*(int_{\delta}(A))$.

Proof. Let A be $\delta_{\mathcal{I}}$ -semi-open, we have $A \subseteq cl^*(int_{\delta}(A))$. Then $cl^*(A) \subseteq cl^*(int_{\delta}(A))$. Hence $cl^*(A) = cl^*(int_{\delta}(A))$. Conversely, $A \subseteq cl^*(A) = cl^*(int_{\delta}(A))$. Thus A is $\delta_{\mathcal{I}}$ -semi-open.

Theorem 3.19. A subset A of a space (X, τ, \mathcal{I}) is $\delta_{\mathcal{I}}$ -semi-open if and only if there exists a δ -open set U such that $U \subseteq A \subseteq cl^*(U)$.

Proof. Suppose that A is $\delta_{\mathcal{I}}$ -semi-open. Then we have $A \subseteq cl^*(int_{\delta}(A))$. Put $U = int_{\delta}(A)$. We have U is δ -open and so $U \subseteq A \subseteq cl^*(U)$. Conversely, let U be δ -open set such that $U \subseteq A \subseteq cl^*(U)$. Thus $cl^*(int_{\delta}(U)) \subseteq cl^*(int_{\delta}(A))$ and so $A \subseteq cl^*(U) \subseteq cl^*(int_{\delta}(A))$. Therefore A is $\delta_{\mathcal{I}}$ -semi-open.

Corollary 3.20. If a set A is $\delta_{\mathcal{I}}$ -semi-open, then there exists a δ -open set U such that $U \subseteq A \subseteq cl(A)$.

Proposition 3.21. If U and V are δ -open sets and A is $\delta_{\mathcal{I}}$ -semi-open set such that $U \cap V = \emptyset$ then $A \cap U = \emptyset$.

Proof. Since U is δ -open and $U \cap V = \emptyset$, we have $cl^*(V) \subseteq U^c$. Thus $A \subseteq U^c$. Hence $A \cap U = \emptyset$.

Theorem 3.22. If A is an $\delta_{\mathcal{I}}$ -semi-open set in (X, τ, \mathcal{I}) and $A \subseteq B \subseteq cl^*(A)$ then B is $\delta_{\mathcal{I}}$ -semi-open.

Proof. Since A is $\delta_{\mathcal{I}}$ -semi-open, then there exists a δ -open set U such that $U \subseteq A \subseteq cl^*(U)$. Then, we have $U \subseteq A \subseteq B \subseteq cl^*(A) \subseteq cl^*(U)$ and hence $U \subseteq B \subseteq cl^*(U)$. By Proposition 3.19, we obtain B is $\delta_{\mathcal{I}}$ -semi-open.

Theorem 3.23. If $A \in \delta_{\mathcal{I}}SO(X)$ and B is δ -open then $A \cap B \in \delta_{\mathcal{I}}SO(X)$.

Proof. Let $A \in \delta_{\mathcal{I}}SO(X)$ and B be δ -open. Then $A \subseteq cl^*(int_{\delta}(A))$. By Lemma 2.4, we have $A \cap B \subseteq cl^*(int_{\delta}(A)) \cap B$ = $[int_{\delta}(A) \cap B] \cup [(int_{\delta}(A))^* \cap B] \subseteq [int_{\delta}(A) \cap B] \cup [(int_{\delta}(A) \cap B)^*] = [int_{\delta}(A \cap B)] \cup [(int_{\delta}(A \cap B))^*] = cl^*(int_{\delta}(A \cap B))$ Thus $A \cap B \in \delta_{\mathcal{I}}SO(X)$.

Definition 3.24. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be $\delta_{\mathcal{I}}$ -semi-closed if its complement is $\delta_{\mathcal{I}}$ -semiopen.

Theorem 3.25. A subset A of a space (X, τ, \mathcal{I}) is $\delta_{\mathcal{I}}$ -semi-closed if and only if $int^*(cl_{\delta}(A)) \subseteq A$.

Theorem 3.26. If a subset A of a space (X, τ, \mathcal{I}) is $\delta_{\mathcal{I}}$ -semi-closed then $int_{\delta}(cl^*(A)) \subseteq A$.

