

International Journal of Mathematics And its Applications

New Results on Edge Pair Sum Graphs

Research Article

P.Jeyanthi¹ and T.Saratha Devi²*

1 Department of Mathematics, Research Center, Govindammal Aditanar College for Women, Tiruchendur, India.

2 Department of Mathematics, G.Venkataswamy Naidu College, Kovilpatti, India.

Let G be a (p,q) graph. An injective map $f: E(G) \to \{\pm 1, \pm 2, \cdots, \pm q\}$ is said to be an edge pair sum labeling if the Abstract: induced vertex function $f^*: V(G) \to Z - \{0\}$ defined by $f^*(v) = \sum_{e \in E_n} f(e)$ is one- one where E_v denotes the set of edges in G that are incident with a vertex v and $f^*(V(G))$ is either of the form $\left\{\pm k_1, \pm k_2, \cdots, \pm k_{\frac{p}{2}}\right\}$ or $\left\{\pm k_1, \pm k_2, \cdots, \pm k_{\frac{p-1}{2}}\right\}$ $\bigcup \left\{ \pm k_{\frac{p+1}{2}} \right\}$ according as p is even or odd. A graph that admits an edge pair sum labeling is called an edge pair sum graph. In this paper we prove that the graphs jelly fish, Y-tree, theta, the subdivision of spokes in wheel $SS(W_n)$, $P_m + 2K_1, C_4 \times P_m, P_n \odot K_m^c$ admit edge pair sum labeling. MSC: 05C78.

Keywords: Edge pair sum labeling, edge pair sum graph, jelly fish, Y-tree, theta graphs, subdivision of spokes in wheel. © JS Publication.

Introduction 1.

Throughout this paper we consider finite, simple and undirected graph G = (V(G), E(G)) with p vertices and q edges. G is also called a (p,q) graph. We follow the basic notations and terminology of graph theory as in [2]. Ponraj et al. introduced the concept of pair sum labeling in [3]. An injective map $f: V(G) \to \{\pm 1, \pm 2, \dots, \pm p\}$ is said to be a pair sum labeling of a graph G(p,q) if the induced edge function $f_e: E(G) \to Z - \{0\}$ defined by $f_e(uv) = f(u) + f(v)$ is one-one and $f_e(E(G))$ is either of the form $\left\{\pm k_1, \pm k_2, \dots, \pm k_{\frac{q}{2}}\right\}$ or $\left\{\pm k_1, \pm k_2, \dots, \pm k_{\frac{q-1}{2}}\right\} \cup \left\{\pm k_{\frac{q+1}{2}}\right\}$ according as q is even or odd. A graph that admits a pair sum labeling is called a pair sum graph. Analogous to pair sum labeling we define a new labeling called an edge pair sum labeling in [5] and further studied in [6-12]. In this paper we prove that the graphs jelly fish, Y-tree, theta, the subdivision of spokes in wheel $SS(W_n)$, $P_m + 2K_1$, $C_4 \times P_m$, $P_n \odot K_m^c$ admit edge pair sum labeling. We use the following definitions in the subsequent section.

Definition 1.1. A Y-tree Y_{n+1} is a graph obtained from the path P_n by appending an edge to a vertex of the path P_n adjacent to an end point [4].

Definition 1.2. The jelly fish graph J(m,n) is obtained from a 4-cycle v_1, v_2, v_3, v_4 by joining v_1 and v_3 with an edge and appending m pendent edges to v_2 and n pendent edges to v_4 .

E-mail: rajanvino03@qmail.com

Definition 1.3. Take k paths of length $l_1, l_2, l_3, ..., l_k$ where $k \ge 3$ and $l_i = 1$ for at most one i. Identify their end points to form a new graph. The new graph is called a generalized theta graph, and it is denoted by $\Theta(l_1, l_2, l_3, ..., l_k)$. In other words, $\Theta(l_1, l_2, l_3, ..., l_k)$ consists $k \ge 3$ pair wise internally disjoint paths of length $l_1, l_2, l_3, ..., l_k$ that share a pair of common end points u and v. If each $l_i(i = 1, 2, ..., k)$ is equal to l, we will write $\Theta(l^{[k]})$.

2. Main results

Theorem 2.1. For any positive integers m and n, the jelly fish graph J(m,n) has an edge pair sum labeling.

 $\begin{aligned} Proof. \quad &\text{Let } V(J(m,n)) = V_1 \bigcup V_2 \text{ where } V_1 = \{x, u, y, v\} \text{ and } V_2 = \{u_i, v_j : 1 \le i \le m, 1 \le j \le n\}. \quad &E(J(m,n)) = E_1 \bigcup E_2, \\ &\text{where } E_1 = \left\{e_1^{''} = xu, e_2^{''} = uy, e_3^{''} = yv, e_4^{''} = vx, e_5^{''} = xy\right\} \text{ and } E_2 = \left\{e_i = uu_i, e_j^{'} = vv_j : 1 \le i \le m, 1 \le j \le n\right\}. \quad &\text{Define } f: E(J(m,n)) \to \{\pm 1, \pm 2, ..., \pm (m+n+5)\} \text{ as follows:} \end{aligned}$

Case(i). m and n are odd.

