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1. Introduction

The study of q-difference equations, initiated at the beginning of the twentieth century in intensive works especially by

Jackson [1], Carmichael [2] and other authors such as Poincare, Picard, Ramanujan ([3], [4]), is a very interesting field in

difference equations. In the last few decades, it has evolved into a multidisciplinary subject and plays an important role

in several fields of physics such as cosmic strings and black holes [5], conformal quantum mechanics [6], nuclear and high

energy physics [7].

In 1984, Jerzy Popenda [8] introduced a particular type of difference operator ∆α defined on u(k) as ∆αu(k) = u(k + 1)−

αu(k). In 1989, K.S.Miller and Ross [9] introduced the discrete analogue of the Riemann-Liouville fractional derivative

and proved some properties of the fractional derivative operator. Recently, G.Britto Antony Xavier et al. [10] have got the

solution of the generalized q-difference equation ∆t
qv(k) = u(k), k ∈ (−∞,∞) and q 6= 1, in the form

∆−tq u(k)
∣∣∣∣∣∣k

k
qm

=

m∑
(r)1→t

u
(
k

t∏
i=1

q−ri
)
.

In [11], the authors introduced q-alpha difference operator, which is defined as

∆
(q)α

u(k) = u(qk)− αu(k), (1)

and then extended to generalized higher oredr q-alpha difference equation

∆
(q1)α1

(
∆

(q2)α2

(
· · · ∆

(qt)αt

(
v(k)

)
· · ·
))

= u(k), k ∈ (−∞,∞), (2)
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and obtained formula for finite q-alpha multi-series and finite higher order q-alpha series. However, finding the solution of

two-dimensional q-difference equation is still in the initial stage and many aspects of this theory need to be explored. The

main aim of this paper is to generate generalized Fibonacci sequence using two-dimensional q-difference operator.

The article proceeds as follows: Section 2 presents basic definitions and preliminary results. In Section 3, we show how to

find finite solution of two-dimensional q-difference equation and how to generate Fibonacci sequence from that solution, In

Section 4, we derive multi-series solution and finally in Section 5, we derive generalized product formula.

2. Preliminaries

Before stating and proving our results, we present some notations, basic definitions and preliminary results which will be

used for the subsequent discussions. Let u(k) be a real valued function on (−∞,∞), α and q are non-zero reals and m is a

positive integer. For simplicity, we use the following notations:

(i)
m∑

(r)1→i

=
m1∑
r1=0

m2∑
r2=0

· · ·
mi∑
ri=0

; (ii) ∆−1

q1→t

= ∆−1
q1 ∆−1

q2 ∆−1
q3 · · ·∆

−1
qt and

(iii) ∆−1

q1→t

(a1, a2)

= ∆−1
q1

(a1, a2)

∆−1
q2

(a1, a2)

· · · ∆−1
qt

(a1, a2)

.

Definition 2.1. Let a1 and a2 be fixed reals, k ∈ (−∞,∞). Then the two-dimensional q-difference operator ∆q
(a1,a2)

is defined

as

∆q
(a1,a2)

u(k) = u(q2k)− a1u(qk)− a2u(k) (3)

and its inverse, denoted by ∆−1
q

(a1,a2)

, is defined as below:

if ∆q
(a1,a2)

v(k) = u(k), then v(k) = ∆−1
q

(a1,a2)

u(k). (4)

Remark 2.2. When a1 = α and a2 = 0, replacing k by k/q in (3), we get (1).

Lemma 2.3. If q2n − a1qn − a2 6= 0 for n = 0, 1, 2, · · · , then

∆−1
q

(a1,a2)

kn =
kn

q2n − a1qn − a2
and ∆−1

q
(a1,a2)

(1) =
1

1− a1 − a2
. (5)

Proof. The proof follows by replacing u(k) by kn and k0 in (3) and using (4).

Lemma 2.4. Let k ∈ (0,∞) and 1− a1 − a2 6= 0. Then we have

∆−1
q

(a1,a2)

log k =
log k

1− a1 − a2
− (2− a1) log q

(1− a1 − a2)2
. (6)

Proof. From (3), replacing u(k) by log k, we get

∆q
(a1,a2)

log k = (2− a1) log q + (1− a1 − a2) log k, (7)

which yields (6) by using the Lemma 2.3.