Proof. Since A is $\delta_{\mathcal{I}}$ -semi-closed, $X - A \in \delta_{\mathcal{I}}SO(X)$. Now, we have $X - A \subseteq cl^*(int_{\delta}(X - A)) \subseteq cl(int_{\delta}(X - A)) = X - int(cl_{\delta}(A)) \subseteq X - int_{\delta}(cl^*(A))$. Therefore, $int_{\delta}(cl^*(A)) \subseteq A$.

Corollary 3.27. Let A be a subset of a space (X, τ, \mathcal{I}) such that $X - (int_{\delta}(cl^*(A))) = cl^*(int_{\delta}(X - A))$. Then A is $\delta_{\mathcal{I}}$ -semi-closed if and only if $int_{\delta}(cl^*(A)) \subseteq A$.

Proof. Necessity. This is an immediate consequence of Theorem 3.26. Sufficiency. Let $int_{\delta}(cl^*(A)) \subseteq A$. Then $X - A \subseteq X - [int_{\delta}(cl^*(A))] = cl^*(int_{\delta}(X - A))$. Thus X - A is $\delta_{\mathcal{I}}$ -semi-open and so A is $\delta_{\mathcal{I}}$ -semi-closed.

Theorem 3.28. A set A is $\delta_{\mathcal{I}}$ -semi-closed if and only if there exists a δ -closed set C such that $int^*(C) \subseteq A \subseteq C$.

Proof. Obvious from definition and Theorem 3.19.

Theorem 3.29. If U is δ -open and $V \in \delta_{\mathcal{I}}SO(X, \tau, \mathcal{I})$ then $U \cap V \in \delta_{\mathcal{I}}SO(U, \tau | U, \mathcal{I} | U)$.

Proof. Since U is δ -open, we have $\delta int_U(A) = int_{\delta}(A)$ for any subset A of U. Now, $U \cap V \subseteq U \cap cl^*(int_{\delta}(V)) = U \cap [int_{\delta}(V) \cup (int_{\delta}(V))^*] = ([U \cap int_{\delta}(V)] \cup [U \cap (int_{\delta}(V))^*]) \cap U \subseteq [U \cap (int_{\delta}(V)) \cap U] \cup [U \cap (U \cap int_{\delta}(V))^*] = [U \cap (\delta int_U(U \cap V))] \cup [U \cap (\delta int_U(U \cap V))^*] = [\delta int_U(U \cap V)] \cup [\delta int_U(U \cap V)]^*(\tau | U, \mathcal{I} | U)$ $= cl_U^*(\delta int_U(U \cap V)). \text{ Thus } U \cap V \in \delta_{\mathcal{I}} SO(U, \tau | U, \mathcal{I} | U).$

Remark 3.30. Intersection of two $\delta_{\mathcal{I}}$ -semi-closed sets is $\delta_{\mathcal{I}}$ -semi-closed in (X, τ, \mathcal{I}) .

Example 3.31. Union of two $\delta_{\mathcal{I}}$ -semi-closed sets need not be $\delta_{\mathcal{I}}$ -semi-closed as seen from this example. In Example 3.7, the sets $A = \{b\}$ and $B = \{c\}$ are $\delta_{\mathcal{I}}$ -semi-closed sets but $A \cup B = \{b, c\}$ is not $\delta_{\mathcal{I}}$ -semi-closed.

Definition 3.32. Let A be a subset of an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$ and x be a point of X. Then

(1). x is called an $\delta_{\mathcal{I}}$ -semi-cluster point of A if $A \cap U \neq \emptyset$ for every $U \in \delta_{\mathcal{I}}SO(X)$,

(2). the family of all $\delta_{\mathcal{I}}$ -semi-cluster points of A is called $\delta_{\mathcal{I}}$ -semi-closure of A and is denoted by $scl_{\delta_{\mathcal{I}}}(A)$.

Theorem 3.33. For subsets $A, B \subseteq (X, \tau, \mathcal{I})$, the following hold:

(1). $scl_{\delta_{\mathcal{I}}}(A) = \bigcap \{ F \subseteq X : A \subseteq F \text{ and } F \text{ is } \delta_{\mathcal{I}} \text{-semi-closed} \}.$

(2). $scl_{\delta_{\mathcal{I}}}(A)$ is the smallest $\delta_{\mathcal{I}}$ -semi-closed subset of X containing A.