Label the edges $e_1'', e_2'', e_3'', e_4'', e_5''$ by 1,-3,4,2,-4. Define $f(e_1) = 5 = -f(e_1')$, for $1 \le i \le \frac{m-1}{2}$ $f(e_{i+1}) = (5+i) = -f(e_{\frac{m+1}{2}+i})$ and for $1 \le i \le \frac{n-1}{2}$ $f(e_{1+i}) = \frac{m+9+2i}{2} = -f(e_{\frac{m+1}{2}+i})$. For each edge label f, the induced vertex label f^* is calculated as follows: $f^*(x) = -1 = -f^*(v)$, $f^*(u) = 3 = -f^*(y)$, $f^*(u_1) = 5 = -f^*(v_1)$, for $1 \le i \le \frac{m-1}{2}$ $f^*(u_{1+i}) = (5+i) = -f^*\left(u_{\frac{m+1}{2}+i}\right)$ and for $1 \le i \le \frac{n-1}{2}$ $f^*(v_{1+i}) = \frac{m+9+2i}{2} = -f^*\left(v_{\frac{m+1}{2}+i}\right)$. Then $f^*(V(J(m,n))) = \{\pm 1, \pm 3, \pm 5, \pm 6, \pm 7, \pm 8, ..., \pm (\frac{m+9}{2}), \pm (\frac{m+11}{2}), \pm (\frac{m+13}{2}), \pm (\frac{m+15}{2}), ..., \pm (\frac{m+n+8}{2})\}$. Hence f is an edge pair sum labeling. The example for the edge pair sum graph labeling of J(3, 5) is shown in Figure 1.

Figure 1. Edge pair sum labeling of J(3,5)

Case(ii). m and n are even.

Label the edges $e_1'', e_2'', e_3'', e_4'', e_5''$ by -1,-8,-4,-6,5. Define $f(e_1) = 1$, $f(e_2) = 4$, $f\left(e_1'\right) = 2$, $f\left(e_2'\right) = 7$, for $1 \le i \le \frac{m-2}{2}$ $f(e_{2+i}) = \frac{m+14+2i}{2} = -f\left(e_{\frac{n+2}{2}+i}\right)$. For each edge label f, the induced vertex label f^* is calculated as follows: $f^*(x) = -2 = -f^*(v_1)$, $f^*(u) = -4 = -f^*(u_2)$, $f^*(y) = -7 = -f^*(v_2)$, $f^*(v) = -1 = -f^*(u_1)$, for $1 \le i \le \frac{m-2}{2}$ $f^*(u_{2+i}) = 8 + i = -f^*\left(u_{\frac{m+2}{2}+i}\right)$ and for $1 \le i \le \frac{m-2}{2}$ $f^*(u_{2+i}) = 8 + i = -f^*\left(u_{\frac{m+2}{2}+i}\right)$ and for $1 \le i \le \frac{n-2}{2}$ $f^*(v_{2+i}) = \frac{m+14+2i}{2} = -f^*\left(v_{\frac{m+2}{2}+i}\right)$. Then we get $f^*(V(J(m,n))) = \{\pm 1, \pm 2, \pm 4, \pm 7, \pm 9, \pm 10, \pm 11, \dots, \pm (\frac{m+14}{2}), \pm (\frac{m+16}{2}), \pm (\frac{m+18}{2}), \pm (\frac{m+20}{2}), \dots, \pm (\frac{m+12}{2})\}$. Hence f is an edge pair sum labeling.

Case(iii). m is odd and n is even or m is even and n is odd.

Label the edges $e_1'', e_2'', e_3'', e_4'', e_5''$ by 3,4,-4,1,-1. Define $f(e_1) = -6$, for $1 \le i \le \frac{m-1}{2} f(e_{1+i}) = 6 + i = -f\left(e_{\frac{m+1}{2}+i}\right)$ and for $1 \le i \le \frac{n}{2} f\left(e_i'\right) = \frac{m+11+2i}{2} = -f\left(e_{\frac{n}{2}+i}'\right)$. For each edge label f, the induced vertex label f^* is calculated as follows: $f^*(x) = 3 = -f^*(v), f^*(u) = 1 = -f^*(y), f^*(u_1) = -6$, for $1 \le i \le \frac{m-1}{2} f^*(u_{1+i}) = 6 + i = -f^*\left(u_{\frac{m+1}{2}+i}\right)$ and for $1 \le i \le \frac{n}{2} f^*(v_i) = \frac{m+11+2i}{2} = -f^*\left(v_{\frac{n}{2}+i}\right)$. Therefore we get $f^*(V(J(m,n))) = 6 + i = -f^*(V(J(m,n))) = 0$. $\{\pm 1, \pm 3, \pm 7, \pm 8, \pm 9, ..., \pm \left(\frac{m+11}{2}\right), \pm \left(\frac{m+13}{2}\right), \pm \left(\frac{m+15}{2}\right), \pm \left(\frac{m+17}{2}\right), ..., \pm \left(\frac{m+n+11}{2}\right)\} \bigcup \{-6\}.$ Hence f is an edge pair sum labeling. \Box

Theorem 2.2. For $n \ge 4$, the Y-tree $G = Y_{n+1}$ is an edge pair sum graph.

Proof. Let $V(G) = \{v, u_i : 1 \le i \le n\}$ and $E(G) = \{e'_1 = vu_2, e_i = u_iu_{i+1} : 1 \le i \le n-1\}$ are the vertices and edges of the graph G. Define $f : E(G) \to \{\pm 1, \pm 2, ..., \pm n\}$ as follows:

Case(i). n = 4.

Let $f(e_1') = -4 = -f(e_1)$, $f(e_2) = -1$ and $f(e_3) = 2$. For each edge label f, the induced vertex label f^* is calculated as follows: $f^*(v) = -4 = -f^*(u_1)$, $f^*(u_2) = -1 = -f^*(u_3)$ and $f^*(u_4) = 2$. Then $f^*(V(G)) = \{\pm 1, \pm 4\} \bigcup \{2\}$. Hence f is an edge pair sum labeling if n = 4.

Case(ii). n = 5.

Let $f(e_1') = 4 = -f(e_1)$, $f(e_2) = -2$, $f(e_3) = -1$ and $f(e_4) = 3$. For each edge label f, the induced vertex label f^* is calculated as follows: $f^*(v) = 4 = -f^*(u_1)$, $f^*(u_2) = -2 = -f^*(u_4)$ and $f^*(u_3) = -3 = -f^*(u_5)$. Then we get $f^*(V(G)) = \{\pm 2, \pm 3, \pm 4\}$. Hence f is an edge pair sum labeling.

