International Journal of Mathematics And its Applications

New Results on Edge Pair Sum Graphs

Research Article

P.Jeyanthi ${ }^{1}$ and T.Saratha Devi ${ }^{2 *}$
1 Department of Mathematics, Research Center, Govindammal Aditanar College for Women, Tiruchendur, India.
2 Department of Mathematics, G.Venkataswamy Naidu College, Kovilpatti, India.

Abstract

Let G be a (p,q) graph. An injective map $f: E(G) \rightarrow\{ \pm 1, \pm 2, \cdots, \pm q\}$ is said to be an edge pair sum labeling if the induced vertex function $f^{*}: V(G) \rightarrow Z-\{0\}$ defined by $f^{*}(v)=\sum_{e \epsilon E_{v}} f(e)$ is one- one where E_{v} denotes the set of edges in G that are incident with a vertex v and $f^{*}(V(G))$ is either of the form $\left\{ \pm k_{1}, \pm k_{2}, \cdots, \pm k_{\frac{p}{2}}\right\}$ or $\left\{ \pm k_{1}, \pm k_{2}, \cdots, \pm k_{\frac{p-1}{2}}\right\}$ $\bigcup\left\{ \pm k_{\frac{p+1}{2}}\right\}$ according as p is even or odd. A graph that admits an edge pair sum labeling is called an edge pair sum graph. In this paper we prove that the graphs jelly fish, Y-tree, theta, the subdivision of spokes in wheel $S S\left(W_{n}\right)$, $P_{m}+2 K_{1}, C_{4} \times P_{m}, P_{n} \odot K_{m}^{c}$ admit edge pair sum labeling.

MSC: 05C78.

Keywords: Edge pair sum labeling, edge pair sum graph, jelly fish, Y-tree, theta graphs, subdivision of spokes in wheel.
(C) JS Publication.

1. Introduction

Throughout this paper we consider finite, simple and undirected graph $G=(V(G), E(G))$ with p vertices and q edges. G is also called a (p, q) graph. We follow the basic notations and terminology of graph theory as in [2]. Ponraj et al. introduced the concept of pair sum labeling in [3]. An injective map $f: V(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm p\}$ is said to be a pair sum labeling of a graph $G(p, q)$ if the induced edge function $f_{e}: E(G) \rightarrow Z-\{0\}$ defined by $f_{e}(u v)=f(u)+f(v)$ is one-one and $f_{e}(E(G))$ is either of the form $\left\{ \pm k_{1}, \pm k_{2}, \ldots, \pm k_{\frac{q}{2}}\right\}$ or $\left\{ \pm k_{1}, \pm k_{2}, \ldots, \pm k_{\frac{q-1}{2}}\right\} \cup\left\{ \pm k_{\frac{q+1}{2}}\right\}$ according as q is even or odd. A graph that admits a pair sum labeling is called a pair sum graph. Analogous to pair sum labeling we define a new labeling called an edge pair sum labeling in [5] and further studied in [6-12]. In this paper we prove that the graphs jelly fish, Y-tree, theta, the subdivision of spokes in wheel $S S\left(W_{n}\right), P_{m}+2 K_{1}, C_{4} \times P_{m}, P_{n} \odot K_{m}^{c}$ admit edge pair sum labeling. We use the following definitions in the subsequent section.

Definition 1.1. A Y-tree Y_{n+1} is a graph obtained from the path P_{n} by appending an edge to a vertex of the path P_{n} adjacent to an end point [4].

Definition 1.2. The jelly fish graph $J(m, n)$ is obtained from a 4-cycle $v_{1}, v_{2}, v_{3}, v_{4}$ by joining v_{1} and v_{3} with an edge and appending m pendent edges to v_{2} and n pendent edges to v_{4}.

[^0]Definition 1.3. Take k paths of length $l_{1}, l_{2}, l_{3}, \ldots, l_{k}$ where $k \geq 3$ and $l_{i}=1$ for at most one i. Identify their end points to form a new graph. The new graph is called a generalized theta graph, and it is denoted by $\Theta\left(l_{1}, l_{2}, l_{3}, \ldots, l_{k}\right)$. In other words, $\Theta\left(l_{1}, l_{2}, l_{3}, \ldots, l_{k}\right)$ consists $k \geq 3$ pair wise internally disjoint paths of length $l_{1}, l_{2}, l_{3}, \ldots, l_{k}$ that share a pair of common end points u and v. If each $l_{i}(i=1,2, \ldots, k)$ is equal to l, we will write $\Theta\left(l^{[k]}\right)$.

2. Main results

Theorem 2.1. For any positive integers m and n, the jelly fish graph $J(m, n)$ has an edge pair sum labeling.

Proof. Let $V(J(m, n))=V_{1} \bigcup V_{2}$ where $V_{1}=\{x, u, y, v\}$ and $V_{2}=\left\{u_{i}, v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\} . E(J(m, n))=E_{1} \bigcup E_{2}$, where $E_{1}=\left\{e_{1}^{\prime \prime}=x u, e_{2}^{\prime \prime}=u y, e_{3}^{\prime \prime}=y v, e_{4}^{\prime \prime}=v x, e_{5}^{\prime \prime}=x y\right\}$ and $E_{2}=\left\{e_{i}=u u_{i}, e_{j}^{\prime}=v v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$. Define $f: E(J(m, n)) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(m+n+5)\}$ as follows:
Case(i). $\quad m$ and n are odd.
Label the edges $e_{1}^{\prime \prime}, e_{2}^{\prime \prime}, e_{3}^{\prime \prime}, e_{4}^{\prime \prime}, e_{5}^{\prime \prime}$ by $1,-3,4,2,-4$. Define $f\left(e_{1}\right)=5=-f\left(e_{1}^{\prime}\right)$, for $1 \leq i \leq \frac{m-1}{2} f\left(e_{i+1}\right)=(5+i)=$ $-f\left(e_{\frac{m+1}{2}+i}\right)$ and for $1 \leq i \leq \frac{n-1}{2} f\left(e_{1+i}^{\prime}\right)=\frac{m+9+2 i}{2}=-f\left(e_{\frac{n+1}{2}+i}^{\prime}\right)$. For each edge label f, the induced vertex label f^{*} is calculated as follows: $f^{*}(x)=-1=-f^{*}(v), f^{*}(u)=3=-f^{*}(y), f^{*}\left(u_{1}\right)=5=-f^{*}\left(v_{1}\right)$, for $1 \leq i \leq \frac{m-1}{2}$ $f^{*}\left(u_{1+i}\right)=(5+i)=-f^{*}\left(u_{\frac{m+1}{2}+i}\right)$ and for $1 \leq i \leq \frac{n-1}{2} f^{*}\left(v_{1+i}\right)=\frac{m+9+2 i}{2}=-f^{*}\left(v_{\frac{n+1}{2}+i}\right)$. Then $f^{*}(V(J(m, n)))=$ $\left\{ \pm 1, \pm 3, \pm 5, \pm 6, \pm 7, \pm 8, \ldots, \pm\left(\frac{m+9}{2}\right), \pm\left(\frac{m+11}{2}\right), \pm\left(\frac{m+13}{2}\right), \pm\left(\frac{m+15}{2}\right), \ldots, \pm\left(\frac{m+n+8}{2}\right)\right\}$. Hence f is an edge pair sum labeling. The example for the edge pair sum graph labeling of $J(3,5)$ is shown in Figure 1.