- (3). If $A \subseteq B$, then $scl_{\delta_{\mathcal{I}}}(A) \subseteq scl_{\delta_{\mathcal{I}}}(B)$.
- (4). A is $\delta_{\mathcal{I}}$ -semi-closed if and only if $A = scl_{\delta_{\mathcal{I}}}(A)$.
- (5). $scl_{\delta_{\mathcal{T}}}(scl_{\delta_{\mathcal{T}}}(A)) = scl_{\delta_{\mathcal{T}}}(A).$
- (6). $scl_{\delta_{\mathcal{T}}}(A \cap B) \subseteq scl_{\delta_{\mathcal{T}}}(A) \cap scl_{\delta_{\mathcal{T}}}(B).$
- (7). $scl_{\delta_{\mathcal{I}}}(A) \cup scl_{\delta_{\mathcal{I}}}(B) \subseteq scl_{\delta_{\mathcal{I}}}(A \cup B).$

Proof. (1). Suppose that $x \notin scl_{\delta_{\mathcal{I}}}(A)$. Then there exists $U \in \delta_{\mathcal{I}}SO(X)$ such that $U \cap A = \emptyset$. Then, we have U^c is $\delta_{\mathcal{I}}$ -semi-closed set containing A and $x \notin U^c$. Thus $x \notin \bigcap \{F \subseteq X : A \subseteq F \text{ and } F \text{ is } \delta_{\mathcal{I}}\text{-semi-closed}\}$. Conversely, suppose there exists $F \in \delta_{\mathcal{I}}\text{-}SC(X)$ such that $A \subseteq F$ and $x \notin F$. Then F^c is $\delta_{\mathcal{I}}$ -semi-open set containing x, we have $F^c \cap A = \emptyset$. Thus $x \notin scl_{\delta_{\mathcal{I}}}(A)$. Hence $scl_{\delta_{\mathcal{I}}}(A) = \bigcap \{F \subseteq X : A \subseteq F \text{ and } F \text{ is } \delta_{\mathcal{I}}\text{-semi-closed}\}$. The other proofs are obvious.

Definition 3.34. Let A be a subset of an ideal topological space (X, τ, \mathcal{I}) and x be a point of X. Then

(1). x is called an $\delta_{\mathcal{I}}$ -semi-interior point of A if there exists $U \in \delta_{\mathcal{I}}SO(X)$ such that $x \in U \subseteq A$.

(2). the family of all $\delta_{\mathcal{I}}$ -semi-interior points of A is called $\delta_{\mathcal{I}}$ -semi-interior of A and is denoted by $\operatorname{sint}_{\delta_{\mathcal{I}}}(A)$.

Theorem 3.35. For subsets $A, B \subseteq (X, \tau, \mathcal{I})$, the following hold:

(1). $sint_{\delta_{\mathcal{I}}}(A) = \bigcup \{F \subseteq X : F \subseteq A \text{ and } F \text{ is } \delta_{\mathcal{I}}\text{-semi-open} \}.$

(2). $sint_{\delta_{\mathcal{I}}}(A)$ is the largest $\delta_{\mathcal{I}}$ -semi-open subset of X contained in A.

- (3). If $A \subseteq B$, then $sint_{\delta_{\mathcal{T}}}(A) \subseteq sint_{\delta_{\mathcal{T}}}(B)$.
- (4). A is $\delta_{\mathcal{I}}$ -semi-open if and only if $A = sint_{\delta_{\mathcal{I}}}(A)$.
- (5). $sint_{\delta_{\mathcal{I}}}(sint_{\delta_{\mathcal{I}}}(A)) = sint_{\delta_{\mathcal{I}}}(A).$
- (6). $sint_{\delta_{\mathcal{I}}}(A \cap B) \subseteq sint_{\delta_{\mathcal{I}}}(A) \cap sint_{\delta_{\mathcal{I}}}(B).$
- (7). $sint_{\delta_{\mathcal{I}}}(A) \cup sint_{\delta_{\mathcal{I}}}(B) \subseteq sint_{\delta_{\mathcal{I}}}(A \cup B).$

