International Journal of Mathematics And its Applications

Some Bounds On Co-Isolated Locating Domination Number

Research Article

S.Muthammai ${ }^{1}$ and N.Meenal ${ }^{2 *}$
1 Department of Mathematics, Government Arts College for Women (Autonomous), Pudukkottai, Tamilnadu, India.
2 Department of Mathematics, J.J. College of Arts and Science, Pudukkottai, Tamilnadu, India.

Abstract

Let $G(V, E)$ be a simple, finite and undirected connected graph. A non-empty set $S \subseteq V$ of a graph G is a dominating set, if every vertex in $V-S$ is adjacent to atleast one vertex in S . A dominating set $S \subseteq V$ is called a locating dominating set, if for any two vertices $v, w \in V-S, N(v) \cap S \neq N(w) \cap S$. A locating dominating set $S \subseteq V$ is called a co-isolated locating dominating set (cild - set), if there exists atleast one isolated vertex in $\langle V-S\rangle$. The co-isolated locating domination number $\gamma_{c i l d}$ is the minimum cardinality of a co-isolated locating dominating set. In this paper, some bounds on coisolated locating domination number are obtained. Also minimal cild - sets are characterized. Further the graphs for which $\gamma_{\text {cild }}$ to be $p-2$ are obtained.

Keywords: Dominating set, locating dominating set, co-isolated locating dominating set, co-isolated locating domination number. (C) JS Publication.

1. Introduction

Let $G=(V, E)$ be a simple graph of order p and size q. For $v \in V(G)$, the neighborhood $N_{G}(v)$ (or simply $N(v)$) of v is the set of all vertices adjacent to v in G . If a graph and its complement are connected, then the graph is said to be a doubly connected graph. Let v be a vertex of a connected graph G . The eccentricity $e_{G}(v)$ of v is the distance to a vertex farthest from v. Thus $e_{G}(v)=\max \left\{d_{G}(u, v): u \in V(G)\right\}$. The minimum and maximum eccentricities are the radius and diameter of G , denoted $r(G)$ and $\operatorname{diam}(G)$ respectively. The length of a shortest cycle of G is called girth of G and is denoted by $g(G)$. A set S of vertices in a graph G is called an independent set if no two vertices in S are adjacent. The independence number $\beta_{0}(G)$ is the maximum cardinality of an independent set. The concept of domination in graphs was introduced by Ore [10]. A nonempty set $S \subseteq V(G)$ of a graph G is a dominating set, if every vertex in $V(G)-S$ is adjacent to some vertex in S. A special case of dominating set S is called a locating dominating set. It was defined by D. F. Rall and P. J. Slater in [11]. A dominating set S in a graph G is called a locating dominating set in G , if for any two vertices $v, w \in V(G)-S$, $N_{G}(v) \cap S, N_{G}(w) \cap S$ are distinct. The locating domination number of G is defined as the minimum number of vertices in a locating dominating set in G. A locating dominating set $S \subseteq V(G)$ is called a co-isolated locating dominating set, if $\langle V-S\rangle$ contains atleast one isolated vertex. The minimum cardinality of a co - isolated locating dominating set is called the co - isolated locating domination number $\gamma_{c i l d}(G)$. A co - isolated locating dominating set of minimum cardinality is called $\gamma_{c i l d}$ - set and a $\gamma_{l d}$ - set is defined likewise. In this paper, some bounds on co - isolated locating domination number are obtained. Also minimal cild - sets are characterized. Further the graphs for which $\gamma_{c i l d}$ to be $p-2$ are found.

[^0]
2. Prior Results

The following results are obtained in [2, 6-9]

Theorem 2.1 ([6]). For any nontrivial simple connected graph $G, 1 \leq \gamma_{\text {cild }}(G) \leq p-1$.

Theorem 2.2 ([6]). For any connected graph $G, \gamma_{\text {cild }}(G)=1$ if and only if $G \cong K_{2}$.

Theorem 2.3 ([7]). For any connected graph $G, \gamma_{\text {cild }}(G)=2$ if and only if G is one of the following graphs
(a). $P_{p}(p=3,4,5)$, where P_{p} is a path on p vertices.
(b). $C_{p}(p=3,5)$, where C_{p} is a cycle on p vertices.
(c). C_{5} with a chord.
(d). G is the graph obtained by attaching a pendant edge at a vertex of C_{3} (or) at a vertex of degree 2 in $K_{4}-e$.
(e). G is the graph obtained by attaching a path of length 2 at a vertex of C_{3}.
(f). G is the Bull Graph.

