

International Journal of Mathematics And its Applications

Some Bounds On Co-Isolated Locating Domination Number

Research Article

S.Muthammai¹ and N.Meenal²*

- 1 Department of Mathematics, Government Arts College for Women (Autonomous), Pudukkottai, Tamilnadu, India.
- 2 Department of Mathematics, J.J. College of Arts and Science, Pudukkottai, Tamilnadu, India.
- Abstract: Let G(V, E) be a simple, finite and undirected connected graph. A non-empty set $S \subseteq V$ of a graph G is a dominating set, if every vertex in V S is adjacent to atleast one vertex in S. A dominating set $S \subseteq V$ is called a locating dominating set, if for any two vertices $v, w \in V S$, $N(v) \cap S \neq N(w) \cap S$. A locating dominating set $S \subseteq V$ is called a co-isolated locating dominating set (cild set), if there exists atleast one isolated vertex in $\langle V S \rangle$. The co-isolated locating domination number γ_{cild} is the minimum cardinality of a co-isolated locating dominating set. In this paper, some bounds on co-isolated locating domination number are obtained. Also minimal cild sets are characterized. Further the graphs for which γ_{cild} to be p 2 are obtained.
- Keywords: Dominating set, locating dominating set, co-isolated locating dominating set, co-isolated locating domination number. © JS Publication.

1. Introduction

Let G = (V, E) be a simple graph of order p and size q. For $v \in V(G)$, the neighborhood $N_G(v)$ (or simply N(v)) of v is the set of all vertices adjacent to v in G. If a graph and its complement are connected, then the graph is said to be a doubly connected graph. Let v be a vertex of a connected graph G. The eccentricity $e_G(v)$ of v is the distance to a vertex farthest from v. Thus $e_G(v) = \max\{d_G(u, v) : u \in V(G)\}$. The minimum and maximum eccentricities are the radius and diameter of G, denoted r(G) and diam(G) respectively. The length of a shortest cycle of G is called girth of G and is denoted by g(G). A set S of vertices in a graph G is called an independent set if no two vertices in S are adjacent. The independence number $\beta_0(G)$ is the maximum cardinality of an independent set. The concept of domination in graphs was introduced by Ore [10]. A nonempty set $S \subseteq V(G)$ of a graph G is a dominating set, if every vertex in V(G) - S is adjacent to some vertex in S. A special case of dominating set S is called a locating dominating set. It was defined by D. F. Rall and P. J. Slater in [11]. A dominating set S in a graph G is called a locating dominating set in G, if for any two vertices $v, w \in V(G) - S$, $N_G(v) \cap S, N_G(w) \cap S$ are distinct. The locating domination number of G is defined as the minimum number of vertices in a locating dominating set in G. A locating dominating set $S \subseteq V(G)$ is called a co-isolated locating dominating set, if $\langle V-S \rangle$ contains at least one isolated vertex. The minimum cardinality of a co - isolated locating dominating set is called the co-isolated locating domination number $\gamma_{cild}(G)$. A co-isolated locating dominating set of minimum cardinality is called γ_{cild} - set and a γ_{ld} - set is defined likewise. In this paper, some bounds on co - isolated locating domination number are obtained. Also minimal cild - sets are characterized. Further the graphs for which γ_{cild} to be p-2 are found.

^{*} E-mail: meenal_thillai@rediffmail.com

2. Prior Results

The following results are obtained in [2, 6-9]

Theorem 2.1 ([6]). For any nontrivial simple connected graph G, $1 \le \gamma_{cild}(G) \le p-1$.

Theorem 2.2 ([6]). For any connected graph G, $\gamma_{cild}(G) = 1$ if and only if $G \cong K_2$.

Theorem 2.3 ([7]). For any connected graph G, $\gamma_{cild}(G) = 2$ if and only if G is one of the following graphs

- (a). $P_p(p = 3, 4, 5)$, where P_p is a path on p vertices.
- (b). $C_p(p=3,5)$, where C_p is a cycle on p vertices.
- (c). C_5 with a chord.
- (d). G is the graph obtained by attaching a pendant edge at a vertex of C_3 (or) at a vertex of degree 2 in $K_4 e$.
- (e). G is the graph obtained by attaching a path of length 2 at a vertex of C_3 .
- (f). G is the Bull Graph.