Case(iii). n is odd, take $n = 2k + 1, k \ge 3$.

Let $f(e_k) = -2$, $f(e_{k+1}) = -1$, $f(e_{k+2}) = 3$, $f(e_1) = 4 = -f(e'_1)$, for $1 \le i \le k-2$ $f(e_{1+i}) = (2k+1-2i)$ and for $k+2 \le i \le 2k-1$ $f(e_{1+i}) = (2k-1-2i)$. For each edge label f, the induced vertex label f^* is calculated as follows: $f^*(v) = -4 = -f^*(u_1)$, $f^*(u_2) = (2k-1)$, $f^*(u_k) = 3 = -f^*(u_{k+1})$, $f^*(u_{k+2}) = 2 = -f^*(u_{k+3})$, $f^*(u_n) = -(2k-1)$, for $2 \le i \le k-2$ $f^*(u_{1+i}) = 4(k+1-i)$ and for $k+3 \le i \le 2k-1$ $f^*(u_{1+i}) = 4(k-i)$. Then the vertex labeling are $f^*(V(G)) = \{\pm 2, \pm 3, \pm 4, \pm (2k-1), \pm 12, \pm 16, \dots, \}$

 $\pm 4(k-1)$. Hence f is an edge pair sum labeling.

Case(iv). n is even, take $n = 2k, k \ge 3$.

Let $f(e_{k+1}) = 1$, $f(e_k) = 2$, $f(e_{k-1}) = -5 = -f(e_{k+2})$, $f(e_1) = 4 = -f(e'_1)$, for $2 \le i \le k-2$ $f(e_i) = -(2k+3-2i)$ and for $k+3 \le i \le 2k-1$ $f(e_i) = (-2k+1+2i)$. For each edge label f, the induced vertex label f^* is calculated as follows: $f^*(v) = -4 = -f^*(u_1)$, $f^*(u_2) = -(2k-1) = -f^*(u_n)$, $f^*(u_k) = -3 = -f^*(u_{k+1})$, $f^*(u_{k+2}) = 6$, for $3 \le i \le k-1$ $f^*(u_i) = 4(-k+i-2)$ and for $k+3 \le i \le (2k-1)$ $f^*(u_i) = -4(k-i)$. Then the vertex labeling are $f^*(V(G)) = \{\pm 3, \pm 4, \pm (2k-1), \pm 12, \pm 16, ..., \pm 4(k-1)\} \cup \{6\}$. Hence f is an edge pair sum labeling. The example for the edge pair sum graph labeling of Y_{6+1} is shown in Figure 2.

Figure 2. Edge pair sum labeling of Y_{6+1}

Theorem 2.3. The theta graph $\Theta(l^{[m]})$ is an edge pair sum graph.

Proof. Let $G(V, E) = \Theta(l^{[m]})$. Then |V(G)| = m(l-1) + 2 and |E(G)| = ml are the vertices and edges of G. Where $V(G) = \{u, v, u_i^j : 1 \le i \le m, 1 \le j \le l-1\}$ and $E(G) = \{e_i^j : 1 \le i \le m, 1 \le j \le l\}$. **Case(i).** m is odd and l is even.

For
$$1 \le j \le \frac{l-2}{2} f(e_1^j) = l+3-2j$$
, $f(e_1^{\frac{1}{2}}) = -2$, $f(e_1^{\frac{l-2}{2}}) = -1$, for $\frac{l+4}{2} \le j \le l f(e_1^j) = l-1-2j$ and for $1 \le i \le \frac{m-1}{2}$; $1 \le j \le l$

59

 $\begin{aligned} f(e_{1+i}^{j}) &= 2l(i-1) + 2j + 2 = -f(e_{\frac{m+1}{2}+i}^{j}). \text{ For each edge label } f, \text{ the induced vertex label } f^{*} \text{ is calculated as follows:} \\ f^{*}(u) &= l+1 = -f^{*}(v), f^{*}(u_{1}^{\frac{l}{2}-1}) = 3, f^{*}(u_{1}^{\frac{l}{2}}) = -3, f^{*}(u_{1}^{\frac{l}{2}+1}) = -6, \text{ for } 1 \leq j \leq \frac{l-4}{2} f^{*}(u_{1}^{j}) = 2l+4-4j, \text{ for } 1 \leq j \leq \frac{l-4}{2} f^{*}(u_{1}^{\frac{l}{2}+j}) = -(8+4j) \text{ and for } 1 \leq i \leq \frac{m-1}{2}; 1 \leq j \leq (l-1) f^{*}(u_{1+i}^{j}) = 4l(i-1) + 6 + 4j = -f^{*}(u_{\frac{m+1}{2}+i}^{j}). \text{ Then } f^{*}(V(G)) = \{\pm 3, \pm(l+1), \pm 12, \pm 16, \pm 20, \dots, \pm 2l\} \bigcup \{\pm (4l(i-1)+6+4j) | 1 \leq i \leq \frac{m-1}{2}, 1 \leq j \leq (l-1)\} \bigcup \{-6\}. \text{ Hence } f \text{ is an edge pair sum labeling.} \end{aligned}$

Case(ii). m and l are odd.