Theorem $2.4([6])$. For any connected graph $G, \gamma_{c i l d}(G)=p-1(p \geq 4)$ if and only if $V(G)$ can be partitioned into two sets X and Y such that one of the sets X and Y say, Y is independent and each vertex in X is adjacent to each in Y and the subgraph $\langle X\rangle$ of G induced by X is one of the following,
(a). $\langle X\rangle$ is a complete graph
(b). $\langle X\rangle$ is totally disconnected
(c). Any two nonadjacent vertices in $V(\langle X\rangle)$ have common neighbors in $\langle X\rangle$.

Theorem 2.5 ([8]). Let G be a doubly connected graph of order $p \geq 5$ such that $\operatorname{diam}(G)=\operatorname{diam}(\bar{G})=2$. Then G contains a co - isolated locating dominating set of cardinality $p-3$.

Observation 2.6 ([8]).
(i). If S is a co-isolated locating dominating set of a connected graph G, then S will not be co - isolated locating dominating set of \bar{G}.
(ii). Let S be $\gamma_{\text {cild }}{ }^{-}$set of G such that $\langle V-S\rangle$ has exactly one isolated vertex, say v. Let there exist a vertex $u \in S$ such that $N(u) \cap S \subset S$ and $N(u) \cap V-S=(V-S)-\{v\}$.
(a). If there exists no vertex $w \in V-S$ such that $S \subseteq N_{G}(w)$, then $(S-\{u\}) \cup\{v\}$ is a co - isolated locating dominating set of \bar{G}. Hence, $\gamma_{\text {cild }}(\bar{G}) \leq \gamma_{c i l d}(G)$.
(b). If there exists a vertex $w \in V-S$ such that $S \subseteq N_{G}(w)$, then $S \cup\{w\}$ is a co-isolated locating dominating set of \bar{G} and hence $\gamma_{\text {cild }}(\bar{G}) \leq \gamma_{\text {cild }}(G)+1$.

Lemma 2.7 ([8]). If G is a connected graph, then $\delta(G) \leq \gamma_{\text {cild }}(G)$, where $\delta(G)$ is the minimum degree of G.

Theorem 2.8 ([8]). For any doubly connected graph G of order $p \geq 4$,
(a). $\left.4 \leq \gamma_{c i l d}(G)+\gamma_{c i l d} \bar{G}\right) \leq 2 p-4$ and
(b). $4 \leq \gamma_{c i l d}(G) . \gamma_{c i l d}(\bar{G}) \leq(p-2)^{2}$.

Theorem 2.9 ([8]). Let G be a doubly connected graph with $p \geq 4$. Then $\gamma_{\text {cild }}(G)+\gamma_{c i l d}(\bar{G})=4$ if and only if G is one of the following graphs: $P_{4}, P_{5}, C_{5}, C_{5}$ with a chord and the Bull graph, where Bull graph is a graph obtained by attaching exactly one pendant edge at any two vertices of C_{3}.

Theorem $2.10([8])$. Let $G=(V, E)$ be a connected cubic graph with p vertices $(p \geq 4)$. Then $\left\lfloor\frac{p+1}{3}\right\rfloor \leq \gamma_{\text {cild }}(G) \leq \frac{p}{2}$.
Theorem 2.11 ([9]). There exists a connected cubic graph G with $\gamma_{c i l d}(G)=a$, where a is a positive integer and $a \geq 8$.

Theorem 2.12 ([2]). If G is a graph with girth $g(G) \geq 5$, then every maximum independent set S is a minimal locating dominating set. Furthermore, if $\delta(G) \geq 2$, then $V-S$ is a locating dominating set.

Proposition 2.13 ([2]).
(a). If G is a bipartite graph, then the independence number $\beta_{0} \geq \frac{p+l(G)-s(G)}{2}$, where $l(G)$ and $s(G)$ are number of leaves and that of supports of G respectively.
(b). If G is a bipartite graph with $g(G) \geq 6$ and $\delta(G) \geq 2$, then $\gamma_{\text {cild }}(G) \leq \frac{p+l(G)-s(G)}{2}$.

3. Main Results

Observation 3.1. Since every co-isolated locating dominating set is a dominating set as well as a locating dominating set, $\gamma(G) \leq \gamma_{l d}(G) \leq \gamma_{\text {cild }}(G)$. Equality holds if $G \cong P_{5}$, a path on five vertices.

Example 3.2. In the graph G given in Figure 3.1, $\left\{v_{5}\right\}$ is a γ-set; $\left\{v_{1}, v_{2}\right\}$ is a $\gamma_{l d}$-set and $\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\}$ is a $\gamma_{\text {cild }}$-set. Therefore $(G)=1, \gamma_{l d}(G)=2$ and $\gamma_{\text {cild }}(G)=4$ and hence $\gamma(G)<\gamma_{l d}<\gamma(G)<\gamma_{\text {cild }}(G)$.

Figure 1.