Theorem 2.4 ([6]). For any connected graph G, $\gamma_{cild}(G) = p - 1$ $(p \ge 4)$ if and only if V(G) can be partitioned into two sets X and Y such that one of the sets X and Y say, Y is independent and each vertex in X is adjacent to each in Y and the subgraph $\langle X \rangle$ of G induced by X is one of the following,

- (a). $\langle X \rangle$ is a complete graph
- (b). $\langle X \rangle$ is totally disconnected
- (c). Any two nonadjacent vertices in $V(\langle X \rangle)$ have common neighbors in $\langle X \rangle$.

Theorem 2.5 ([8]). Let G be a doubly connected graph of order $p \ge 5$ such that $diam(G) = diam(\overline{G}) = 2$. Then G contains a co - isolated locating dominating set of cardinality p - 3.

Observation 2.6 ([8]).

- (i). If S is a co-isolated locating dominating set of a connected graph G, then S will not be co-isolated locating dominating set of \bar{G} .
- (ii). Let S be γ_{cild} set of G such that $\langle V S \rangle$ has exactly one isolated vertex, say v. Let there exist a vertex $u \in S$ such that $N(u) \cap S \subset S$ and $N(u) \cap V S = (V S) \{v\}$.
 - (a). If there exists no vertex $w \in V S$ such that $S \subseteq N_G(w)$, then $(S \{u\}) \cup \{v\}$ is a co-isolated locating dominating set of \overline{G} . Hence, $\gamma_{cild}(\overline{G}) \leq \gamma_{cild}(G)$.
 - (b). If there exists a vertex $w \in V S$ such that $S \subseteq N_G(w)$, then $S \cup \{w\}$ is a co-isolated locating dominating set of \bar{G} and hence $\gamma_{cild}(\bar{G}) \leq \gamma_{cild}(G) + 1$.

Lemma 2.7 ([8]). If G is a connected graph, then $\delta(G) \leq \gamma_{cild}(G)$, where $\delta(G)$ is the minimum degree of G.

Theorem 2.8 ([8]). For any doubly connected graph G of order $p \ge 4$,

(a). $4 \leq \gamma_{cild}(G) + \gamma_{cild}\overline{G} \leq 2p - 4$ and

(b). $4 \le \gamma_{cild}(G)$. $\gamma_{cild}(\bar{G}) \le (p-2)^2$.

Theorem 2.9 ([8]). Let G be a doubly connected graph with $p \ge 4$. Then $\gamma_{cild}(G) + \gamma_{cild}(\overline{G}) = 4$ if and only if G is one of the following graphs: P_4 , P_5 , C_5 , C_5 with a chord and the Bull graph, where Bull graph is a graph obtained by attaching exactly one pendant edge at any two vertices of C_3 .

Theorem 2.10 ([8]). Let G = (V, E) be a connected cubic graph with p vertices $(p \ge 4)$. Then $\lfloor \frac{p+1}{3} \rfloor \le \gamma_{cild}(G) \le \frac{p}{2}$.

Theorem 2.11 ([9]). There exists a connected cubic graph G with $\gamma_{cild}(G) = a$, where a is a positive integer and $a \ge 8$.

Theorem 2.12 ([2]). If G is a graph with girth $g(G) \ge 5$, then every maximum independent set S is a minimal locating dominating set. Furthermore, if $\delta(G) \ge 2$, then V - S is a locating dominating set.

Proposition 2.13 ([2]).

- (a). If G is a bipartite graph, then the independence number $\beta_0 \geq \frac{p+l(G)-s(G)}{2}$, where l(G) and s(G) are number of leaves and that of supports of G respectively.
- (b). If G is a bipartite graph with $g(G) \ge 6$ and $\delta(G) \ge 2$, then $\gamma_{cild}(G) \le \frac{p+l(G)-s(G)}{2}$.