Lemma 2.5. Let k ∈ (−∞,∞) and q 6= 0. Then we have

∆2

(q)α
u(k) = ∆q

(2α,−α2)

u(k). (8)

Proof. From (1), ∆2

(q)α
u(k) = u(q2k)− 2αu(qk) + α2u(k).

Hence the proof completes from the above equation and by putting a1 = 2α and a2 = −α2 in (3).
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3. Fibonacci Sequence Using Two-dimensional q-difference Operator

In this section, we introduce two dimensional Fibonacci sequence and its sum.

Definition 3.1. For each pair (a1, a2) ∈ R2, the two-dimensional Fibonacci sequence is defined as

F(a1,a2) = {Fn}∞n=0 , (9)

where F0 = 1, F1 = a1 and Fn = a1Fn−1 + a2Fn−2 for n ≥ 2.

When a1 = a2 = 1, (9) becomes the Fibonacci sequence.

Example 3.2. F(2,−3) = {1, 2, 1,−4,−11, · · · }

Theorem 3.3 (Two-Dimensional Finite q-Series). Let Fn ∈ F(a1,a2) and

k ∈ (−∞,∞). Then we have

m∑
r=0

Fru
( k

qr+2

)
= ∆−1

q
(a1,a2)

u(k)− Fm+1 ∆−1
q

(a1,a2)

u
( k

qm+1

)
− a2Fm ∆−1

q
(a1,a2)

u
( k

qm+2

)
, (10)

Proof. Taking ∆−1
q

(a1,a2)

u(k) = v(k), ∆q
(a1,a2)

v(k) = u(k) and by (3), we write

v(q2k) = u(k) + a1v(qk) + a2v(k). (11)

Substituting the value of v(qk) in (11), we get

v(q2k) = u(k) + a1u
(k
q

)
+ (a21 + a2)v(k) + a1a2v

(k
q

)
. (12)

Again putting the value of v(k) in (12), we obtain

v(q2k) = u(k) + a1u
(k
q

)
+ (a21 + a2)u

( k
q2

)
+
{
a1(a21 + a2) + a1a2

}
v
(k
q

)

+ a2(a21 + a2)v
( k
q2

)
. (13)

Since Fn ∈ F(a1,a2), we get

v(q2k) = F0u(k) + F1u
(k
q

)
+ F2u

( k
q2

)
+ F3v

(k
q

)
+ a2F2v

( k
q2

)
. (14)

Proceeding like this, we arrive

v(q2k) = F0u(k) + F1u
(k
q

)
+ · · ·+ Fmu

( k

qm

)
+ Fm+1v

( k

qm−1

)
+ a2Fmv

( k

qm

)
, (15)

which completes the proof of the theorem.

Corollary 3.4. Assume that a1 + a2 6= 1 and Fn ∈ F(a1,a2) . Then we have

m∑
r=0

Fr =
1− Fm+1 − a2Fm

1− a1 − a2
.

Proof. The proof is trivial by replacing u(k) by k0 in (10).
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4. Two-Dimensional q Multi-Series

In this section, we obtain formula for sum of q-multi series.

Theorem 4.1. Let 0 6= qi, k ∈ (−∞,∞) and Fn ∈ F(a1,a2). Then

t−1∑
i=1

m∑
(r)1→i

i∏
j=1

Frj ∆−1

qi+1→t

(a1, a2 )

{
Fmi+1+1 u

( ∏t−1
p=i+1 q

2
pk∏i

p=1 q
rp
p q

mi+1+1

i+1

)

+a2Fmi+1u

( ∏t−1
p=i+1 q

2
pk∏i

p=1 q
rp
p q

mi+1+2

i+1

)}
+

m∑
(r)1→t

t∏
i=1

Friu

(
k∏t

i=1 q
ri
i q

2
t

)

= ∆−1

q1→t

(a1, a2)

{
u

(
t−1∏
p=1

q2pk

)
− Fm1+1u

(∏t−1
p=1 q

2
pk

qm1+1
1

)
− a2Fm1u

(∏t−1
p=1 q

2
pk

qm1+2
1

)}
. (16)

Proof. Replacing q,m, r by q2,m2, r2 in (10), we get

m2∑
r2=0

Fr2u
( k

qr2+2
2

)
= ∆−1

q2
(a1,a2)

u(k)− Fm2+1 ∆−1
q2

(a1,a2)

u
( k

qm2+1
2

)
− a2Fm2 ∆−1

q2
(a1,a2)

u
( k

qm2+2
2

)
. (17)