For $1 \le j \le \frac{l-3}{2} f(e_i^j) = -(l+2-2j), f(e_1^{\frac{l-1}{2}}) = 2, f(e_1^{\frac{l+1}{2}}) = 1, f(e_1^{\frac{l+3}{2}}) = -3$, for $1 \le j \le \frac{l-3}{2} f(e_1^{\frac{l+3}{2}+i}) = 3+2j$ and for $1 \le i \le \frac{m-1}{2}; 1 \le j \le l f(e_{1+i}^j) = 2l(i-1) + 2j + 2 = -f(e_{\frac{m+1}{2}+i}^j)$. For each edge label f, the induced vertex label f^* is calculated as follows: $f^*(u) = -l = -f^*(v), f^*(u_1^{\frac{l-3}{2}}) = -3 = -f^*(u_1^{\frac{l-1}{2}}), f^*(u_1^{\frac{l+3}{2}}) = -2 = -f^*(u_1^{\frac{l+3}{2}}), \text{ for } 1 \le j \le \frac{l-5}{2} f^*(u_1^j) = -(2(l-1) + 4 - 4j), \text{ for } 1 \le j \le \frac{l-5}{2} f^*(u_1^{\frac{l+3}{2}+j}) = 8 + 4j \text{ and for } 1 \le i \le \frac{m-1}{2}; 1 \le j \le (l-1)f^*(u_{1+i}^j) = 4l(i-1) + 6 + 4j = -f^*(u_{\frac{m+1}{2}+i}^j).$ Then $f^*(V(G)) = \{\pm 2, \pm 3, \pm l, \pm 12, \pm 16, \dots, \pm 2(l-1)\} \bigcup \{\pm (4l(i-1) + 6 + 4j) | 1 \le i \le \frac{m-1}{2}, 1 \le j \le (l-1)\}$. Hence f is an edge pair sum labeling. The example for the edge pair sum graph labeling of $\Theta(5^{[5]})$ is shown in Figure 3.

Figure 3. Edge pair sum graph labeling of $\Theta(5^{[5]})$

Case(iii). m is even and l is odd.

For $1 \le i \le \frac{m}{2}$; $1 \le j \le l \ f(e_i^j) = 2l(i-1) + 2j$ and $f(e_{\frac{m}{2}+i}^j) = -(l(m-2i+2)+2-2j)$. For each edge label f, the induced vertex label f^* is calculated as follows: for $1 \le i \le \frac{m}{2}$; $1 \le j \le (l-1) \ f^*(u_i^j) = 4l(i-1)+2+4j$ and $f^*(u_{\frac{m}{2}+i}^j) = -(l(2m-4i+4)-4j+2), \ f^*(u) = -m(l-1) = f^*(v)$. Then $f^*(V(G)) = \{\pm m(l-1)\} \bigcup \{\pm (4l(i-1)+2+4j) | 1 \le i \le \frac{m}{2}, 1 \le j \le (l-1)\}$. Hence f is an edge pair sum labeling.

Case(iv). m and l are even if $m \ge 4$.

For $1 \le i \le \frac{m}{4}$; $1 \le j \le l$, $f(e_i^j) = 4l(i-1) + 4j - 3$, $f(e_{\frac{m}{4}+i}^j) = 4l(i-1) + 4j - 1$, $f(e_{\frac{m}{2}+i}^j) = -(l(m-4i+4) - 4j+1)$ and $f(e_{\frac{3m}{4}+i}^j) = -(l(m-4i+4) - 4j+3)$. For each edge label f, the induced vertex label f^* is calculated as follows: $f^*(u) = -(2m(l-1)) = -f^*(v)$, for $1 \le i \le \frac{m}{4}$; $1 \le j \le (l-1)$ $f^*(u_i^j) = 8l(i-1) + 6 + (8j-8)$, $f^*(u_{\frac{m}{4}+i}^j) = 8l(i-1) + 10 + (8j-8)$, $f^*(u_{\frac{m}{2}+i}^j) = -(l(2m-8i+8) - 8j-2)$ and $f^*(u_{\frac{3m}{4}+i}^j) = -(l(2m-8i+8) - 8j+2)$. Then $f^*(V(G)) = \{\pm (2lm-2m)\} \bigcup \{\pm (8l(i-1) + 6 + (8j-8)) \text{ and } (8l(i-1) + 10 + (8j-8))| 1 \le i \le \frac{m}{4}, 1 \le j \le (l-1)\}$. Hence f is an edge pair sum labeling.

Theorem 2.4. The subdivision of spokes in wheel $SS(W_n)$ graph admits edge pair sum labeling.

Proof. Let $V(SS(W_n)) = \{u_0, u_i, v_i : 1 \le i \le n\}$ and $E(SS(W_n)) = \{e_i = u_i u_{i+1} : 1 \le i \le (n-1), e_n = u_n u_1, e'_i = u_i v_i$ and $e''_i = u_0 v_i : 1 \le i \le n\}$ are the vertices and edges of the graph $SS(W_n)$. Define the edge labeling $f : E(SS(W_n)) \rightarrow \{\pm 1, \pm 2, \dots, \pm 3n\}$ by considering the following two cases:

Case (i) n is even.

For
$$1 \le i \le n$$
 $f(e'_i) = -i$ and $f(e''_i) = -(3n - 2i + 1)$, for $1 \le i \le n - 1$ $f(e_i) = n + i$ and $f(e_n) = 2n$. For each edge label

f, the induced vertex label f^* is calculated as follows: $f^*(u_1) = 3n$, for $1 \le i \le n-1$ $f^*(u_{1+i}) = 2n+i$, for $1 \le i \le n$ $f^*(v_i) = -(3n-i+1)$ and $f^*(u_0) = -2n^2$. From the above vertex labeling $f^*(V(SS(W_n))) = \{\pm (2n+1), \pm (2n+2), \pm (2n+3), ..., \pm 3n\} \bigcup \{-2n^2\}$. Hence f is an edge pair sum labeling. The example for the edge pair sum graph labeling of $SS(W_n)$ for n = 4 is shown in Figure 4.

Figure 4. Edge pair sum labeling of $SS(W_4)$

Case (ii) n is odd.