3. Main Results

Observation 3.1. Since every co-isolated locating dominating set is a dominating set as well as a locating dominating set, $\gamma(G) \leq \gamma_{ld}(G) \leq \gamma_{cild}(G)$. Equality holds if $G \cong P_5$, a path on five vertices.

Example 3.2. In the graph G given in Figure 3.1, $\{v_5\}$ is a γ – set; $\{v_1, v_2\}$ is a γ_{ld} -set and $\{v_1, v_2, v_3, v_5\}$ is a γ_{cild} -set. Therefore (G) = 1, $\gamma_{ld}(G) = 2$ and $\gamma_{cild}(G) = 4$ and hence $\gamma(G) < \gamma_{ld} < \gamma(G) < \gamma_{cild}(G)$.

Figure 1.

In the following, the connected graphs for which $\gamma_{cild}(G) = p - 2$ are characterized.

Theorem 3.3. Let G be a connected graph with p vertices. Then $\gamma_{cild}(G) = p - 2$ if and only if G is one of the following graphs.

- (a). G is a graph obtained from a complete bipartite graph with bipartition [A, B] by introducing two new nonadjacent vertices u and v such that N(u) = A, N(v) = B and $A \cap B = \emptyset$.
- (b). G is a double star $S_{m,n}$ $(m, n \ge 1)$.
- (c). G is a graph obtained from a complete graph K_{p-1} by joining a new vertex to atmost p-2 vertices of K_{p-1} .
- (d). G is a graph obtained from K_n $(n \ge 3)$ and K_2 by joining a vertex of K_2 to a vertex of K_n and the other vertex of K_2 to n-2 vertices of remaining n-1 vertices of K_n , where n = p-2.

- (e). G is a graph obtained from two complete graphs K_n and K_m $(m, n \ge 2)$ by joining a vertex of K_n to m-1 vertices of K_m and a vertex of K_m to n-2 vertices of K_n .
- (f). G is a graph obtained from a complete bipartite graph with bipartition [A, B] by introducing two new nonadjacent vertices u and v such that $N(u) \supset A$, $N(v) \supset B$ and $N(u) \neq A$ and $N(v) \neq B$.
- (g). G is a graph obtained from the star $K_{1,p-2}$ by joining a new vertex to s pendant vertices of $K_{1,p-2}$, where s < p-2.
- (h). G is a graph obtained from a complete bipartite graph $K_{m,n}$ $(m,n \ge 2 \text{ and } m+n=p-1)$ by joining a new vertex to m+n-1(=p-2) vertices of $K_{m,n}$.
- (i). G is a graph such that V(G) can be partitioned into two sets X and Y such that $\langle X \rangle$ is complete, $\langle Y \rangle$ is a star and each vertex in Y is adjacent to the same |V(G)| 1 vertices of $\langle X \rangle$.
- (j). G is a graph such that V(G) can be partitioned into two sets X and Y such that $\langle X \rangle$ is a star and $\langle Y \rangle$ is complete and each vertex in Y is adjacent to all the vertices of the star except the central vertex.

Proof. Assume $\gamma_{cild}(G) = p - 2$. Then there exists a γ_{cild} set S of G having p - 2 vertices and V - S has 2 vertices. Let $V - S = \{u, v\}$, where $u, v \in V(G)$. Since $\langle V - S \rangle$ contains at least one isolated vertex, $uv \notin E(G)$. Also S is a locating dominating set and hence $N(u) \cap S \neq N(v) \cap S$. Let $N(u) \cap S = A$ and $N(v) \cap S = B$. Therefore $A \neq B$.

Case 1: $A \cap B = \emptyset$

Assume both $\langle A \rangle$ and $\langle B \rangle$ have atleast one edge. Since G is connected, there exists an edge in G joining a vertex of A and a vertex of B. If $\langle A \rangle$ is not complete, then there exists a pair of nonadjacent vertices say a_1, a_2 in $\langle A \rangle$ such that atleast one of a_1, a_2 has degree greater than or equal to 2. Then the set $V(G) - \{u, v, a_1\}$ (or) $V(G) - \{u, v, a_2\}$ is a cild set of G and hence $\gamma_{cild}(G) \leq p - 3$. Therefore $\langle A \rangle$ is complete. Similarly, it can be proved that $\langle B \rangle$ is also complete. That is, if both $\langle A \rangle$ and $\langle B \rangle$ have atleast one edge, then $\langle A \rangle$ and $\langle B \rangle$ are complete. Therefore, one of the following cases arises.