Replacing k by k/qr11 and multiplying by Fr1 for r1 = 1, 2, · · · ,m1 in (17), and using (10) after summing the resultant

expressions with (17), we arrive

m1∑
r1=0

Fr1

m2∑
r2=0

Fr2u
( k

qr11 q
r2+2
2

)
= ∆−1

q1
(a1,a2)

∆−1
q2

(a1,a2)

u(q21k)− Fm1+1 ∆−1
q1

(a1,a2)

∆−1
q2

(a1,a2)

u
( q21k

qm1+1
1

)

−a2Fm1 ∆−1
q1

(a1,a2)

∆−1
q2

(a1,a2)

u
( q21k

qm1+2
1

)
−

m1∑
r1=0

Fr1Fm2+1 ∆−1
q2

(a1,a2)

u
( k

qr11 q
m2+1
2

)

−
m1∑
r1=0

a2Fr1Fm2 ∆−1
q2

(a1,a2)

u
( k

qr11 q
m2+2
2

)
. (18)

Again replacing q1, q2, r1, r2,m1,m2 by q2, q3, r2, r3,m2,m3 in (18), then k by k/qr11 and multiplying by Fr1 for r1 =

1, 2, · · · ,m1 and then summing all the resultant expressions, we arrive

m1∑
r1=0

Fr1

m2∑
r2=0

Fr2

m3∑
r3=0

Fr3u
( k

qr11 q
r2
2 q

r3+2
3

)
=

m1∑
r1=0

Fr1

{
∆−1

q2
(a1,a2)

∆−1
q3

(a1,a2)

u(q22k)

−Fm2+1 ∆−1
q2

(a1,a2)

∆−1
q3

(a1,a2)

u
( q22k

qm2+1
2

)
− a2Fm2 ∆−1

q2
(a1,a2)

∆−1
q3

(a1,a2)

u
( q22k

qm2+2
2

)

−
m2∑
r2=0

Fr2Fm3+1 ∆−1
q3

(a1,a2)

u
( k

qr22 q
m3+1
3

)
−

m2∑
r2=0

a2Fr2Fm3 ∆−1
q3

(a1,a2)

u
( k

qr22 q
m3+2
3

)}
.

By applying (10) on the above equation and repeating the above procedure complete the proof of this theorem.

Corollary 4.2. Let k ∈ (0,∞), q 6= 0 and Fn ∈ F(a1,a2). Then we obtain
m1∑
r1=0

Fr1q
4
3

q2r11 q2m2−2
2

(
Fm2+1 +

a2Fm2

q22

)
∆−1

q2→4

(a1, a2)

k2 +
m∑

(r)1→2

Fr1Fr2
q2r11 q2r22 q2m3−2

3

(
Fm3+1 +

a2Fm3

q23

)
∆−1

q3→4

(a1, a2)

k2 +
m∑

(r)1→3

3∏
i=1

( Fri
q2rii q2m4+2

4

)(
Fm4+1 +

a2Fm4

q24

)

∆−1
q4

(a1,a2)

k2 +

m∑
(r)1→4

4∏
i=1

Fri
q2rii q44

k2 = q41q
4
2q

4
3

(
1− Fm1+1

q2m1+2
1

− a2Fm1

q2m1+4
1

)
∆−1

q1→4

(a1, a2)

k2. (19)
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Proof. The proof is trivial by taking t = 4 and u(k) = k2 in (16).

The following example illustrates (19).

Example 4.3. Taking m1 = m2 = 1,m3 = 2 and m4 = 2 in (19), we get

q43

(
F2 +

a2F1

q22

) 1∑
r1=0

Fr1
q2r11

∆−1

q2→4

(a1, a2)

k2 +
1

q23

(
F3 +

a2F2

q23

) 1∑
r1=0

1∑
r2=0

Fr1Fr2
q2r11 q2r22

∆−1

q3→4

(a1, a2)

k2

+
1

q64

(
F3 +

a2F2

q24

) 1∑
r1=0

1∑
r2=0

2∑
r3=0

3∏
i=1

Fri
q2rii

∆−1
q4

(a1,a2)

k2 +
1∑

r1=0

1∑
r2=0

2∑
r3=0

2∑
r4=0

4∏
i=1

Frik
2

q2rii q44

= q41q
4
2q

4
3

{
1− F2

q41
− a2F1

q61

}
∆−1

q1→4

(a1, a2)

k2. (20)

From (5), we have

∆−1
q4

(a1,a2)

k2 =
k2

q44 − a1q24 − a2
and so ∆−1

q3→4

(a1, a2)

k2 =
k2

(q43 − a1q23 − a2)(q44 − a1q24 − a2)
.

