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1. Introduction and preliminaries

The stability problem for functional equations starts from the famous talk of Ulam and the partial solution of Hyers to

the Ulam’s problem(see [20] and [10]). Thereafter, Rassias [17] attempted to solve the stability problem of the cauchy

additive functional equation in a more general setting. The concept introduced by Rassias’s theorem significantly influenced

a number of mathematicians to investigate the stability problems for various functional equations(see [1], [10],[9], [11], [12],

[13]). Choonkil Park and Dong Yun Shin [2] investigated functional equation in paranormed spaces. Choonkil Park and

Jung Rye Lee [3] proved the Hyers-Ulam stability of an additive-quadratic-cubic-quartic functional equation in paranormed

spaces. Recently, Choonkil Park and Dong Yun Shin [4] prove the Hyers-Ulam stability of Cauchy additive functional

inequality, the Cauchy additive functional equation and quadratic functional equation in matrix paranormed spaces. The

concept of statistical convergence for sequences of real numbers was introduced by Fast [7] and Steinhaus [19] independently,

and since then several generalizations and applications of this notion have been investigated by various authors [8], [14],

[16], [18]. This notion was defined in normed spaces by Kolk [15]. We recall some basic facts concerning Frechet spaces.

Definition 1.1 ([21]). Let X be a vector space. A paranorm P (.) : X → [0,∞) is a function on X such that

(1). P (0) = 0;

(2). P (−x) = P (x);
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(3). P (x+ y) ≤ P (x) + P (y)(triangle inequality);

(4). If {tn} is a sequence of scalars with tn → t and {xn} ⊂ X with P (xn − x) → 0, then P (tnxn − tx) → 0(continuity of

multiplication). The pair (X,P (.)) is called a paranormed space if P (.) is a paranorm on X. The paranorm is called

total if, in addition, we have

(5). P (x) = 0 implies x = 0. A Frechet space is a total and complete paranormed space.

We will use the following notations: Mn(X) is the set of all n × n matrices in X; ej ∈ M1,n(C) is that jth component

is 1 and the other components are zero; Eij ∈ Mn(C) is that (i, j)- component is 1 and the other components are zero;

Eij ⊗ x ∈Mn(X) is that (i, j)- component is x and the other components are zero. For x ∈Mn(X), y ∈Mk(X),

x⊕ y =

x 0

0 y


Note that (X,

{
‖.‖n

}
)is a matrix normed space if and only if (Mn(X), ‖.‖n) is a normed space for each positive integer n and

‖AxB‖k ≤ ‖A‖ ‖B‖ ‖x‖n holds for A ∈ Mk,n, x = [xij ] ∈ Mn(X) and B ∈ Mn,k, and that (X,
{
‖.‖n

}
)is a matrix Banach

space if and only if X is a Banach space and (X,
{
‖.‖n

}
) is a matrix normed space.

Definition 1.2. Let (X,P (.)) be a paranormed space.

(1). (X, {Pn(.)}) is a matrix paranormed space if (Mn(X), Pn(.)) is a paranormed space for each positive integer n,

Pn (Ekl ⊗ x) = P (x) for x ∈ X, and P (xkl) ≤ Pn([xij ]) for [xij ] ∈Mn(X).

(2). (X, {Pn(.)}) is a matrix Frechet space if X is a Frechet space and (X, {Pn(.)}) is a matrix paranormed space.

Let E,F be vector spaces. For a given mapping h : E → F and a given positive integer n, define hn : Mn(E)→Mn(F ) by

hn([xij ]) = [h(xij)]

for all [xij ] ∈Mn(E). Throughout this paper, let (X,
{
‖.‖n

}
) be a matrix Banach space and (Y, {Pn(.)}) be a matrix Frechet

space. Note that P (2x) ≤ 2P (x) for all x ∈ Y .

Lemma 1.3. Let (X, {Pn(.)}) be a matrix paranormed space. Then

(1). P (xkl) ≤ Pn([xij ]) ≤
∑n

i,j=1 P (xij) for [xij ] ∈Mn(X).

(2). lim
s→∞

xs = x if and only if lim
s→∞

xsij = xij for xs = [xsij ], x = [xij ] ∈Mk(X).

Proof.