- (a). Both $\langle A \rangle$ and $\langle B \rangle$ are complete.
- (b). Both $\langle A \rangle$ and $\langle B \rangle$ are totally disconnected.
- (c). One of $\langle A \rangle$ and $\langle B \rangle$ is complete and the other is totally disconnected.
- Let e = (a, b) $(a \in A, b \in B)$ be an edge in G.

Subcase 1.a: Both $\langle A \rangle$ and $\langle B \rangle$ are complete

Assume each vertex in $V(G) - \{u, v\}$ is adjacent to either u (or) v. If |A| = |B| = 1, then $G \cong P_4$ and $\gamma_{cild}(G) = 2$. Assume one of A and B has atleast two vertices. Let |A| = 1 and $|B| \ge 2$ and $N(u) = \{a_1\}, N(v) = \{b_1, b_2\}$. Then $V(G) - \{u, b_1, b_2\}$ is a cild set of G. Assume $|A| \ge 2$ and $|B| \ge 2$. Consider the set $S_1 = V(G) - \{u, v, a\}$. Then $V - S_1 = \{u, v, a\}$. In $\langle V - S_1 \rangle$, v is an isolated vertex and $N(u) \cap S = A$; $N(v) \cap S = B$ and $A \cap B = \emptyset$. Therefore, S_1 is a cild set of G and hence $\gamma_{cild}(G) \le p - 3$. Similarly, if there exists a vertex in $V(G) - \{u, v\}$ adjacent to neither u nor v, then also there is a cild set of G having p - 3 vertices.

Subcase 1.b: Both $\langle A \rangle$ and $\langle B \rangle$ are totally disconnected

Let each vertex in $V(G) - \{u, v\}$ be adjacent to either u or v. Assume one of A and B has atleast two vertices. Let A have atleast two vertices. If there exist vertices $a_1 \in A$, $a_2 \in B$ such that $a_1b_1 \notin E(G)$, then the set $S_2 = V(G) - \{a, a_1, b_1\}$ is a cild set of G, since $V(G) - S_2 = \{a, a_1, b_1\}$ is independent, $N(a) \cap S_2 = \{u, b\}$, $N(a_1) \cap S_2 = \{u\}$ and $N(b_1) \cap S_2 = \{v\}$. Therefore $\gamma_{cild}(G) \leq p-3$. Hence each vertex in A is adjacent to each in B. That is, $\langle A \cup B \rangle$ is a complete bipartite graph. Therefore G is a graph obtained from a complete bipartite graph with bipartition [A, B] by introducing two new vertices u and v such that N(u) = A, N(v) = B and $A \cap B = \emptyset$. Let there exist a vertex in $V(G) - \{u, v\}$ adjacent to neither u nor v. Assume $|A| \ge 1$ and $|B| \ge 2$. Let $w \in V(G) - \{u, v\}$ be adjacent to neither u nor v. Then w is adjacent to atleast one of the vertices in $N(u) \cup N(v)$. Let $deg_G(w) = 1$ and let w be adjacent to the vertex say a_1 in N(u). Let $b_1, b_2 \in N(v)$. Then the set $S_3 = \{w, a_1, b_1\}$ is a cild set of G and u is isolated in $V(G) - S_3$.

Similarly is the case when $deg_G(w) \ge 2$. Consider |A| = 1 and |B| = 1. Let a_1, b_1 be adjacent to a vertex of N(u) and N(v) respectively and if a_1 is adjacent to b_1 , then there exists a cildset of cardinality p-3. Therefore there exist pendant vertices in G adjavent to vertices in N(u) and N(v). If G is a star, then $\gamma_{cild}(G) = p-1$. Therefore, G is a double star.

Subcase 1.c: $\langle A \rangle$ is complete and $\langle B \rangle$ is totally disconnected.