Proof. (1). Let $\mathbf{x} \in \bigcup \{F \subseteq X : F \subseteq A \text{ and } F \text{ is } \delta_{\mathcal{I}}\text{-semi-open}\}$. Then, there exists $F \in \delta_{\mathcal{I}}\text{-}\mathrm{SO}(\mathbf{X})$ such that $x \in F \subseteq A$ and hence $x \in sint_{\delta_{\mathcal{I}}}(A)$. This shows that $\bigcup \{F \subseteq X : F \subseteq A \text{ and } F \text{ is } \delta_{\mathcal{I}}\text{-semi-open}\} \subseteq sint_{\delta_{\mathcal{I}}}(A)$. Let $x \in sint_{\delta_{\mathcal{I}}}(A)$. Then there exists $F \in \delta_{\mathcal{I}}\text{-}\mathrm{SO}(\mathbf{X})$ such that $x \in F \subseteq A$, we obtain $\mathbf{x} \in \bigcup \{F \subseteq X : F \subseteq A \text{ and } F \text{ is } \delta_{\mathcal{I}}\text{-semi-open}\}\}$. This shows that $sint_{\delta_{\mathcal{I}}}(A) \subseteq \bigcup \{F \subseteq X : F \subseteq A \text{ and } F \text{ is } \delta_{\mathcal{I}}\text{-semi-open}\}\}$. Therefore, we obtain $sint_{\delta_{\mathcal{I}}}(A)=\bigcup \{F \subseteq X : F \subseteq A \text{ and } F \text{ is } \delta_{\mathcal{I}}\text{-semi-open}\}$. The other proofs are obvious. \Box

Theorem 3.36. For a subset $A \subseteq (X, \tau, \mathcal{I})$, the following hold:

- (1). $scl_{\delta_{\mathcal{T}}}(X A) = X sint_{\delta_{\mathcal{T}}}(A).$
- (2). $sint_{\delta_{\mathcal{I}}}(X A) = X scl_{\delta_{\mathcal{I}}}(A).$

References

- A.Acikgoz, T.Noiri and S.Yuksel, On δ-*I*-open sets and decomposition of α-*I*-continuity, Acta Math. Hungar., 102(4)(2004), 349-357.
- [2] M.E.Abd El-Monsef, S.N.El-Deeb and R.A.Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.
- [3] M.E.Abd El-Monsef, E.F.Lashien and A.A.Nasef, On *I-open sets and I-continuous functions*, Kyungpook Math. J., 32(1992), 21-30.
- [4] D.Andrijevic, On b-open sets, Mathematichki Vesnik, 48(1-2)(1996), 59-64.
- [5] A.Caksu Guler and G.Aslim, b-I-open sets and decomposition of continuity via idealization, Proceedings of Institute of Mathematics and Mechanics. National Acedemy of Sciences of Azerbaijan, 22(2005), 27-32.
- [6] J.Dontchev, On Pre-I-open sets and a decomposition of I-continuity, Banyan Math.J., 2(1996).
- [7] E.Ekici and T.Noiri. On subsets and decompositions of continuity in ideal topological spaces, The Arabian Journal for science and engineering, 34(1A)(2009), 165-177.
- [8] E.Ekici, On a-open sets, A*-sets and decompositions of continuity and super-continuity, Annales Univ. Sci. Budapest., 51(2008), 39-51.
- [9] E.Hatir and T.Noiri, On decompositions of continuity via idealization, Acta Math. Hungar., 96(4)(2002), 341-349.
- [10] E.Hatir and T.Noiri, Decomposition of continuity and complete continuity, Acta Math. Hungar., 113(4)(2006), 281-287.
- [11] D.Jankovic and T.R.Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(1990), 295-310.
- [12] K.Kuratowski, Topology, Vol. I, Academic Press, New York, (1966).
- [13] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [14] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [15] O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.

34

- [16] T.Noiri, Remarks on δ -semiopen sets and δ -preopen sets, Demonstratio Math, 36(2003), 1007-1020.
- [17] S.Raychaudhuri and M.N.Mukherjee, On δ-almost continuity and δ-preopen sets, Bull. Inst. Math. Acad, Sinica., 21(1993), 357-366.
- [18] M.H.Stone, Applications of the Theory of Boolean Rings to General Topology, Trans. Amer. Math. Soc., 41(1937), 375381.
- [19] R.Vaidyanathaswamy, The localisation theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.
- [20] N.V.Velicko, H-closed Topological Spaces, Amer. Math. Soc. Transl., 78(2)(1968), 103-118.