Figure 1. Edge pair sum labeling of $J(3,5)$

Case(ii). $\quad m$ and n are even.
Label the edges $e_{1}^{\prime \prime}, e_{2}^{\prime \prime}, e_{3}^{\prime \prime}, e_{4}^{\prime \prime}, e_{5}^{\prime \prime}$ by $-1,-8,-4,-6,5$. Define $f\left(e_{1}\right)=1, f\left(e_{2}\right)=4, f\left(e_{1}^{\prime}\right)=2, f\left(e_{2}^{\prime}\right)=7$, for $1 \leq i \leq \frac{m-2}{2} f\left(e_{2+i}\right)=8+i=-f\left(e_{\frac{m+2}{2}+i}\right)$ and for $1 \leq i \leq \frac{n-2}{2} f\left(e_{2+i}^{\prime}\right)=\frac{m+14+2 i}{2}=-f\left(e_{\frac{n+2}{2}+i}^{\prime}\right)$. For each edge label f, the induced vertex label f^{*} is calculated as follows: $f^{*}(x)=-2=-f^{*}\left(v_{1}\right), f^{*}(u)=$ $-4=-f^{*}\left(u_{2}\right), f^{*}(y)=-7=-f^{*}\left(v_{2}\right), f^{*}(v)=-1=-f^{*}\left(u_{1}\right)$, for $1 \leq i \leq \frac{m-2}{2} f^{*}\left(u_{2+i}\right)=8+i=$ $-f^{*}\left(u_{\frac{m+2}{2}+i}\right)$ and for $1 \leq i \leq \frac{n-2}{2} f^{*}\left(v_{2+i}\right)=\frac{m+14+2 i}{2}=-f^{*}\left(v_{\frac{n+2}{2}+i}\right)$. Then we get $f^{*}(V(J(m, n)))=$ $\left\{ \pm 1, \pm 2, \pm 4, \pm 7, \pm 9, \pm 10, \pm 11, \ldots, \pm\left(\frac{m+14}{2}\right), \pm\left(\frac{m+16}{2}\right), \pm\left(\frac{m+18}{2}\right), \pm\left(\frac{m+20}{2}\right), \ldots, \pm\left(\frac{m+n+12}{2}\right)\right\}$. Hence f is an edge pair sum labeling.

Case(iii). $\quad m$ is odd and n is even or m is even and n is odd.
Label the edges $e_{1}^{\prime \prime}, e_{2}^{\prime \prime}, e_{3}^{\prime \prime}, e_{4}^{\prime \prime}, e_{5}^{\prime \prime}$ by $3,4,-4,1,-1$. Define $f\left(e_{1}\right)=-6$, for $1 \leq i \leq \frac{m-1}{2} f\left(e_{1+i}\right)=6+i=-f\left(e_{\frac{m+1}{2}+i}\right)$ and for $1 \leq i \leq \frac{n}{2} f\left(e_{i}^{\prime}\right)=\frac{m+11+2 i}{2}=-f\left(e_{\frac{n}{2}+i}^{\prime}\right)$. For each edge label f, the induced vertex label f^{*} is calculated as follows: $f^{*}(x)=3=-f^{*}(v), f^{*}(u)=1=-f^{*}(y), f^{*}\left(u_{1}\right)=-6$, for $1 \leq i \leq \frac{m-1}{2} f^{*}\left(u_{1+i}\right)=$ $6+i=-f^{*}\left(u_{\frac{m+1}{2}+i}\right)$ and for $1 \leq i \leq \frac{n}{2} f^{*}\left(v_{i}\right)=\frac{m+11+2 i}{2}=-f^{*}\left(v_{\frac{n}{2}+i}\right)$. Therefore we get $f^{*}(V(J(m, n)))=$
$\left\{ \pm 1, \pm 3, \pm 7, \pm 8, \pm 9, \ldots, \pm\left(\frac{m+11}{2}\right), \pm\left(\frac{m+13}{2}\right), \pm\left(\frac{m+15}{2}\right), \pm\left(\frac{m+17}{2}\right), \ldots, \pm\left(\frac{m+n+11}{2}\right)\right\} \bigcup\{-6\}$. Hence f is an edge pair sum labeling.

Theorem 2.2. For $n \geq 4$, the Y-tree $G=Y_{n+1}$ is an edge pair sum graph.
Proof. Let $V(G)=\left\{v, u_{i}: 1 \leq i \leq n\right\}$ and $E(G)=\left\{e_{1}^{\prime}=v u_{2}, e_{i}=u_{i} u_{i+1}: 1 \leq i \leq n-1\right\}$ are the vertices and edges of the graph G. Define $f: E(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm n\}$ as follows:

Case(i). $\quad n=4$.
Let $f\left(e_{1}^{\prime}\right)=-4=-f\left(e_{1}\right), f\left(e_{2}\right)=-1$ and $f\left(e_{3}\right)=2$. For each edge label f, the induced vertex label f^{*} is calculated as follows: $f^{*}(v)=-4=-f^{*}\left(u_{1}\right), f^{*}\left(u_{2}\right)=-1=-f^{*}\left(u_{3}\right)$ and $f^{*}\left(u_{4}\right)=2$. Then $f^{*}(V(G))=\{ \pm 1, \pm 4\} \bigcup\{2\}$. Hence f is an edge pair sum labeling if $\mathrm{n}=4$.