For $1 \leq i \leq n$ $f(e'_i) = 2i - 1$ and $f(e''_i) = 2i$, for $1 \leq i \leq \frac{n-1}{2}$ $f(e_{n-2i+1}) = -(\frac{n+1}{2} + 2i - 1)$, $f(e_{n-2i}) = -(\frac{3n+1}{2} + 2i)$ and $f(e_n) = -(\frac{3n+1}{2})$. For each edge label f, the induced vertex label f^* is calculated as follows: $f^*(u_0) = n(n+1)$, for $1 \leq i \leq n$ $f^*(u_i) = -(4n - 4i + 3)$ and $f^*(v_i) = 4i - 1$. From the above vertex labeling $f^*(V(SS(W_n))) = \{\pm 3, \pm 7, \pm 11, ..., \pm (4n - 1)\} \cup \{n(n+1)\}$. Hence $SS(W_n)$ is an edge pair sum graph. The example for the edge pair sum graph labeling of $SS(W_n)$ for n = 5 is shown in Figure 5.

Figure 5. Edge pair sum labeling of $SS(W_5)$

Theorem 2.5. The graph $P_m + 2K_1$ is an edge pair sum graph if $m \ge 3$.

Proof. Let $V(P_m + 2K_1) = \{u_0, v_0, u_i : 1 \le i \le m\}$ and $E(P_m + 2K_1) = \{e_i = u_0u_i, e'_i = v_0u_i : 1 \le i \le m, e''_i = u_iu_{i+1} : 1 \le i \le m-1\}$ are the vertices and edges of the graph $P_m + 2K_1$. Define $f : E(P_m + 2K_1) \to \{\pm 1, \pm 2, \dots, \pm (3m-1)\}$ as follows:

Case (i) m is even.

Subcase (a). m = 4.

For $1 \le i \le 4$ $f(e_i) = 2 + 2i = -f(e'_i)$, $f(e''_1) = -2$, $f(e''_2) = -1$ and $f(e''_3) = 3$. For each edge label f, the induced vertex label f^* is calculated as follows: $f^*(u_1) = -2 = -f^*(u_3)$, $f^*(u_2) = -3 = -f^*(u_4)$, $f^*(u_0) = 28 = -f^*(v_0)$. Then $f^*(V(P_m + 2K_1)) = \{\pm 2, \pm 3, \pm 28\}$. Hence f is an edge pair sum labeling. The example for the edge pair sum graph labeling of $P_m + 2K_1$ for m = 4 is shown in Figure 6.

Figure 6. Edge pair sum labeling of $P_4 + 2K_1$

Subcase (b). m is even, $m \ge 6$.

Define $f(e_{\frac{m}{2}-1}') = -2$, $f(e_{\frac{m}{2}}') = -1$, $f(e_{\frac{m}{2}+1}') = 3$, for $1 \le i \le \frac{m}{2} - 2$ $f(e_i'') = m + 1 - 2i$, for $\frac{m}{2} + 2 \le i \le m - 1$ $f(e_i'') = m - 1 - 2i$ and for $1 \le i \le m$ $f(e_i) = (2 + 2i) = -f(e_i')$. For each edge label f, the induced vertex label f^* is calculated as follows: $f^*(u_1) = m - 1 = -f^*(u_m)$, $f^*(u_{\frac{m}{2}-1}) = 3 = -f^*(u_{\frac{m}{2}})$, $f^*(u_{\frac{m}{2}+1}) = 2 = -f^*(u_{\frac{m}{2}+2})$, $f^*(u_0) = m^2 + 3m = -f^*(v_0)$, for $2 \le i \le \frac{m}{2} - 2$ $f^*(u_i) = 4(\frac{m}{2} + 1 - i)$ and for $\frac{m}{2} + 3 \le i \le m - 1$ $f^*(u_i) = 4(\frac{m}{2} - i)$. Then $f^*(V(P_m + 2K_1)) = \{\pm 2, \pm 3, \pm(m - 1), \pm(m^2 + 3m), \pm 12, \pm 16, \pm 20, \dots, \pm 2(m - 2)\}$. Hence f is an edge pair sum labeling. **Case (ii)** m is odd.

Subcase (a). m = 3.

Define $f(e_1^{''}) = -1$, $f(e_2^{''}) = 2$ and for $1 \le i \le 3$ $f(e_i) = 2 + 2i = -f(e_i^{'})$. For each edge label f, the induced vertex label f^* is calculated as follows: $f^*(u_1) = -1 = -f^*(u_2)$, $f^*(u_3) = 2$ and $f^*(u_0) = 18 = -f^*(v_0)$. Then $f^*(V(P_m + 2K_1)) = \{\pm 1, \pm 18\} \bigcup \{2\}$. Hence f is an edge pair sum labeling.

Subcase (b). m is odd , $m \geq 5.$

Define $f(e_{\frac{m+1}{2}}') = 1$, $f(e_{\frac{m-1}{2}}') = 2$, $f(e_{\frac{m-3}{2}}') = -5 = -f(e_{\frac{m+3}{2}}')$, for $1 \le i \le \frac{m-5}{2}$, $f(e_i'') = -(m+2-2i)$, for $\frac{m+5}{2} \le i \le m-1$, $f(e_i'') = (-m+2+2i)$ and for $1 \le i \le m$, $f(e_i') = -(2+2i) = -f(e_i)$. For each edge label f, the induced vertex label f^* is calculated as follows: $f^*(u_1) = -m = -f^*(u_m)$, $f^*(u_{\frac{m-1}{2}}) = -3 = -f^*(u_{\frac{m+1}{2}})$, $f^*(u_{\frac{m+3}{2}}) = 6$, for $2 \le i \le \frac{m-3}{2}$, $f^*(u_i) = 2(-m-3+2i)$, for $\frac{m+5}{2} \le i \le m-1$, $f^*(u_i) = -2(m-1-2i)$ and $f^*(u_0) = m^2 + 3m = -f^*(v_0)$. Then $f^*(V(P_m+2K_1)) = \{\pm 3, \pm(m^2+3m), \pm m, \pm 12, \pm 16, \pm 20, ..., \pm 2(m-1)\} \cup \{6\}$. Hence f is an edge pair sum labeling. The example for the edge pair sum graph labeling of $P_m + 2k_1$ for m = 7 is shown in Figure 7.