Here also the set $V(G) - \{u, v, a\}$ is a cild-set of G and hence $\gamma_{cild}(G) \leq p - 3$.

Case 2:
$$A \cap B \neq \emptyset$$

Without loss of generality, the sets A and B $(A \cap B)$ are considered. As in Case(1), one of the following cases arise.

- (a). Both $\langle A \rangle$ and $\langle B (A \cap B) \rangle$ are complete.
- (b). Both $\langle A \rangle$ and $\langle B (A \cap B) \rangle$ are totally disconnected.
- (c). $\langle A \rangle$ is complete and $\langle B (A \cap B) \rangle$ is independent.
- (d). $\langle A \rangle$ is independent and $\langle B (A \cap B) \rangle$ is complete.

Subcase 2.a: Both $\langle A \rangle$ and $\langle B - (A \cap B) \rangle$ are complete.

Assume $B - (A \cap B) \neq \emptyset$. Let $b_1 \in B - (A \cap B)$ be not adjacent to a vertex, say $a_1 \in A \cap B$. Then $V(G) - \{a_1, b_1, u\}$ is a cild-set of G and hence $\gamma_{cild}(G) \leq p - 3$. Therefore each vertex in $B - (A \cap B)$ is adjacent to each in $A \cap B$. Similarly v is adjacent to all the vertices of $A - (A \cap B)$. That is, v is adjacent to all the vertices of A. In this case G is a graph obtained from a complete graph K_{p-1} by joining a new vertex to atmost p - 2 vertices of K_{p-1} . Assume $B - (A \cap B) = \emptyset$. Then $B = A \cap B$. That is, u is adjacent to all the vertices of N(u)(=B). Since $A \neq B$, $A \cap B \neq A$. That is v is not adjacent to atleast one vertex of N(u)(=A). Therefore, $|A| \geq 2$, $|B| \geq 1$. Assume $|A| \geq 2$ and |B| = 1. Let $|B| = b_1$. Then u is adjacent to b_1 if one of the following conditions holds

- (i). v is adjacent to |A| 1 vertices of A(=N(u))
- (ii). v is adjacent to t vertices of A(=N(u)) where $1 \le t \le |A| 2$ and each vertex in A is adjacent to b_1 .

If (i) holds, then G is a graph obtained from $K_n (n \ge 2)$ and K_2 by joining a vertex of K_2 to a vertex of K_n and the other vertex of K_2 to n-2 vertices of remaining n-1 vertices of $K_n (n = p - 2)$.

If (ii) holds, then G is a graph obtained from K_{p-1} by joining a new vertex of atmost p-2 vertices of K_{p-1} . Let $|A| \ge 2$, $|B| \ge 2$. As above one of the following holds

(iii). v is adjacent to |A| - 1 vertices of A.

(iv). v is adjacent to t vertices of A where $1 \le t \le |A| - 2$ and each vertex in A is adjacent to each in B.

If (iii) holds, then G is a graph obtained from complete graphs K_n and K_m $(m, n \ge 2)$ by joining a vertex of K_n to m-1 vertices of K_m and a vertex of K_m to n-2 vertices of K_n .

If (iv) holds, then G is a graph obtained from K_{p-1} by joining a new vertex to atmost p-2 vertices of K_{p-1} . Subcase 2.b: Both $\langle A \rangle$ and $\langle B(A \cap B) \rangle$ are totally disconnected. Assume $B - (A \cap B) \neq \emptyset$. Here also each vertex in $B - (A \cap B)$ is adjacent to each in A and v is adjacent to each vertex in A. Therefore G is a graph obtained from a complete bipartite graph with bipartition [A, B] by introducing two new nonadjacent vertices u and v such that $N(u) \supset A$, $N(v) \supset B$ and $N(u) \neq A$, $N(v) \neq B$. Assume $B - (A \cap B) = \emptyset$. Then $B = A \cap B$. That is, u is adjacent to all the vertices of N(v). Then either G is a graph obtained from the star $K_{1,p-2}$ by joining a new vertex to s pendant vertices of $K_{1,p-2}$ where $s and this graph is denoted by <math>K_{1,p-2}^s$ ($s) (or) G is a graph obtained from a complete bipartite graph <math>K_{m,n}$ ($m, n \ge 2$ and m+n=p-1) by joining a new vertex to m+n-1(=p-2) pendant vertices of $K_{m,n}$.