Case(ii). $n=5$.
Let $f\left(e_{1}^{\prime}\right)=4=-f\left(e_{1}\right), f\left(e_{2}\right)=-2, f\left(e_{3}\right)=-1$ and $f\left(e_{4}\right)=3$. For each edge label f, the induced vertex label f^{*} is calculated as follows: $f^{*}(v)=4=-f^{*}\left(u_{1}\right), f^{*}\left(u_{2}\right)=-2=-f^{*}\left(u_{4}\right)$ and $f^{*}\left(u_{3}\right)=-3=-f^{*}\left(u_{5}\right)$. Then we get $f^{*}(V(G))=\{ \pm 2, \pm 3, \pm 4\}$. Hence f is an edge pair sum labeling.
Case(iii). $\quad n$ is odd, take $n=2 k+1, k \geq 3$.
Let $f\left(e_{k}\right)=-2, f\left(e_{k+1}\right)=-1, f\left(e_{k+2}\right)=3, f\left(e_{1}\right)=4=-f\left(e_{1}^{\prime}\right)$, for $1 \leq i \leq k-2 f\left(e_{1+i}\right)=(2 k+1-2 i)$ and for $k+2 \leq i \leq 2 k-1 f\left(e_{1+i}\right)=(2 k-1-2 i)$. For each edge label f, the induced vertex label f^{*} is calculated as follows: $f^{*}(v)=-4=-f^{*}\left(u_{1}\right), f^{*}\left(u_{2}\right)=(2 k-1), f^{*}\left(u_{k}\right)=3=-f^{*}\left(u_{k+1}\right), f^{*}\left(u_{k+2}\right)=2=-f^{*}\left(u_{k+3}\right), f^{*}\left(u_{n}\right)=-(2 k-1)$, for $2 \leq i \leq k-2 f^{*}\left(u_{1+i}\right)=4(k+1-i)$ and for $k+3 \leq i \leq 2 k-1 f^{*}\left(u_{1+i}\right)=4(k-i)$. Then the vertex labeling are $f^{*}(V(G))=\{ \pm 2, \pm 3, \pm 4, \pm(2 k-1), \pm 12, \pm 16, \ldots$,
$\pm 4(k-1)\}$. Hence f is an edge pair sum labeling.
Case(iv). n is even, take $n=2 k, k \geq 3$.
Let $f\left(e_{k+1}\right)=1, f\left(e_{k}\right)=2, f\left(e_{k-1}\right)=-5=-f\left(e_{k+2}\right), f\left(e_{1}\right)=4=-f\left(e_{1}^{\prime}\right)$, for $2 \leq i \leq k-2 f\left(e_{i}\right)=-(2 k+3-2 i)$ and for $k+3 \leq i \leq 2 k-1 f\left(e_{i}\right)=(-2 k+1+2 i)$. For each edge label f, the induced vertex label f^{*} is calculated as follows: $f^{*}(v)=-4=-f^{*}\left(u_{1}\right), f^{*}\left(u_{2}\right)=-(2 k-1)=-f^{*}\left(u_{n}\right), f^{*}\left(u_{k}\right)=-3=-f^{*}\left(u_{k+1}\right), f^{*}\left(u_{k+2}\right)=6$, for $3 \leq i \leq k-1 f^{*}\left(u_{i}\right)=4(-k+i-2)$ and for $k+3 \leq i \leq(2 k-1) f^{*}\left(u_{i}\right)=-4(k-i)$. Then the vertex labeling are $f^{*}(V(G))=\{ \pm 3, \pm 4, \pm(2 k-1), \pm 12, \pm 16, \ldots, \pm 4(k-1)\} \bigcup\{6\}$. Hence f is an edge pair sum labeling. The example for the edge pair sum graph labeling of Y_{6+1} is shown in Figure 2.

Figure 2. Edge pair sum labeling of Y_{6+1}

Theorem 2.3. The theta graph $\Theta\left(l^{[m]}\right)$ is an edge pair sum graph.
Proof. Let $G(V, E)=\Theta\left(l^{[m]}\right)$. Then $|V(G)|=m(l-1)+2$ and $|E(G)|=m l$ are the vertices and edges of G. Where $V(G)=\left\{u, v, u_{i}^{j}: 1 \leq i \leq m, 1 \leq j \leq l-1\right\}$ and $E(G)=\left\{e_{i}^{j}: 1 \leq i \leq m, 1 \leq j \leq l\right\}$.

Case(i). m is odd and l is even.
For $1 \leq j \leq \frac{l-2}{2} f\left(e_{1}^{j}\right)=l+3-2 j, f\left(e_{1}^{\frac{l}{2}}\right)=-2, f\left(e_{1}^{\frac{l+2}{2}}\right)=-1$, for $\frac{l+4}{2} \leq j \leq l f\left(e_{1}^{j}\right)=l-1-2 j$ and for $1 \leq i \leq \frac{m-1}{2} ; 1 \leq j \leq l$
$f\left(e_{1+i}^{j}\right)=2 l(i-1)+2 j+2=-f\left(e_{\frac{m+1}{2}+i}^{j}\right)$. For each edge label f, the induced vertex label f^{*} is calculated as follows: $f^{*}(u)=l+1=-f^{*}(v), f^{*}\left(u_{1}^{\frac{l}{2}-1}\right)=3, f^{*}\left(u_{1}^{\frac{l}{2}}\right)=-3, f^{*}\left(u_{1}^{\frac{l}{2}+1}\right)=-6$, for $1 \leq j \leq \frac{l-4}{2} f^{*}\left(u_{1}^{j}\right)=2 l+4-4 j$, for $1 \leq j \leq \frac{l-4}{2}$ $f^{*}\left(u_{1}^{\frac{l+2}{2}+j}\right)=-(8+4 j)$ and for $1 \leq i \leq \frac{m-1}{2} ; 1 \leq j \leq(l-1) f^{*}\left(u_{1+i}^{j}\right)=4 l(i-1)+6+4 j=-f^{*}\left(u_{\frac{m+1}{2}+i}^{j}\right)$. Then $f^{*}(V(G))=\{ \pm 3, \pm(l+1), \pm 12, \pm 16, \pm 20, \ldots, \pm 2 l\} \bigcup\left\{ \pm(4 l(i-1)+6+4 j) \left\lvert\, 1 \leq i \leq \frac{m-1}{2}\right., 1 \leq j \leq(l-1)\right\} \bigcup\{-6\}$. Hence f is an edge pair sum labeling.

Case(ii). m and l are odd.
For $1 \leq j \leq \frac{l-3}{2} f\left(e_{i}^{j}\right)=-(l+2-2 j), f\left(e_{1}^{\frac{l-1}{2}}\right)=2, f\left(e_{1}^{\frac{l+1}{2}}\right)=1, f\left(e_{1}^{\frac{l+3}{2}}\right)=-3$, for $1 \leq j \leq \frac{l-3}{2} f\left(e_{1}^{\frac{l+3}{2}+i}\right)=3+2 j$ and for $1 \leq i \leq \frac{m-1}{2} ; 1 \leq j \leq l f\left(e_{1+i}^{j}\right)=2 l(i-1)+2 j+2=-f\left(e_{\frac{m+1}{2}+i}^{j}\right)$. For each edge label f, the induced vertex label f^{*} is calculated as follows: $f^{*}(u)=-l=-f^{*}(v), f^{*}\left(u_{1}^{\frac{l-3}{2}}\right)=-3=-f^{*}\left(u_{1}^{\frac{l-1}{2}}\right), f^{*}\left(u_{1}^{\frac{l+1}{2}}\right)=-2=-f^{*}\left(u_{1}^{\frac{l+3}{2}}\right)$, for $1 \leq j \leq \frac{l-5}{2}$ $f^{*}\left(u_{1}^{j}\right)=-(2(l-1)+4-4 j)$, for $1 \leq j \leq \frac{l-5}{2} f^{*}\left(u_{1}^{\frac{l+3}{2}+j}\right)=8+4 j$ and for $1 \leq i \leq \frac{m-1}{2} ; 1 \leq j \leq(l-1) f^{*}\left(u_{1+i}^{j}\right)=$ $4 l(i-1)+6+4 j=-f^{*}\left(u_{\frac{m+1}{2}+i}^{j}\right)$. Then $f^{*}(V(G))=\{ \pm 2, \pm 3, \pm l, \pm 12, \pm 16, \ldots, \pm 2(l-1)\} \bigcup\{ \pm(4 l(i-1)+6+4 j) \mid 1 \leq i \leq$ $\left.\frac{m-1}{2}, 1 \leq j \leq(l-1)\right\}$. Hence f is an edge pair sum labeling. The example for the edge pair sum graph labeling of $\Theta\left(5^{[5]}\right)$ is shown in Figure 3.