Figure 7. Edge pair sum labeling of $P_7 + 2K_1$

Theorem 2.6. The graph $C_4 \times P_m$ is an edge pair sum graph.

Proof. Let
$$V(C_4 \times P_m) = \{u_{ij} : 1 \le i \le m, 1 \le j \le 4\}$$
 and $E(C_4 \times P_m) = \{e_{ij} = u_{ij}u_{i,j+1} : 1 \le i \le m, 1 \le j \le 3; e_{i4} = 0\}$

 $u_{i4}u_{i1}: 1 \leq i \leq m; e'_{ij} = u_{ij}u_{i+1,j}: 1 \leq i \leq m-1, 1 \leq j \leq 4$ are the vertices and edges of the graph $C_4 \times P_m$. Define $f: E(C_4 \times P_m) \rightarrow \{\pm 1, \pm 2, \dots, \pm (8m-4)\}$ as follows:

Case (i) m = 2.

Define $f(e_{11}) = 1 = -f(e_{13}), f(e_{12}) = 2 = -f(e_{14}), f(e_{21}) = -4 = -f(e_{23}), f(e_{22}) = 3 = -f(e_{24}), f(e_{11}') = -6 = -f(e_{13}')$ and $f(e_{12}') = 5 = -f(e_{14}')$. For each edge label f, the induced vertex label f^* is calculated as follows: $f^*(u_{11}) = -7 = -f^*(u_{13}), f^*(u_{12}) = 8 = -f^*(u_{14}), f^*(u_{21}) = -13 = -f^*(u_{23})$ and $f^*(u_{22}) = 4 = -f^*(u_{24})$. Then we get $f^*(V(C_4 \times P_m)) = \{\pm 4, \pm 7, \pm 8, \pm 13\}$. Hence f is an edge pair sum labeling.

Case (ii) $m \ge 3$.

Define $f(e_{11}) = 1 = -f(e_{13}), f(e_{12}) = 2 = -f(e_{14}), \text{ for } 2 \le i \le m-1$ $f(e_{i1}) = -2i = -f(e_{i3})$ and $f(e_{i2}) = 2i-1 = -f(e_{i4}),$ $f(e_{m1}) = 2m - 1 = -f(e_{m3}), f(e_{m2}) = 2m = -f(e_{m4}), \text{ for } 1 \le i \le m-1$ $f(e_{i1}) = -(2m+2i) = -f(e_{i3})$ and $f(e_{i2}) = 2m - 1 + 2i = -f(e_{i4}).$ For each edge label f, the induced vertex label f^* is calculated as follows: $f^*(u_{11}) = -(2m+3) = -f^*(u_{13}), f^*(u_{12}) = 2m + 4 = -f^*(u_{14})$ for $2 \le i \le m-1$ $f^*(u_{i1}) = -(4m-3+8i) = -f^*(u_{i3})$ and $f^*(u_{i2}) = 4m - 5 + 4i = -f^*(u_{i4}), f^*(u_{m1}) = -(4m - 1) = -f^*(u_{m3})$ and $f^*(u_{m2}) = 8m - 4 = -f^*(u_{m4}).$ From the above labeling we get $f^*(V(C_4 \times P_m)) = \{\pm(2m+3), \pm(2m+4), \pm(4m-1), \pm(8m-4), \pm(4m+13), \pm(4m+21), \pm(4m+$

Figure 8. Edge pair sum labeling of $C_4 \times P_4$

Theorem 2.7. The graph $P_n \odot K_m^c$ is an edge pair sum graph if m is odd.

Proof. Let $V(P_n \odot K_m^c) = \{u_i, v_{ij} : 1 \le i \le n, 1 \le j \le m\}$ and $E(P_n \odot K_m^c) = \{e_i = u_i u_{i+1} : 1 \le i \le (n-1), e_{ij} = u_i v_{ij} : 1 \le i \le n, 1 \le j \le m\}$ are the vertices and edges of the graph $P_n \odot K_m^c$. Define $f : (E(P_n \odot K_m^c)) \rightarrow \{\pm 1, \pm 2, \pm 3, ..., \pm (mn+n-1)\}$ as follows:

Case (i) n is even.

Subcase (a). n = 2.

Define $f(e_1) = 2$, $f(e_{11}) = 1$, $f(e_{21}) = -3$, for $1 \le i \le 2$ and $2 \le j \le \frac{m+1}{2}$ $f(e_{ij}) = 2 + \frac{m-1}{2}(i-1) + j = -f(e_i \frac{m-1+2j}{2})$. For each edge label f, the induced vertex label f^* is calculated as follows: $f^*(u_1) = 3 = -f^*(v_{21})$, $f^*(u_2) = -1 = -f^*(v_{11})$, for $1 \le i \le 2$ and $2 \le j \le \frac{m+1}{2}$ $f^*(v_{ij}) = 2 + \frac{m-1}{2}(i-1) + j = -f^*(v_i \frac{m-1+2j}{2})$. $f^*(V(P_n \odot K_m^c)) = \{\pm 1, \pm 3\} \bigcup \{\pm (2 + \frac{m-1}{2}(i-1) + j) | 1 \le i \le 2, 2 \le j \le \frac{m+1}{2}\}$. Hence f is an edge pair sum labeling. Subcase(b). n = 4.