Subcase 2.c: Either $\langle A \rangle$ is complete and $\langle B - (A \cap B) \rangle$ is totally disconnected (or) $\langle A \rangle$ is totally disconnected and $\langle B - (A \cap B) \rangle$ is complete.

Assume $B - (A \cap B) \neq \emptyset$. In both the cases, each vertex in $B - (A \cap B)$ is adjacent to each in A and v is adjacent to each vertex in A. Then either G is a graph in which V(G) can be partitioned into two sets X and Y such that $\langle X \rangle$ is complete, $\langle Y \rangle$ is a star and each vertex in Y is adjacent to the same |V(X)| - 1 vertices of $\langle X \rangle$ (or) G is a graph in which V(G) can be partitioned into two sets X and Y such that $\langle X \rangle$ is a star and $\langle Y \rangle$ is complete and each vertex in Y is adjacent to all the vertices of the star except the central vertex. From all the cases, it is concluded that G is one of the graphs given in the theorem. Conversely if G is one of the graphs given in the theorem, then $\gamma_{cild}(G) = p - 2$.

In the following, the minimal cild-sets are characterized.

Theorem 3.4. A cild-set S of a connected graph G is minimal if and only if each vertex $v \in S$ satisfies one of the following conditions,

- (i). v is an isolated vertex of S.
- (ii). There exists a vertex $u \in V S$ such that $N(u) \cap S = \{v\}$
- (iii). v is adjacent to all the isolated vertices in V S.
- (iv). there exists a vertex $u \in V S$ such that both u and v have common neighbor in S.

Proof. Let S be a minimal cild-set of G. Then for every $v \in S, S - \{v\}$ is not a cild-set of G. Then one of the following conditions holds

- (a). $S \{v\}$ is not a dominating set
- (b). $V (S \{v\})$ does not contain any isolated vertices.
- (c). Any two vertices in $V (S \{v\})$ have common neighbors in $S \{v\}$.
 - (a). implies the conditions (i) and (ii).
 - (b). implies that, v is adjacent to all the isolated vertices in V S.
 - (c). implies that there exists a vertex $u \in V S$ such that u and v have common neighbors in S.

Conversely, let S be a cild-set of G. Assume for each $v \in S$, one of the conditions (i)-(iv) holds. By (i) and (ii), $S - \{v\}$ is not a dominating set of G, since v is not adjacent to any vertex in $S - \{v\}$. By (iii), $V - (S - \{v\})$ has no isolated vertices. By (iv), $S - \{v\}$ is not a locating set of G. Therefore, $S - \{v\}$ is not a cild-set of G, for all $v \in S$. Hence, S is a minimal cild-set of G.

In the following, an upper bound of $\gamma_{cild}(G)$ in terms of maximum degree $\Delta(G)$ is obtained.

Theorem 3.5. For any connected graph G on p vertices, $\gamma_{cild}(G) + \Delta(G) \leq 2p - 2$.

Proof. For any connected graph G, $\gamma_{cild}(G) \leq p-1$ and $\Delta(G) \leq p-1$ and hence $\gamma_{cild}(G) + \Delta(G) \leq 2p-2$.

In the following, the connected graphs G for which $\gamma_{cild}(G) + \Delta(G) = 2p - 2$ are characterized.

Theorem 3.6. For any connected graph G on p ($p \ge 4$) vertices, $\gamma_{cild}(G) + \Delta(G) = 2p - 2$ if and only if $G \cong K_{1,p-1}$, $p \ge 4$ (or) V(G) can be partitioned into two sets X and Y such that Y is independent and each vertex in Y is adjacent to each in X and either |Y| = 1 (or) there exists atleast one vertex in $\langle X \rangle$ of degree (m - 1) where |V(X)| = m.