Figure 3. Edge pair sum graph labeling of $\Theta\left(5^{[5]}\right)$

Case(iii). m is even and l is odd.
For $1 \leq i \leq \frac{m}{2} ; 1 \leq j \leq l f\left(e_{i}^{j}\right)=2 l(i-1)+2 j$ and $f\left(e_{\frac{m}{2}+i}^{j}\right)=-(l(m-2 i+2)+2-2 j)$. For each edge label f, the induced vertex label f^{*} is calculated as follows: for $1 \leq i \leq \frac{m}{2} ; 1 \leq j \leq(l-1) f^{*}\left(u_{i}^{j}\right)=4 l(i-1)+2+4 j$ and $f^{*}\left(u_{\frac{m}{2}+i}^{j}\right)=-(l(2 m-4 i+4)-4 j+2), f^{*}(u)=-m(l-1)=f^{*}(v)$. Then $f^{*}(V(G))=\{ \pm m(l-1)\} \bigcup\{ \pm(4 l(i-1)+2+4 j) \mid 1 \leq$ $\left.i \leq \frac{m}{2}, 1 \leq j \leq(l-1)\right\}$. Hence f is an edge pair sum labeling.
Case(iv). $\quad m$ and l are even if $m \geq 4$.
For $1 \leq i \leq \frac{m}{4} ; 1 \leq j \leq l, f\left(e_{i}^{j}\right)=4 l(i-1)+4 j-3, f\left(e_{\frac{m}{4}+i}^{j}\right)=4 l(i-1)+4 j-1, f\left(e_{\frac{m}{2}+i}^{j}\right)=-(l(m-4 i+4)-4 j+1)$ and $f\left(e_{\frac{3 m}{4}+i}^{j}\right)=-(l(m-4 i+4)-4 j+3)$. For each edge label f, the induced vertex label f^{*} is calculated as follows: $f^{*}(u)=-(2 m(l-1))=-f^{*}(v)$, for $1 \leq i \leq \frac{m}{4} ; 1 \leq j \leq(l-1) f^{*}\left(u_{i}^{j}\right)=8 l(i-1)+6+(8 j-8), f^{*}\left(u_{\frac{m}{4}+i}^{j}\right)=$ $8 l(i-1)+10+(8 j-8), f^{*}\left(u_{\frac{m}{2}+i}^{j}\right)=-(l(2 m-8 i+8)-8 j-2)$ and $f^{*}\left(u_{\frac{3 m}{4}+i}^{j}\right)=-(l(2 m-8 i+8)-8 j+2)$. Then $f^{*}(V(G))=\{ \pm(2 l m-2 m)\} \bigcup\left\{ \pm(8 l(i-1)+6+(8 j-8))\right.$ and $\left.(8 l(i-1)+10+(8 j-8)) \left\lvert\, 1 \leq i \leq \frac{m}{4}\right., 1 \leq j \leq(l-1)\right\}$. Hence f is an edge pair sum labeling.

Theorem 2.4. The subdivision of spokes in wheel $S S\left(W_{n}\right)$ graph admits edge pair sum labeling.
Proof. Let $V\left(S S\left(W_{n}\right)\right)=\left\{u_{0}, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(S S\left(W_{n}\right)\right)=\left\{e_{i}=u_{i} u_{i+1}: 1 \leq i \leq(n-1), e_{n}=u_{n} u_{1}, e_{i}^{\prime}=u_{i} v_{i}\right.$ and $\left.e_{i}^{\prime \prime}=u_{0} v_{i}: 1 \leq i \leq n\right\}$ are the vertices and edges of the graph $S S\left(W_{n}\right)$. Define the edge labeling $f: E\left(S S\left(W_{n}\right)\right) \rightarrow$ $\{ \pm 1, \pm 2, \ldots, \pm 3 n\}$ by considering the following two cases:

Case (i) n is even.
For $1 \leq i \leq n f\left(e_{i}^{\prime}\right)=-i$ and $f\left(e_{i}^{\prime \prime}\right)=-(3 n-2 i+1)$, for $1 \leq i \leq n-1 f\left(e_{i}\right)=n+i$ and $f\left(e_{n}\right)=2 n$. For each edge label
f, the induced vertex label f^{*} is calculated as follows: $f^{*}\left(u_{1}\right)=3 n$, for $1 \leq i \leq n-1 f^{*}\left(u_{1+i}\right)=2 n+i$, for $1 \leq i \leq n$ $f^{*}\left(v_{i}\right)=-(3 n-i+1)$ and $f^{*}\left(u_{0}\right)=-2 n^{2}$. From the above vertex labeling $f^{*}\left(V\left(S S\left(W_{n}\right)\right)\right)=\{ \pm(2 n+1), \pm(2 n+2), \pm(2 n+$ $3), \ldots, \pm 3 n\} \bigcup\left\{-2 n^{2}\right\}$. Hence f is an edge pair sum labeling. The example for the edge pair sum graph labeling of $S S\left(W_{n}\right)$ for $n=4$ is shown in Figure 4.

Figure 4. Edge pair sum labeling of $S S\left(W_{4}\right)$

Case (ii) n is odd.
For $1 \leq i \leq n f\left(e_{i}^{\prime}\right)=2 i-1$ and $f\left(e_{i}^{\prime \prime}\right)=2 i$, for $1 \leq i \leq \frac{n-1}{2} f\left(e_{n-2 i+1}\right)=-\left(\frac{n+1}{2}+2 i-1\right), f\left(e_{n-2 i}\right)=-\left(\frac{3 n+1}{2}+2 i\right)$ and $f\left(e_{n}\right)=-\left(\frac{3 n+1}{2}\right)$. For each edge label f, the induced vertex label f^{*} is calculated as follows: $f^{*}\left(u_{0}\right)=n(n+1)$, for $1 \leq i \leq n$ $f^{*}\left(u_{i}\right)=-(4 n-4 i+3)$ and $f^{*}\left(v_{i}\right)=4 i-1$. From the above vertex labeling $f^{*}\left(V\left(S S\left(W_{n}\right)\right)\right)=\{ \pm 3, \pm 7, \pm 11, \ldots, \pm(4 n-$ $1)\} \bigcup\{n(n+1)\}$. Hence $S S\left(W_{n}\right)$ is an edge pair sum graph. The example for the edge pair sum graph labeling of $S S\left(W_{n}\right)$ for $n=5$ is shown in Figure 5 .