Define $f(e_1) = -2$, $f(e_2) = -1$, $f(e_3) = 3$, $f(e_{11}) = 4 = -f(e_{31})$, $f(e_{21}) = 6 = -f(e_{41})$ and for $1 \le i \le n$ and $2 \le j \le \frac{m+1}{2} f(e_{ij}) = 5 + \frac{m-1}{2}(i-1) + j = -f(e_i \frac{m-1+2j}{2})$. For each edge label f, the induced vertex label f^* is

calculated as follows: $f^*(u_1) = 2 = -f^*(u_3), f^*(u_2) = 3 = -f^*(u_4), f^*(v_{11}) = 4 = -f^*(v_{31}), f^*(v_{21}) = 6 = -f^*(v_{41})$ and for $1 \le i \le n$ and $2 \le j \le \frac{m+1}{2}$ $f^*(v_{ij}) = 5 + \frac{m-1}{2}(i-1) + j = -f^*(v_i\frac{m-1+2j}{2})$. Then we get $f^*(V(P_n \odot K_m^c)) = \{\pm 2, \pm 3, \pm 4, \pm 6\} \bigcup \{\pm (5 + \frac{m-1}{2}(i-1) + j) | 1 \le i \le n, 2 \le j \le \frac{m+1}{2}\}$. Hence f is an edge pair sum labeling. The example for the edge pair sum graph labeling of $P_n \odot K_m^c$ for n = 4 and m = 3 is shown in Figure 9.

Figure 9. Edge pair sum labeling of $P_4 \odot K_3^c$

Subcase(c). $n \ge 6$.

Define $f(e_{\frac{n}{2}-1}) = -2$, $f(e_{\frac{n}{2}}) = -1$, $f(e_{\frac{n}{2}+1}) = 3$, for $1 \le i \le \frac{n}{2} - 2$ $f(e_i) = n + 1 - 2i$, for $\frac{n}{2} + 2 \le i \le n - 1$ $f(e_i) = n - 1 - 2i$, for $1 \le i \le \frac{n}{2} - 2$ $f(e_{i1}) = n + 2i - 1$, $f(e_{\frac{n}{2}-1,1}) = 2n - 2 = -f(e_{\frac{n}{2}1})$, $f(e_{\frac{n}{2}+1,1}) = 4 = -f(e_{\frac{n}{2}+2,1})$, for $1 \le i \le \frac{n}{2} - 2$ $f(e_{\frac{n}{2}+2+i,1}) = -(2n - 2i - 3)$ and for $1 \le i \le n$ and $1 \le j \le \frac{m-1}{2}$ $f(e_{i,j+1}) = (3n - 1) + \frac{m-1}{2}(i - 1) + j = -f(e_{i,\frac{m+1}{2}+j})$. For each edge label f, the induced vertex label f^* is calculated as follows: $f^*(u_1) = 2n = -f^*(u_n)$, $f^*(u_{\frac{n}{2}-1}) = 2n + 1 = -f^*(u_{\frac{n}{2}})$, $f^*(u_{\frac{n}{2}+1}) = 6 = -f^*(u_{\frac{n}{2}+2})$, for $2 \le i \le \frac{n}{2} - 2$ $f^*(u_i) = 3n - (2i - 3)$, for $1 \le i \le \frac{n}{2} - 3$ $f^*(u_{\frac{n}{2}+2+i}) = -(2n + 5 + 2i)$, for $1 \le i \le \frac{n}{2} - 2$ $f^*(v_{i1}) = n + 2i - 1$, $f^*(v_{\frac{n}{2}+1,1}) = 4 = -f^*(v_{\frac{n}{2}+2,1})$, $f^*(v_{\frac{n}{2}-1,1}) = 2n - 2 = -f^*(v_{\frac{n}{2},1})$, for $1 \le i \le \frac{n}{2} - 2$ $f^*(v_{i1}) = n + 2i - 1$, $f^*(v_{\frac{n}{2}+1,1}) = 4 = -f^*(v_{\frac{n}{2}+2,1})$, $f^*(v_{\frac{n}{2}-1,1}) = 2n - 2 = -f^*(v_{\frac{n}{2},1})$, for $1 \le i \le \frac{n}{2} - 2$ $f^*(v_{i1}) = n + 2i - 1$, $f^*(v_{\frac{n}{2}+1,1}) = 4 = -f^*(v_{\frac{n}{2}+2,1})$, $f^*(v_{\frac{n}{2}-1,1}) = 2n - 2 = -f^*(v_{\frac{n}{2},1})$, for $1 \le i \le \frac{n}{2} - 2$ $f^*(v_{\frac{n}{2}+2+i,1}) = -(2n - 2i - 3)$ and for $1 \le i \le n$ and $1 \le j \le \frac{m-1}{2}$ $f^*(v_{i,j+1}) = (3n - 1) + (\frac{m-1}{2})(i - 1) + j = -f^*(v_{i,\frac{m+1}{2}+j})$. From the above labeling we get $f^*(V((P_n \odot K_m^c))) = \{\pm 4, \pm 6, \pm (2n - 2), \pm 2n, \pm (2n + 1), \pm (n + 3), \pm (n + 5), \dots, \pm (2n - 5), \pm (3n - 1), \pm (3n - 3), \pm (3n - 5), \dots, \pm (2n + 7)\} \bigcup \{\pm ((3n - 1) + (\frac{m-1}{2})(i - 1) + j) | 1 \le i \le n, 1 \le j \le \frac{m-1}{2}\}$. Hence $P_n \odot K_m^c$ is an edge pair sum graph.

Case (ii) n is odd.

Subcase (a). n = 3.

Define $f(e_1) = -4$, $f(e_2) = -2 = -f(e_{11})$, $f(e_{21}) = 3$ and $f(e_{31}) = 1$, for $1 \le i \le n$ and $2 \le j \le \frac{m+1}{2} f(e_{ij}) = 3 + \frac{m-1}{2}(i-1) + j = -f(e_{i,\frac{m-1}{2}+j})$. For each edge label f, the induced vertex label f^* is calculated as follows: $f^*(u_1) = -2 = -f^*(v_{11})$, $f^*(u_2) = -3 = -f^*(v_{21})$, $f^*(u_3) = -1 = -f^*(v_{31})$, for $1 \le i \le n$ and $2 \le j \le \frac{m+1}{2} f^*(v_{ij}) = 3 + \frac{m-1}{2}(i-1) + j = -f^*(v_{i,\frac{m-1}{2}+j})$. $f^*(V(P_n \odot K_m^c)) = \{\pm 1, \pm 2, \pm 3\} \bigcup \{\pm (3 + \frac{m-1}{2}(i-1) + j) | 1 \le i \le n, 2 \le j \le \frac{m+1}{2}\}$. Hence f is an edge pair sum labeling. The example for the edge pair sum graph labeling of $P_n \odot K_m^c$ for n = 3 and m = 3 is shown in Figure 10.