(1). By Definition 1.2, P (xkl) ≤ Pn([xij ]). Since [xij ] =
∑n

i,j=1Eij ⊗ xij ,

Pn([xij ]) = Pn

(
n∑

i,j=1

Eij ⊗ xij

)
≤

n∑
i,j=1

Pn (Eij ⊗ xij) =

n∑
i,j=1

P (xij).

(2). By (1), we have

P (xskl − xkl) ≤ Pn ([xsij − xij ]) = Pn ([xsij ]− [xij ]) ≤
n∑

i,j=1

P (xsij − xij).

So, we get the result.
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Lemma 1.4. Let (X,
{
‖.‖n

}
) be a matrix normed space. Then

(1). ‖Ekl ⊗ x‖n = ‖x‖ for x ∈ X;

(2). ‖xkl‖ ≤ ‖[xij ]‖n ≤
∑n

i,j=1 ‖xij‖ for [xij ] ∈Mn(X);

(3). lim
n→∞

xn = x if and only if lim
n→∞

xijn = xij for xn = [xijn], x = [xij ] ∈Mk(X).

Proof.

(1). Since Ekl ⊗ x = e∗kxel and ‖e∗k‖ = ‖el‖ = 1, ‖Ekl ⊗ x‖n ≤ ‖x‖ . Since ek (Ekl ⊗ x) e∗l = x, ‖x‖ ≤ ‖Ekl ⊗ x‖n . So,

‖Ekl ⊗ x‖n = ‖x‖ .

(2). Since ekxe
∗
l = xkl and ‖ek‖ = ‖e∗l ‖ = 1, ‖xkl‖ ≤ ‖[xij ]‖n . Since [xij ] =

∑n
i,j=1Eij ⊗ xij ,

‖[xij ]‖n =

∥∥∥∥∥
n∑

i,j=1

Eij ⊗ xij

∥∥∥∥∥
n

≤
n∑

i,j=1

‖Eij ⊗ xij‖n =

n∑
i,j=1

‖xij‖ .

(3). By

‖xkln − xkl‖ ≤ ‖[xijn − xij ]‖n = ‖[xijn]− [xij ]‖n ≤
n∑

i,j=1

‖xijn − xij‖ ,

we get the result.

2. Hyers-Ulam Stability of the Quartic Functional Equation in Matrix
Paranormed Spaces

In this section, we prove the Hyers-Ulam Stability of the quartic functional equation in Matrix Paranormed spaces. For a

mapping f : X → Y , define Df : X2 → Y and Dfn : Mn

(
X2
)
→Mn (Y ) by

Df (a, b) = f(3a+ b) + f(a+ 3b)− 24f(a+ b) + 6f(a+ b)− 64f(a)− 64f(b).

Dfn ([xij ], [yij ]) = fn(3[xij ] + [yij ]) + fn([xij ] + 3[yij ])− 24fn([xij + yij ]) + 6fn([xij + yij ])− 64fn([xij ])− 64fn([yij ]).

for all a, b ∈ X and all x = [xij ], y = [yij ] ∈Mn(X).

Theorem 2.1. Let q, θ be positive real numbers with q > 4. Let f : X → Y be a mapping such that

Pn (Dfn ([xij ], [yij ])) ≤
n∑

i,j=1

θ (‖xij‖q + ‖yij‖q) (1)

for all x = [xij ], y = [yij ] ∈Mn(X). Then there exist a unique quartic mapping Q : X → Y such that

Pn (fn ([xij ])−Qn ([xij ])) ≤
n∑

i.j=1

θ

3q − 81
‖xij‖q (2)

for all x = [xi,j ] ∈Mn(X).
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Proof. Let n = 1 in (1). Then (1) is equivalent to

P (f(3a+ b) + f(a+ 3b)− 24f(a+ b) + 6f(a+ b)− 64f(a)− 64f(b)) ≤ θ (‖a‖q + ‖b‖q) (3)

for all a, b ∈ X. Letting b = 0 in (3), we get P (f(3a)− 81f(a)) ≤ θ ‖a‖q for all a ∈ X. So,

P
(
f(
a

3
)− 81f(

a

32
)
)
≤ 1

3q
θ
∥∥∥a

3

∥∥∥q
≤ 1

3q.3q
θ ‖a‖q

for all a ∈ X. Hence

P
(

81lf(
a

3l
)− 81mf(

a

3m
)
)
≤

m−1∑
j=l

P
(

81jf(
a

3j
)− 81j+1f(

a

3j+1
)
)