Figure 5. Edge pair sum labeling of $S S\left(W_{5}\right)$

Theorem 2.5. The graph $P_{m}+2 K_{1}$ is an edge pair sum graph if $m \geq 3$.

Proof. Let $V\left(P_{m}+2 K_{1}\right)=\left\{u_{0}, v_{0}, u_{i}: 1 \leq i \leq m\right\}$ and $E\left(P_{m}+2 K_{1}\right)=\left\{e_{i}=u_{0} u_{i}, e_{i}^{\prime}=v_{0} u_{i}: 1 \leq i \leq m, e_{i}^{\prime \prime}=u_{i} u_{i+1}\right.$: $1 \leq i \leq m-1\}$ are the vertices and edges of the graph $P_{m}+2 K_{1}$. Define $f: E\left(P_{m}+2 K_{1}\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(3 m-1)\}$ as follows:

Case (i) m is even.
Subcase (a). $m=4$.
For $1 \leq i \leq 4 f\left(e_{i}\right)=2+2 i=-f\left(e_{i}^{\prime}\right), f\left(e_{1}^{\prime \prime}\right)=-2, f\left(e_{2}^{\prime \prime}\right)=-1$ and $f\left(e_{3}^{\prime \prime}\right)=3$. For each edge label f, the induced vertex label f^{*} is calculated as follows: $f^{*}\left(u_{1}\right)=-2=-f^{*}\left(u_{3}\right), f^{*}\left(u_{2}\right)=-3=-f^{*}\left(u_{4}\right), f^{*}\left(u_{0}\right)=28=-f^{*}\left(v_{0}\right)$. Then $f^{*}\left(V\left(P_{m}+2 K_{1}\right)\right)=\{ \pm 2, \pm 3, \pm 28\}$. Hence f is an edge pair sum labeling. The example for the edge pair sum graph labeling of $P_{m}+2 K_{1}$ for $m=4$ is shown in Figure 6.

Figure 6. Edge pair sum labeling of $P_{4}+2 K_{1}$

Subcase (b). m is even, $m \geq 6$.
Define $f\left(e_{\frac{m}{2}-1}^{\prime \prime}\right)=-2, f\left(e_{\frac{m}{2}}^{\prime \prime}\right)=-1, f\left(e_{\frac{m}{2}+1}^{\prime \prime}\right)=3$, for $1 \leq i \leq \frac{m}{2}-2 f\left(e_{i}^{\prime \prime}\right)=m+1-2 i$, for $\frac{m}{2}+2 \leq i \leq m-1$ $f\left(e_{i}^{\prime \prime}\right)=m-1-2 i$ and for $1 \leq i \leq m f\left(e_{i}\right)=(2+2 i)=-f\left(e_{i}^{\prime}\right)$. For each edge label f, the induced vertex label f^{*} is calculated as follows: $f^{*}\left(u_{1}\right)=m-1=-f^{*}\left(u_{m}\right), f^{*}\left(u_{\frac{m}{2}-1}\right)=3=-f^{*}\left(u_{\frac{m}{2}}\right), f^{*}\left(u_{\frac{m}{2}+1}\right)=2=-f^{*}\left(u_{\frac{m}{2}+2}\right)$, $f^{*}\left(u_{0}\right)=m^{2}+3 m=-f^{*}\left(v_{0}\right)$, for $2 \leq i \leq \frac{m}{2}-2 f^{*}\left(u_{i}\right)=4\left(\frac{m}{2}+1-i\right)$ and for $\frac{m}{2}+3 \leq i \leq m-1 f^{*}\left(u_{i}\right)=4\left(\frac{m}{2}-i\right)$. Then $f^{*}\left(V\left(P_{m}+2 K_{1}\right)\right)=\left\{ \pm 2, \pm 3, \pm(m-1), \pm\left(m^{2}+3 m\right), \pm 12, \pm 16, \pm 20, \ldots, \pm 2(m-2)\right\}$. Hence f is an edge pair sum labeling.

Case (ii) m is odd.
Subcase (a). $m=3$.
Define $f\left(e_{1}^{\prime \prime}\right)=-1, f\left(e_{2}^{\prime \prime}\right)=2$ and for $1 \leq i \leq 3 f\left(e_{i}\right)=2+2 i=-f\left(e_{i}^{\prime}\right)$. For each edge label f, the induced vertex label f^{*} is calculated as follows: $f^{*}\left(u_{1}\right)=-1=-f^{*}\left(u_{2}\right), f^{*}\left(u_{3}\right)=2$ and $f^{*}\left(u_{0}\right)=18=-f^{*}\left(v_{0}\right)$. Then $f^{*}\left(V\left(P_{m}+2 K_{1}\right)\right)=$ $\{ \pm 1, \pm 18\} \bigcup\{2\}$. Hence f is an edge pair sum labeling.

Subcase (b). m is odd , $m \geq 5$.
Define $f\left(e_{\frac{m+1}{2}}^{\prime \prime}\right)=1, f\left(e_{\frac{m-1}{2}}^{\prime \prime}\right)=2, f\left(e_{\frac{m-3}{2}}^{\prime \prime}\right)=-5=-f\left(e_{\frac{m+3}{2}}^{\prime \prime}\right)$, for $1 \leq i \leq \frac{m-5}{2} f\left(e_{i}^{\prime \prime}\right)=-(m+2-2 i)$, for $\frac{m+5}{2} \leq i \leq m-1$ $f\left(e_{i}^{\prime \prime}\right)=(-m+2+2 i)$ and for $1 \leq i \leq m f\left(e_{i}^{\prime}\right)=-(2+2 i)=-f\left(e_{i}\right)$. For each edge label f, the induced vertex label f^{*} is calculated as follows: $f^{*}\left(u_{1}\right)=-m=-f^{*}\left(u_{m}\right), f^{*}\left(u_{\frac{m-1}{2}}\right)=-3=-f^{*}\left(u_{\frac{m+1}{2}}\right), f^{*}\left(u_{\frac{m+3}{2}}\right)=6$, for $2 \leq i \leq \frac{m-3}{2}$ $f^{*}\left(u_{i}\right)=2(-m-3+2 i)$, for $\frac{m+5}{2} \leq i \leq m-1 f^{*}\left(u_{i}\right)=-2(m-1-2 i)$ and $f^{*}\left(u_{0}\right)=m^{2}+3 m=-f^{*}\left(v_{0}\right)$. Then $f^{*}\left(V\left(P_{m}+2 K_{1}\right)\right)=\left\{ \pm 3, \pm\left(m^{2}+3 m\right), \pm m, \pm 12, \pm 16, \pm 20, \ldots, \pm 2(m-1)\right\} \bigcup\{6\}$. Hence f is an edge pair sum labeling. The example for the edge pair sum graph labeling of $P_{m}+2 k_{1}$ for $m=7$ is shown in Figure 7 .