Similarly, we can find ∆−1

q2→4

(a1, a2)

k2 and ∆−1

q1→4

(a1, a2)

k2. Hence (20) bocomes

q43

(
F2 +

a2F1

q22

)(
1 +

F1

q21

)
k2∏4

i=2(q4i − a1q2i − a2)
+

(
F3 +

a2F2

q23

)(
1 +

F1

q21

)(
1 +

F1

q22

)
k2

q23
∏4
i=3(q4i − a1q2i − a2)

+

(
1 +

F1

q21

)(
1 +

F1

q22

)(
1 +

F1

q23
+
F2

q43

)(
F3 +

a2F2

q24

)
k2

q64(q44 − a1q24 − a2)

+
(

1 +
F1

q21

)(
1 +

F1

q22

)(
1 +

F1

q23
+
F2

q43

)(
1 +

F1

q24
+
F2

q44

)k2
q44

= q41q
4
2q

4
3

(
1− F2

q41
− a2F1

q61

) k2∏4
i=1(q4i − a1q2i − a2)

. (21)

5. Discrete Version of Generalized Product Formula

Here, we obtain inverse for product of two functions with respect to ∆q
(a1,a2)

.

Theorem 5.1. For the real valued functions u(k) and v(k), we have

∆−1
q

(a1,a2)

(
u(k)v(k)

)
=

1

a2

{
u(k) ∆−1

q
(0,1)

v(k)− ∆−1
q

(a1,a2)

(
∆q

(a1,a2)

u(k) ∆−1
q

(0,1)

v(q2k)
)

−a1 ∆−1
q

(a1,a2)

(
u(qk) ∆q

(1,0)

(
∆−1

q
(0,1)

v(k)
))}

. (22)

Proof. From (1), we find that

∆q
(a1,a2)

(u(k)w(k)) = ∆q
(a1,a2)

u(k)w(q2k) + a1u(qk)
{
w(q2k)− w(qk)

}

+a2u(k)
{
w(q2k)− w(k)

}
,

which gives ∆q
(a1,a2)

(u(k)w(k)) = ∆q
(a1,a2)

u(k)w(q2k) + a1u(qk) ∆q
(1,0)

w(k) + a2u(k) ∆q
(0,1)

w(k). The proof follows by applying

equation (4) in the above equation and using the relation v(k) = ∆q
(0,1)

w(k).
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Corollary 5.2. For real valued function v(k) and for k > 0, we have

∆−1
q

(a1,a2)

(
v(k) log(k)

)
=

1

a2

{
log(k) ∆−1

q
(0,1)

v(k)− ∆−1
q

(a1,a2)

(
∆q

(a1,a2)

log(k) ∆−1
q

(0,1)

v(q2k)
)

−a1 ∆−1
q

(a1,a2)

(
log(qk) ∆q

(1,0)

(
∆−1

q
(0,1)

v(k)
))}

(23)

Proof. The proof follows by replacing u(k) by log(k) in (22).

Corollary 5.3. Let q, k > 0, 1− a1q − a2q2 6= 0 and Fn ∈ F(a1,a2). Then we have

∆−1
q

(a1,a2)

( 1

k
log(k)

)
=

q2

(1− a1q − a2q2)k

{
log(k)− (2− a1q) log(q)

(1− a1q − a2q2)

}
(24)

and hence(
1− Fm+1q

m+1 − a2Fmqm+2
)

∆−1
q

(a1,a2)

( 1

k
log(k)

)
+
(
(m+ 1)Fm+1q

m+1 + a2(m+ 2)Fmq
m+2

)

× q2 log(q)

(1− a1q − a2q2)k
=

m∑
r=0

Fr
qr+2

k
log
( k

qr+2

)
. (25)

Proof. Taking v(k) = 1/k in (23) results (24). The proof of (25) is obvious from (24) and replacing u(k) by
1

k
log(k) in

(10).

6. Conclusion

In this paper, we have introduced two-dimensional q-difference operator and its equation. The closed form solution found

in this paper agreed very well with the numerical solution of the generalized two-dimensional q-difference equation which

generates various summation formulae on Fibonacci series
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