≤ 1

3q

m−1∑
j=l

81j

3qj
θ ‖a‖q . (4)

for all a ∈ X and nonnegative integers m and l with m < l. It follows from (4) that the sequence
{

81kf( a
3k

)
}

is a Cauchy

for all a ∈ X. Since Y is complete, the sequence
{

81kf( a
3k

)
}

converges. So, one can define the mapping Q : X → Y by

Q(a) = lim
k→∞

81kf( a
3k

) for all a ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (4), we get

P (f(a)−Q(a)) ≤ θ

3q − 81
‖a‖q (5)

for all a ∈ X. It follows from (3) that

P

(
81k

(
f(

3a+ b

3k
) + f(

a+ 3b

3k
)− 24f(

a+ b

3k
) + 6f(

a− b
3k

)− 64f(
a

3k
)− 64f(

b

3k
)

))
≤ 81kP

(
f(

3a+ b

3k
) + f(

a+ 3b

3k
)− 24f(

a+ b

3k
) + 6f(

a− b
3k

)− 64f(
a

3k
)− 64f(

b

3k
)

)
≤ 81k

3kq
θ (‖a‖q + ‖b‖q)

which tends to zero as k →∞. So,

P (Q(3a+ b) +Q(a+ 3b)− 24Q(a+ b) + 6Q(a+ b)− 64Q(a)− 64Q(b)) = 0

Q(3a+ b) +Q(a+ 3b) = 24Q(a+ b)− 6Q(a− b) + 64Q(a) + 64Q(b)

for all a, b ∈ X. Hence Q : X → Y is quartic. Now let T : X → Y be another quartic mapping satisfying (5). Then we have

P (Q(a)− T (a)) = P
(

81k
(
Q(

a

3k
)− T (

a

3k
)
))

≤ 81k
(
P
(
Q(

a

3k
)− f(

a

3k
)
)

+ P
(
T (

a

3k
)− f(

a

3k
)
))

≤ 2.81k

(3q81)3kq
θ ‖a‖q ,

which tends to zero as k →∞ for all a ∈ X. So, we conclude that Q(a) = T (a) for all a ∈ X. By Lemma (1.3) and (5)

Pn (fn ([xij ])−Qn ([xij ])) ≤
n∑

i,j=1

P (f(xij)−Q(xij))

≤
n∑

i.j=1

θ

3q − 81
‖xij‖q

for all x = [xi,j ] ∈Mn(X). Thus Q : X → Y is unique quartic mapping satisfying (2) as desired.
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Theorem 2.2. Let q, θ be positive real numbers with q < 4. Let f : Y → X be a mapping such that

‖Dfn ([xij ], [yij ])‖n ≤
n∑

i,j=1

θ (P (xij)
q + P (yij)

q) (6)

for all x = [xij ], y = [yij ] ∈Mn(Y ). Then there exist a unique quartic mapping Q : Y → X such that

‖fn[xij ]−Qn[xij ]‖n ≤
n∑

i.j=1

θ

81− 3q
P (xij)

q (7)

for all x = [xi,j ] ∈Mn(Y ).

Proof. Let n = 1 in (6). Then (6) is equivalent to

‖f(3a+ b) + f(a+ 3b)− 24f(a+ b) + 6f(a+ b)− 64f(a)− 64f(b)‖ ≤ θ (P (a)q + P (b)q) (8)

for all a, b ∈ Y . Letting b = 0 in (8), we get ‖f(3a)− 81f(a)‖ ≤ θP (a)q for all a ∈ Y. Similarly,
∥∥f(3a)− 1

81
f(32a)

∥∥ ≤
3q

81
θP (a)q for all a ∈ Y . Hence

∥∥∥∥ 1

81l
f(3la)− 1

81m
f(3ma)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

81j
f(3ja)− 1

81j+1
f(3j+1a)

∥∥∥∥
≤ 1

81

m−1∑
j=l

3qj

81j
θP (a)q (9)

for all a, b ∈ X and nonnegative integers m and l with m > l. It follows from (9) that the sequence
{

1
81k

f(3ka)
}

is Cauchy

for all a ∈ Y. Since X is complete, the sequence
{

1
81k

f(3ka)
}

converges. So, one can define the mapping Q : Y → X by

Q(a) = lim
k→∞

{
1

81k
f(3ka)