Figure 7. Edge pair sum labeling of $P_{7}+2 K_{1}$

Theorem 2.6. The graph $C_{4} \times P_{m}$ is an edge pair sum graph.

Proof. Let $V\left(C_{4} \times P_{m}\right)=\left\{u_{i j}: 1 \leq i \leq m, 1 \leq j \leq 4\right\}$ and $E\left(C_{4} \times P_{m}\right)=\left\{e_{i j}=u_{i j} u_{i, j+1}: 1 \leq i \leq m, 1 \leq j \leq 3 ; e_{i 4}=\right.$
$\left.u_{i 4} u_{i 1}: 1 \leq i \leq m ; e_{i j}=u_{i j} u_{i+1, j}: 1 \leq i \leq m-1,1 \leq j \leq 4\right\}$ are the vertices and edges of the graph $C_{4} \times P_{m}$. Define $f: E\left(C_{4} \times P_{m}\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(8 m-4)\}$ as follows:
Case (i) $m=2$.
Define $f\left(e_{11}\right)=1=-f\left(e_{13}\right), f\left(e_{12}\right)=2=-f\left(e_{14}\right), f\left(e_{21}\right)=-4=-f\left(e_{23}\right), f\left(e_{22}\right)=3=-f\left(e_{24}\right), f\left(e_{11}^{\prime}\right)=-6=$ $-f\left(e_{13}^{\prime}\right)$ and $f\left(e_{12}^{\prime}\right)=5=-f\left(e_{14}^{\prime}\right)$. For each edge label f, the induced vertex label f^{*} is calculated as follows: $f^{*}\left(u_{11}\right)=$ $-7=-f^{*}\left(u_{13}\right), f^{*}\left(u_{12}\right)=8=-f^{*}\left(u_{14}\right), f^{*}\left(u_{21}\right)=-13=-f^{*}\left(u_{23}\right)$ and $f^{*}\left(u_{22}\right)=4=-f^{*}\left(u_{24}\right)$. Then we get $f^{*}\left(V\left(C_{4} \times P_{m}\right)\right)=\{ \pm 4, \pm 7, \pm 8, \pm 13\}$. Hence f is an edge pair sum labeling.

Case (ii) $m \geq 3$.
Define $f\left(e_{11}\right)=1=-f\left(e_{13}\right), f\left(e_{12}\right)=2=-f\left(e_{14}\right)$, for $2 \leq i \leq m-1 f\left(e_{i 1}\right)=-2 i=-f\left(e_{i 3}\right)$ and $f\left(e_{i 2}\right)=2 i-1=-f\left(e_{i 4}\right)$, $f\left(e_{m 1}\right)=2 m-1=-f\left(e_{m 3}\right), f\left(e_{m 2}\right)=2 m=-f\left(e_{m 4}\right)$, for $1 \leq i \leq m-1 f\left(e_{i 1}^{\prime}\right)=-(2 m+2 i)=-f\left(e_{i 3}^{\prime}\right)$ and $f\left(e_{i 2}^{\prime}\right)=2 m-1+2 i=-f\left(e_{i 4}^{\prime}\right)$. For each edge label f, the induced vertex label f^{*} is calculated as follows: $f^{*}\left(u_{11}\right)=$ $-(2 m+3)=-f^{*}\left(u_{13}\right), f^{*}\left(u_{12}\right)=2 m+4=-f^{*}\left(u_{14}\right)$ for $2 \leq i \leq m-1 f^{*}\left(u_{i 1}\right)=-(4 m-3+8 i)=-f^{*}\left(u_{i 3}\right)$ and $f^{*}\left(u_{i 2}\right)=4 m-5+4 i=-f^{*}\left(u_{i 4}\right), f^{*}\left(u_{m 1}\right)=-(4 m-1)=-f^{*}\left(u_{m 3}\right)$ and $f^{*}\left(u_{m 2}\right)=8 m-4=-f^{*}\left(u_{m 4}\right)$. From the above labeling we get $f^{*}\left(V\left(C_{4} \times P_{m}\right)\right)=\{ \pm(2 m+3), \pm(2 m+4), \pm(4 m-1), \pm(8 m-4), \pm(4 m+13), \pm(4 m+21), \pm(4 m+$ $29), \ldots, \pm(12 m-11), \pm(4 m+3), \pm(4 m+7), \pm(4 m+11), \ldots, \pm(8 m-9)\}$. Hence $C_{4} \times P_{m}$ is an edge pair sum graph. The example for the edge pair sum graph labeling of $C_{4} \times P_{m}$ for $m=4$ is shown in Figure 8 .

Figure 8. Edge pair sum labeling of $C_{4} \times P_{4}$

Theorem 2.7. The graph $P_{n} \odot K_{m}^{c}$ is an edge pair sum graph if m is odd.
Proof. Let $V\left(P_{n} \odot K_{m}^{c}\right)=\left\{u_{i}, v_{i j}: 1 \leq i \leq n, 1 \leq j \leq m\right\}$ and $E\left(P_{n} \odot K_{m}^{c}\right)=\left\{e_{i}=u_{i} u_{i+1}: 1 \leq i \leq(n-1), e_{i j}=u_{i} v_{i j}\right.$: $1 \leq i \leq n, 1 \leq j \leq m\}$ are the vertices and edges of the graph $P_{n} \odot K_{m}^{c}$. Define $f:\left(E\left(P_{n} \odot K_{m}^{c}\right)\right) \rightarrow\{ \pm 1, \pm 2, \pm 3, \ldots, \pm(m n+$ $n-1)\}$ as follows:
Case (i) n is even.
Subcase (a). $n=2$.
Define $f\left(e_{1}\right)=2, f\left(e_{11}\right)=1, f\left(e_{21}\right)=-3$, for $1 \leq i \leq 2$ and $2 \leq j \leq \frac{m+1}{2} f\left(e_{i j}\right)=2+\frac{m-1}{2}(i-1)+j=-f\left(e_{i \frac{m-1+2 j}{2}}\right)$. For each edge label f, the induced vertex label f^{*} is calculated as follows: $f^{*}\left(u_{1}\right)=3=-f^{*}\left(v_{21}\right), f^{*}\left(u_{2}\right)=-1=-f^{*}\left(v_{11}\right)$, for $1 \leq i \leq 2$ and $2 \leq j \leq \frac{m+1}{2} f^{*}\left(v_{i j}\right)=2+\frac{m-1}{2}(i-1)+j=-f^{*}\left(v_{i \frac{m-1+2 j}{2}}\right) . f^{*}\left(V\left(P_{n} \odot K_{m}^{c}\right)\right)=\{ \pm 1, \pm 3\} \bigcup\left\{ \pm\left(2+\frac{m-1}{2}(i-\right.\right.$ 1) $\left.+j) \mid 1 \leq i \leq 2,2 \leq j \leq \frac{m+1}{2}\right\}$. Hence f is an edge pair sum labeling.