Proof. Let $\gamma_{cild}(G) + \Delta(G) = 2p - 2$. Then $\gamma_{cild}(G) = p - 1$ and $\Delta(G) = p - 1$. But $\gamma_{cild}(G) = p - 1$ if and only if V(G) can be partitioned into two sets X and Y such that one of the sets X and Y, say Y is independent and each vertex in X is adjacent to each vertex in Y and $\langle X \rangle$ is one of the following.

- (a). $\langle X \rangle$ is a complete subgraph of G.
- (b). $\langle X \rangle$ is totally disconnected.
- (c). Any two non adjacent vertices in V ($\langle X \rangle$) have common neighbors in $\langle X \rangle$.
- **Case 1:** $\langle X \rangle$ is a complete subgraph of G

Since each vertex in X is adjacent to each in Y, the vertices of X have degree (p-1) in G. For this graph, $\Delta(G) = p - 1$. Case 2: $\langle X \rangle$ is totally disconnected

Since $\Delta(G) = p - 1$, X contains exactly one vertex. Therefore, $G \cong K_{1,p-1}, p \ge 4$.

Case 3: Any two non-adjacent vertices in V ($\langle X \rangle$) have common neighbors in $\langle X \rangle$

In this case $\langle X \rangle$ is not complete. Let $|V(\langle X \rangle)| = m$, m < p. Therefore, |Y| = p - m. Let v be vertex in $\langle X \rangle$ of degree t, where t < m - 1. Let $u, v \in V$. If $u, v \in X$, then $d_G(u, v) \leq 2$. Therefore, diameter of G is 2. If diam(G) = rad(G) = 2, then there exists no vertex of degree p - 1 in G. Therefore $\Delta(G) \leq p - 2$. Assume $\gamma(G) = 1$. If Y has exactly one vertex, then that vertex has degree p - 1 in G. Otherwise there must exist a vertex in $\langle X \rangle$ of degree m - 1 in $\langle X \rangle$. Hence G is a graph with $\gamma(G) = 1$ and V(G) can be partitioned into two sets X and Y such that Y is independent and each vertex in X is adjacent to each vertex in Y and either |Y| = 1 (or) $\langle X \rangle$ has a vertex of degree (m - 1), where |V(X)| = m.

In the following, an upper bound of $\gamma_{cild}(G)$ in terms of order and diameter is proved.

Theorem 3.7. Let G be a connected graph of order p and diameter $d \ge 4$. Then $\gamma_{cild}(G) + \lceil \frac{3d-3}{5} \rceil \le p$ and the bound is sharp.

Proof. Let $u, v \in V(G)$ be two diametral vertices and let P be a diametral path joining u and v. Let $V(P) = \{u = 1, 2, 3, \ldots, v = d\}$, where d = 5h + k with $0 \le k \le 4$. Then for k = 0, the set $A_1 = \{2, 4, \ldots, 5h - 3, d - 1\}$; for $1 \le k \le 2$, the set $A_2 = \{2, 4, \ldots, 5h - 3, 5h - 1, d\}$ and for $3 \le k \le 4$, the set $A_3 = \{2, 4, \ldots, 5h - 3, 5h - 1, d - 2, d\}$ are the γ_{cild} -sets of P and these sets have $\lfloor \frac{2d+4}{5} \rfloor$ elements. The set $S = V(G) - V(P) - A_i$ has $p - \lceil \frac{3d-3}{5} \rceil$ elements and it is a co-isolated locating dominating set of G. Hence $\gamma_{cild}(G) \le p - \lceil \frac{3d-3}{5} \rceil$. That is, $\gamma_{cild}(G) + \lceil \frac{3d-3}{5} \rceil \le p$. This bound is attained when $G \cong P_{5n+1}, n \ge 1$.

Lemma 3.8. Let G be a graph of order p and $\gamma_{cild}(G) \ge p-2$. Then $diam(G) \le 3$.