}
for all a ∈ Y. Moreover, letting l = 0 and passing the limit m→∞ in (9), we get

‖f(a)−Q(a)‖ ≤ 1

81− 3q
θP (a)q (10)

for all a ∈ Y. It follows from (8) that

∥∥∥∥ 1

81k

(
f(3k(3a+ b)) + f(3k(a+ 3b))− 24f(3k(a+ b))

+6f(3k(a+ b))− 64f(3k(a))− 64f(3k(b))
)∥∥∥ ≤ 1

81k

∥∥∥f(3k(3a+ b)) + f(3k(a+ 3b))− 24f(3k(a+ b))

+6f(3k(a+ b))− 64f(3k(a))− 64f(3k(b))
∥∥∥

≤ 3kq

81k
θ (P (a)q + P (b)q)

which tends to zero as k →∞. So,

‖Q(3a+ b) +Q(a+ 3b)− 24Q(a+ b) + 6Q(a+ b)− 64Q(a)− 64Q(b)‖ = 0

Q(3a+ b) +Q(a+ 3b) = 24Q(a+ b)− 6Q(a− b) + 64Q(a) + 64Q(a)

for all a, b ∈ Y. Hence Q : Y → X is quartic. Now let T : Y → X be another quartic mapping satisfying (10). Then we have

‖Q(a)− T (a)‖ =
1

81k

∥∥∥Q(3ka)− T (3ka)
∥∥∥

≤ 1

81k

(∥∥∥Q(3ka)− f(3ka)
∥∥∥+

∥∥∥T (3ka)− f(3ka)
∥∥∥)

≤ 2.3kq

(81− 3q)81k
θP (a)q
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which tends to zero as k →∞ for all a ∈ Y. So, we conclude that Q(a) = T (a) for all a ∈ Y. By Lemma (1.4) and (10)

‖fn ([xij ])−Qn ([xij ])‖n ≤
n∑

i,j=1

‖f(xij)−Q(xij)‖

≤
n∑

i,j=1

θ

81− 3q
P (xij)

q

for all x = [xij ] ∈Mn(Y ). Thus Q : Y → X is unique quartic mapping satisfying (7) as desired.

References

[1] T.Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Jpn., 2(1950), 64-66.

[2] Choonkil Park and Dong Yun Shin, Functional equations in paranormed spaces, Advances in Difference Equations,

(2012).

[3] Choonkil Park and Jung Rye Lee, An AQCQ-functional equation in paranormed spaces, Advances in Difference Equa-

tions, (2012).

[4] Choonkil Park, Jung Rye Lee and Dong Yun Shin, Functional equations and inequalities in matrix paranormed spaces,

Journal of Inequalities and Applications, 547(2013), 1-13.

[5] P. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, Singapore, (2002).

[6] S.Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Co., Singapore, New

Jersey, London, (2002).

[7] H.Fast, Sur la convergence statistique, Colloq. Math., 2(1951), 241-244.

[8] J.A.Fridy, On statistical convergence Analysis, 5(1985), 301-313.

[9] G.Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal.

Appl., 184(1994), 431-436.

[10] D.H.Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27(1941), 222-224.

[11] D.H.Hyers, G.Isac and T.M.Rassias, Stability of Functional Equations in Several Variables, Birkhuser, Basel, (1998).

[12] D.H.Hyers and Th.M.Rassias, Approximate homomorphisms, Aequationes Math., 44(1992), 125-153.

[13] S.M.Jung, Hyers-Ulam Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, (2011).

[14] S.Karakus, Statistical convergence on probabilistic normed spaces, Math. Commun., 12(2007), 11-23.

[15] E.Kolk, The statistical convergence in Banach spaces, Tartu lik. Toim, 928(1991), 41-52.

[16] M.Mursaleen, λ-Statistical convergence, Math. Slovaca, 50(2000), 111-115.

[17] T.M.Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 72(1978), 297-300.

[18] T.Salat, On the statistically convergent sequences of real numbers, Math. Slovaca, 30(1980), 139-150.

[19] H.Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2(1951), 73-74.

[20] S.M.Ulam, A Collection of the Mathematical Problems, Interscience, New York, (1960).

[21] A.Wilansky, Modern Methods in Topological Vector Space, McGraw-Hill, New York, (1978).

86


	Introduction and preliminaries
	Hyers-Ulam Stability of the Quartic Functional Equation in Matrix Paranormed Spaces
	References