Subcase(b). $n=4$.
Define $f\left(e_{1}\right)=-2, f\left(e_{2}\right)=-1, f\left(e_{3}\right)=3, f\left(e_{11}\right)=4=-f\left(e_{31}\right), f\left(e_{21}\right)=6=-f\left(e_{41}\right)$ and for $1 \leq i \leq n$ and $2 \leq j \leq \frac{m+1}{2} f\left(e_{i j}\right)=5+\frac{m-1}{2}(i-1)+j=-f\left(e_{i \frac{m-1+2 j}{2}}\right)$. For each edge label f, the induced vertex label f^{*} is
calculated as follows: $f^{*}\left(u_{1}\right)=2=-f^{*}\left(u_{3}\right), f^{*}\left(u_{2}\right)=3=-f^{*}\left(u_{4}\right), f^{*}\left(v_{11}\right)=4=-f^{*}\left(v_{31}\right), f^{*}\left(v_{21}\right)=6=-f^{*}\left(v_{41}\right)$ and for $1 \leq i \leq n$ and $2 \leq j \leq \frac{m+1}{2} f^{*}\left(v_{i j}\right)=5+\frac{m-1}{2}(i-1)+j=-f^{*}\left(v_{i \frac{m-1+2 j}{}}\right)$. Then we get $f^{*}\left(V\left(P_{n} \odot K_{m}^{c}\right)\right)=$ $\{ \pm 2, \pm 3, \pm 4, \pm 6\} \bigcup\left\{\left. \pm\left(5+\frac{m-1}{2}(i-1)+j\right) \right\rvert\, 1 \leq i \leq n, 2 \leq j \leq \frac{m+1}{2}\right\}$. Hence f is an edge pair sum labeling. The example for the edge pair sum graph labeling of $P_{n} \odot K_{m}^{c}$ for $n=4$ and $m=3$ is shown in Figure 9 .

Figure 9. Edge pair sum labeling of $P_{4} \odot K_{3}^{c}$

Subcase(c). $n \geq 6$.
Define $f\left(e_{\frac{n}{2}-1}\right)=-2, f\left(e_{\frac{n}{2}}\right)=-1, f\left(e_{\frac{n}{2}+1}\right)=3$, for $1 \leq i \leq \frac{n}{2}-2 f\left(e_{i}\right)=n+1-2 i$, for $\frac{n}{2}+2 \leq i \leq n-1 f\left(e_{i}\right)=n-1-2 i$, for $1 \leq i \leq \frac{n}{2}-2 f\left(e_{i 1}\right)=n+2 i-1, f\left(e_{\frac{n}{2}-1,1}\right)=2 n-2=-f\left(e_{\frac{n}{2}}\right), f\left(e_{\frac{n}{2}+1,1}\right)=4=-f\left(e_{\frac{n}{2}+2,1}\right)$, for $1 \leq i \leq \frac{n}{2}-2$ $f\left(e_{\frac{n}{2}+2+i, 1}\right)=-(2 n-2 i-3)$ and for $1 \leq i \leq n$ and $1 \leq j \leq \frac{m-1}{2} f\left(e_{i, j+1}\right)=(3 n-1)+\frac{m-1}{2}(i-1)+j=-f\left(e_{i \frac{m+1}{2}+j}\right)$. For each edge label f, the induced vertex label f^{*} is calculated as follows: $f^{*}\left(u_{1}\right)=2 n=-f^{*}\left(u_{n}\right), f^{*}\left(u_{\frac{n}{2}-1}\right)=2 n+1=-f^{*}\left(u_{\frac{n}{2}}\right)$, $f^{*}\left(u_{\frac{n}{2}+1}\right)=6=-f^{*}\left(u_{\frac{n}{2}+2}\right)$, for $2 \leq i \leq \frac{n}{2}-2 f^{*}\left(u_{i}\right)=3 n-(2 i-3)$, for $1 \leq i \leq \frac{n}{2}-3 f^{*}\left(u_{\frac{n}{2}+2+i}\right)=-(2 n+5+2 i)$, for $1 \leq i \leq \frac{n}{2}-2 f^{*}\left(v_{i 1}\right)=n+2 i-1, f^{*}\left(v_{\frac{n}{2}+1,1}\right)=4=-f^{*}\left(v_{\frac{n}{2}+2,1}\right), f^{*}\left(v_{\frac{n}{2}-1,1}\right)=2 n-2=-f^{*}\left(v_{\frac{n}{2}, 1}\right)$, for $1 \leq i \leq \frac{n}{2}-2$ $f^{*}\left(v_{\frac{n}{2}+2+i, 1}\right)=-(2 n-2 i-3)$ and for $1 \leq i \leq n$ and $1 \leq j \leq \frac{m-1}{2} f^{*}\left(v_{i, j+1}\right)=(3 n-1)+\left(\frac{m-1}{2}\right)(i-1)+j=-f^{*}\left(v_{i, \frac{m+1}{2}+j}\right)$. From the above labeling we get $f^{*}\left(V\left(\left(P_{n} \odot K_{m}^{c}\right)\right)=\{ \pm 4, \pm 6, \pm(2 n-2), \pm 2 n, \pm(2 n+1), \pm(n+1), \pm(n+3), \pm(n+5), \ldots, \pm(2 n-\right.$ $5), \pm(3 n-1), \pm(3 n-3), \pm(3 n-5), \ldots, \pm(2 n+7)\} \bigcup\left\{\left. \pm\left((3 n-1)+\left(\frac{m-1}{2}\right)(i-1)+j\right) \right\rvert\, 1 \leq i \leq n, 1 \leq j \leq \frac{m-1}{2}\right\}$. Hence $P_{n} \odot K_{m}^{c}$ is an edge pair sum graph.
Case (ii) n is odd.
Subcase (a). $n=3$.
Define $f\left(e_{1}\right)=-4, f\left(e_{2}\right)=-2=-f\left(e_{11}\right), f\left(e_{21}\right)=3$ and $f\left(e_{31}\right)=1$, for $1 \leq i \leq n$ and $2 \leq j \leq \frac{m+1}{2} f\left(e_{i j}\right)=3+\frac{m-1}{2}(i-$ $1)+j=-f\left(e_{i, \frac{m-1}{2}+j}\right)$. For each edge label f, the induced vertex label f^{*} is calculated as follows: $f^{*}\left(u_{1}\right)=-2=-f^{*}\left(v_{11}\right)$, $f^{*}\left(u_{2}\right)=-3=-f^{*}\left(v_{21}\right), f^{*}\left(u_{3}\right)=-1=-f^{*}\left(v_{31}\right)$, for $1 \leq i \leq n$ and $2 \leq j \leq \frac{m+1}{2} f^{*}\left(v_{i j}\right)=3+\frac{m-1}{2}(i-1)+j=$ $-f^{*}\left(v_{i, \frac{m-1}{2}+j}\right) . f^{*}\left(V\left(P_{n} \odot K_{m}^{c}\right)\right)=\{ \pm 1, \pm 2, \pm 3\} \bigcup\left\{\left. \pm\left(3+\frac{m-1}{2}(i-1)+j\right) \right\rvert\, 1 \leq i \leq n, 2 \leq j \leq \frac{m+1}{2}\right\}$. Hence f is an edge pair sum labeling. The example for the edge pair sum graph labeling of $P_{n} \odot K_{m}^{c}$ for $n=3$ and $m=3$ is shown in Figure 10.