Proof. Assume $\gamma_{cild}(G) \ge p-2$. Suppose that $diam(G) \ge 4$. Let $u, v \in V(G)$ such that d(u, v) = 4 and let P be a shortest path joining u and v. Let $P = \{u, x, w, y, v\}$ where $x, w, y \in V(G)$. Let $S = V(G) - \{u, w, v\}$ and $N(u) \cap S$, $N(v) \cap S$, $N(w) \cap S$, are nonempty and distinct. Also the vertices u, w, and v are isolated in $\langle V - S \rangle$. Therefore $\gamma_{cild}(G) \le p - 3$, which is a contradiction. Hence $diam(G) \le 3$.

In the following, an upper bound of $\gamma_{cild}(G)$ in terms of order and independence number is proved.

Theorem 3.9. If G is a connected graph with $g(G) \ge 5$ and $\delta(G) \ge 2$ then $\gamma_{cild}(G) \le p - \beta_0(G)$.

Proof. By Theorem 2.12, if girth $g(G) \ge 5$ and $\delta(G) \ge 2$ and if S is a maximum independent set, then V - S is also a co-isolated locating dominating set. Hence $\gamma_{cild}(G) \le |V - S| = p - \beta_0(G)$. Equality holds, if $G \cong C_{2n}$, $n \ge 3$.

In the following, an upper bound of $\gamma_{cild}(G)$ in terms of order, leaves and supports of G is obtained.

Theorem 3.10. If G is a bipartite graph with $g(G) \ge 5$ and $\delta(G) \ge 2$ then $\gamma_{cild}(G) \le \frac{p-l(G)+s(G)}{2}$.

Proof. Assume $\delta(G) \geq 2$ and $g(G) \geq 6$. By Proposition 2.13, $\beta_0(G) \geq \frac{p+l(G)-s(G)}{2}$. Therefore, $p - \beta_0(G) \leq p - \frac{p+l(G)-s(G)}{2} = \frac{p-l(G)+s(G)}{2}$.

4. Conclusion

In this paper, an upper bounds of $\gamma_{cild}(G)$ in terms of the order, maximum degree, diameter, independence number are obtained. Also the graphs for which $\gamma_{cild}(G) = p - 2$ are characterized. This paper can also be developed by finding the lower bound of $\gamma_{cild}(G)$ in terms of the some other parameters like minimum degree, girth of G. Finding the co-isolated locating domatic number is the future work.

References

- N.Bertrand, I.Charon, O.Hudry and A.Lobstein, *Identifying And Locating Dominating Codes on Chains And Cycles*, European Journal Of Combinatorics, 25(7)(2004), 969987.
- [2] M.Chellai, M.Mimouni and P.J.Slater, On Locating-domination in graphs, Discuss. Math. Graph Theory., 30(2010), 223235.
- [3] F.Harary, Graph Theory, AddisonWesley, Reading Mass, (1969).
- [4] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamental Of Domination In Graphs, Marcel Dekker, New York, (1997).
- [5] V.R.Kulli, Theory of Domination in Graphs, Vishwa International Publications, (2010).
- [6] S.Muthammai and N.Meenal, Co-isolated locating Domination Number for some standard Graphs, National conference on Applications of Mathematics & Computer Science (NCAMCS-2012), S.D.N.B Vaishnav College for Women(Autonomous), Chennai, February 10, (2012), 6061.
- [7] S.Muthammai and N.Meenal, Co-isolated Locating Domination Number of a Graph, Proceedings of the UGC sponsored National Seminar on Applications in Graph Theory, Seethalakshmi Ramaswamy College (Autonomous), Tiruchirappalli, 18th & 19th December (2012), 79.
- [8] S.Muthammai and N.Meenal, Coisolated Locating Domination Number For The Complement Of a Doubly Connected Graph, International Journal of Mathematics And Scientific Computing, 5(1)(2015), 5759.
- [9] S.Muthammai and N.Meenal, CoIsolated Locating Dominating Number For Cubic Graphs, International Conference on Mathematical Computer Engineering(ICMCE 2015), Organized by the School of Advanced Sciences, VIT University, Chennai, December (2015), 1415.
- [10] O.Ore, Theory of Graphs, Amer. Math. Soc. Coel. Publ. 38, Providence, RI, (1962).
- [11] D.F.Rall and P.J.Slater, On location domination number for certain classes of graphs, Congrences Numerantium, 45(1984), 77106.