Figure 10. Edge pair sum labeling of $P_3 \odot K_3^c$

Subcase(b). $n \ge 5$.

Define $f(e_{\frac{n-1}{2}}) = 2$, $f(e_{\frac{n+1}{2}}) = 1$, $f(e_{\frac{n-1}{2},1}) = -4 = -f(e_{\frac{n+1}{2},1})$, $f(e_{\frac{n+3}{2},1}) = -3$, $f(e_{11}) = -(n+2) = f(e_{n1})$, for $1 \le i \le \frac{n-3}{2}$, $f(e_i) = -(n+2-2i)$, for $\frac{n+3}{2} \le i \le n-1$, $f(e_i) = (-n+2+2i)$, for $2 \le i \le \frac{n-3}{2}$, $f(e_{i1}) = -(n+2i-1)$, for $1 \le i \le \frac{n-5}{2}$, $f(e_{\frac{n+3}{2}+i,1}) = 2(n-1-i)$ and for $1 \le i \le n$ and $1 \le j \le \frac{m-1}{2}$, $f(e_{i,1+j}) = n+2 + (m-1)(i-1) + 2j = -f(e_{i,\frac{m+1}{2}+j})$. For

each edge label f, the induced vertex label f^* is calculated as follows: $f^*(u_1) = -(2n+2) = -f^*(u_n), f^*(v_{11}) = -(n+2), f^*(u_{\frac{n-1}{2}}) = -7 = -f^*(u_{\frac{n+1}{2}}), f^*(u_{\frac{n+3}{2}}) = 3 = -f^*(v_{\frac{n+3}{2}}), \text{ for } 1 \le i \le \frac{n-5}{2} f^*(u_{1+i}) = -(3n+3-2i), \text{ for } 1 \le i \le \frac{n-5}{2} f^*(u_{\frac{n+3}{2}+i}) = (3n+3-2i), \text{ for } 2 \le i \le \frac{n-3}{2} f^*(v_{11}) = -(n+2i-1), f^*(v_{\frac{n-1}{2}}) = -4 = -f^*(v_{\frac{n+1}{2}}), f^*(v_{n1}) = n+2, \text{ for } 1 \le i \le \frac{n-5}{2} f^*(v_{\frac{n+3}{2}+i}) = 2(n-1-i), \text{ for } 1 \le i \le n \text{ and } 1 \le j \le \frac{m-1}{2} f^*(v_{i,1+j}) = n+2 + (m-1)(i-1) + 2j = -f^*(v_{\frac{m+1}{2}+j}).$ From the above labeling we get $f^*(V((P_n \odot K_m^c)) = \{\pm 3, \pm 4, \pm 7, \pm (2n+2), \pm 2n, \pm (3n+1), \pm (3n-1), \pm (3n-3), \dots, \pm (2n+8), \pm (2n-4), \pm (2n-6), \pm (2n-8), \dots, \pm (n+3)\} \bigcup \{\pm ((n+2) + (m-1)(i-1) + 2j) | 1 \le i \le n, 1 \le j \le \frac{m-1}{2}\}.$ Hence $P_n \odot K_m^c$ is an edge pair sum graph.

Remark 2.8. Let G(p,q) is an edge pair sum graph. Then $G \odot K_n^c$ is also an edge pair sum graph if n is even. This is already proved in [5].

References

- [1] J.A.Gallian, A dynamic survey of graph labeling, Electronic J.Combin., (2013).
- [2] F.Harary, Graph theory, Addison Wesley, Massachusetts, (1972).
- [3] R.Ponraj and J.V.X.Parthipan, Pair Sum Labeling of Graphs, The Journal of Indian Academy of Mathematics, 32(2)(2010), 587-595.
- [4] K.Manimegalai and K.Thirusangu, Pair Sum Labeling of some Special Graphs, International Journal of Computer Applications, 69(8)(2013), 34-38.
- [5] P.Jeyanthi and T.Saratha Devi, Edge pair sum labeling, Journal of Scientific Research, 5(3)(2013), 457-467.
- [6] P.Jeyanthi and T.Saratha Devi, On edge pair sum labeling of graphs, International Journal of Mathematics Trends and Technology, 7(2)(2014), 106-113.
- [7] P.Jeyanthi and T.Saratha Devi, Edge pair sum labeling of spider graph, Journal of Algorithms and Computation, 45(1)(2014), 25-34.
- [8] P.Jeyanthi and T.Saratha Devi, Some edge pair sum graph, Journal of Discrete Mathematical Science and Cryptography, 18(5)(2015), 481-493.
- [9] P.Jeyanthi and T.Saratha Devi, Gee-Choon Lau, Some results of edge pair sum labeling, Electronic Notes Discrete Mathematics, 48(2015), 169-173.
- [10] P.Jeyanthi and T.Saratha Devi, Gee-Choon Lau, Edge pair sum labeling of WT(n:k) Tree, Global Journal of Pure and Applied Mathematics, 11(3)(2015), 1523-1539.
- [11] P.Jeyanthi and T.Saratha Devi, Edge pair sum labeling of some cartesian product graphs, Discrete Mathematics, Algorithms and Applications, (to appear).
- [12] P.Jeyanthi and T.Saratha Devi, Edge pair sum labeling of some cycle related graphs, (preprint).