Figure 10. Edge pair sum labeling of $P_{3} \odot K_{3}^{c}$

Subcase(b). $n \geq 5$.
Define $f\left(e_{\frac{n-1}{2}}\right)=2, f\left(e_{\frac{n+1}{2}}\right)=1, f\left(e_{\frac{n-1}{2}, 1}\right)=-4=-f\left(e_{\frac{n+1}{2}, 1}\right), f\left(e_{\frac{n+3}{2}, 1}\right)=-3, f\left(e_{11}\right)=-(n+2)=f\left(e_{n 1}\right)$, for $1 \leq i \leq$ $\frac{n-3}{2} f\left(e_{i}\right)=-(n+2-2 i)$, for $\frac{n+3}{2} \leq i \leq n-1 f\left(e_{i}\right)=(-n+2+2 i)$, for $2 \leq i \leq \frac{n-3}{2} f\left(e_{i 1}\right)=-(n+2 i-1)$, for $1 \leq i \leq \frac{n-5}{2}$ $f\left(e_{\frac{n+3}{2}+i, 1}\right)=2(n-1-i)$ and for $1 \leq i \leq n$ and $1 \leq j \leq \frac{m-1}{2} f\left(e_{i, 1+j}\right)=n+2+(m-1)(i-1)+2 j=-f\left(e_{i, \frac{m+1}{2}+j}\right)$. For
each edge label f, the induced vertex label f^{*} is calculated as follows: $f^{*}\left(u_{1}\right)=-(2 n+2)=-f^{*}\left(u_{n}\right), f^{*}\left(v_{11}\right)=-(n+2)$, $f^{*}\left(u_{\frac{n-1}{2}}\right)=-7=-f^{*}\left(u_{\frac{n+1}{2}}\right), f^{*}\left(u_{\frac{n+3}{2}}\right)=3=-f^{*}\left(v_{\frac{n+3}{2} 1}\right)$, for $1 \leq i \leq \frac{n-5}{2} f^{*}\left(u_{1+i}\right)=-(3 n+3-2 i)$, for $1 \leq i \leq \frac{n-5}{2}$ $f^{*}\left(u_{\frac{n+3}{2}+i}\right)=(3 n+3-2 i)$, for $2 \leq i \leq \frac{n-3}{2} f^{*}\left(v_{i 1}\right)=-(n+2 i-1), f^{*}\left(v_{\frac{n-1}{2}, 1}\right)=-4=-f^{*}\left(v_{\frac{n+1}{2}, 1}\right), f^{*}\left(v_{n 1}\right)=n+2$, for $1 \leq$ $i \leq \frac{n-5}{2} f^{*}\left(v_{\frac{n+3}{2}+i, 1}\right)=2(n-1-i)$, for $1 \leq i \leq n$ and $1 \leq j \leq \frac{m-1}{2} f^{*}\left(v_{i, 1+j}\right)=n+2+(m-1)(i-1)+2 j=-f^{*}\left(v_{i, \frac{m+1}{2}+j}\right)$. From the above labeling we get $f^{*}\left(V\left(\left(P_{n} \odot K_{m}^{c}\right)\right)=\{ \pm 3, \pm 4, \pm 7, \pm(2 n+2), \pm 2 n, \pm(3 n+1), \pm(3 n-1), \pm(3 n-3), \ldots, \pm(2 n+\right.$ $8), \pm(2 n-4), \pm(2 n-6), \pm(2 n-8), \ldots, \pm(n+3)\} \bigcup\left\{ \pm((n+2)+(m-1)(i-1)+2 j) \mid 1 \leq i \leq n, 1 \leq j \leq \frac{m-1}{2}\right\}$. Hence $P_{n} \odot K_{m}^{c}$ is an edge pair sum graph.

Remark 2.8. Let $G(p, q)$ is an edge pair sum graph. Then $G \odot K_{n}^{c}$ is also an edge pair sum graph if n is even. This is already proved in [5].

References

[1] J.A.Gallian, A dynamic survey of graph labeling, Electronic J.Combin., (2013).
[2] F.Harary, Graph theory, Addison Wesley, Massachusetts, (1972).
[3] R.Ponraj and J.V.X.Parthipan, Pair Sum Labeling of Graphs, The Journal of Indian Academy of Mathematics, $32(2)(2010), 587-595$.
[4] K.Manimegalai and K.Thirusangu, Pair Sum Labeling of some Special Graphs, International Journal of Computer Applications, 69(8)(2013), 34-38.
[5] P.Jeyanthi and T.Saratha Devi, Edge pair sum labeling, Journal of Scientific Research, 5(3)(2013), 457-467.
[6] P.Jeyanthi and T.Saratha Devi, On edge pair sum labeling of graphs, International Journal of Mathematics Trends and Technology, 7(2)(2014), 106-113.
[7] P.Jeyanthi and T.Saratha Devi, Edge pair sum labeling of spider graph, Journal of Algorithms and Computation, 45(1)(2014), 25-34.
[8] P.Jeyanthi and T.Saratha Devi, Some edge pair sum graph, Journal of Discrete Mathematical Science and Cryptography, 18(5)(2015), 481-493.
[9] P.Jeyanthi and T.Saratha Devi, Gee-Choon Lau, Some results of edge pair sum labeling, Electronic Notes Discrete Mathematics, 48(2015), 169-173.
[10] P.Jeyanthi and T.Saratha Devi, Gee-Choon Lau, Edge pair sum labeling of $W T(n: k)$ Tree, Global Journal of Pure and Applied Mathematics, 11(3)(2015), 1523-1539.
[11] P.Jeyanthi and T.Saratha Devi, Edge pair sum labeling of some cartesian product graphs, Discrete Mathematics, Algorithms and Applications, (to appear).
[12] P.Jeyanthi and T.Saratha Devi, Edge pair sum labeling of some cycle related graphs, (preprint).

[^0]: * E-mail: rajanvino03@gmail.com