In the following, the connected graphs for which $\gamma_{\text {cild }}(G)=p-2$ are characterized.
Theorem 3.3. Let G be a connected graph with p vertices. Then $\gamma_{\text {cild }}(G)=p-2$ if and only if G is one of the following graphs.
(a). G is a graph obtained from a complete bipartite graph with bipartition $[A, B]$ by introducing two new nonadjacent vertices u and v such that $N(u)=A, N(v)=B$ and $A \cap B=\emptyset$.
(b). G is a double star $S_{m, n}(m, n \geq 1)$.
(c). G is a graph obtained from a complete graph K_{p-1} by joining a new vertex to atmost $p-2$ vertices of K_{p-1}.
(d). G is a graph obtained from $K_{n}(n \geq 3)$ and K_{2} by joining a vertex of K_{2} to a vertex of K_{n} and the other vertex of K_{2} to $n-2$ vertices of remaining $n-1$ vertices of K_{n}, where $n=p-2$.
(e). G is a graph obtained from two complete graphs K_{n} and $K_{m}(m, n \geq 2)$ by joining a vertex of K_{n} to $m-1$ vertices of K_{m} and a vertex of K_{m} to $n-2$ vertices of K_{n}.
(f). G is a graph obtained from a complete bipartite graph with bipartition $[A, B]$ by introducing two new nonadjacent vertices u and v such that $N(u) \supset A, N(v) \supset B$ and $N(u) \neq A$ and $N(v) \neq B$.
(g). G is a graph obtained from the star $K_{1, p-2}$ by joining a new vertex to s pendant vertices of $K_{1, p-2}$, where $s<p-2$.
(h). G is a graph obtained from a complete bipartite graph $K_{m, n}(m, n \geq 2$ and $m+n=p-1)$ by joining a new vertex to $m+n-1(=p-2)$ vertices of $K_{m, n}$.
(i). G is a graph such that $V(G)$ can be partitioned into two sets X and Y such that $\langle X\rangle$ is complete, $\langle Y\rangle$ is a star and each vertex in Y is adjacent to the same $|V(G)|-1$ vertices of $\langle X\rangle$.
(j). G is a graph such that $V(G)$ can be partitioned into two sets X and Y such that $\langle X\rangle$ is a star and $\langle Y\rangle$ is complete and each vertex in Y is adjacent to all the vertices of the star except the central vertex.

Proof. Assume $\gamma_{\text {cild }}(G)=p-2$. Then there exists a $\gamma_{\text {cild }}$ set S of G having $p-2$ vertices and $V-S$ has 2 vertices. Let $V-S=\{u, v\}$, where $u, v \in V(G)$. Since $\langle V-S\rangle$ contains atleast one isolated vertex, $u v \notin E(G)$. Also S is a locating dominating set and hence $N(u) \cap S \neq N(v) \cap S$. Let $N(u) \cap S=A$ and $N(v) \cap S=B$. Therefore $A \neq B$.

Case 1: $A \cap B=\emptyset$
Assume both $\langle A\rangle$ and $\langle B\rangle$ have atleast one edge. Since G is connected, there exists an edge in G joining a vertex of A and a vertex of B. If $\langle A\rangle$ is not complete, then there exists a pair of nonadjacent vertices say a_{1}, a_{2} in $\langle A\rangle$ such that atleast one of a_{1}, a_{2} has degree greater than or equal to 2 . Then the set $V(G)-\left\{u, v, a_{1}\right\}$ (or) $V(G)-\left\{u, v, a_{2}\right\}$ is a cild set of G and hence $\gamma_{c i l d}(G) \leq p-3$. Therefore $\langle A\rangle$ is complete. Similarly, it can be proved that $\langle B\rangle$ is also complete. That is, if both $\langle A\rangle$ and $\langle B\rangle$ have atleast one edge, then $\langle A\rangle$ and $\langle B\rangle$ are complete. Therefore, one of the following cases arises.
(a). Both $\langle A\rangle$ and $\langle B\rangle$ are complete.
(b). Both $\langle A\rangle$ and $\langle B\rangle$ are totally disconnected.
(c). One of $\langle A\rangle$ and $\langle B\rangle$ is complete and the other is totally disconnected.

Let $e=(a, b)(a \in A, b \in B)$ be an edge in G.
Subcase 1.a: Both $\langle A\rangle$ and $\langle B\rangle$ are complete
Assume each vertex in $V(G)-\{u, v\}$ is adjacent to either $u($ or $)$ v. If $|A|=|B|=1$, then $G \cong P_{4}$ and $\gamma_{\text {cild }}(G)=2$. Assume one of A and B has atleast two vertices. Let $|A|=1$ and $|B| \geq 2$ and $N(u)=\left\{a_{1}\right\}, N(v)=\left\{b_{1}, b_{2}\right\}$. Then $V(G)-\left\{u, b_{1}, b_{2}\right\}$ is a cild set of G. Assume $|A| \geq 2$ and $|B| \geq 2$. Consider the set $S_{1}=V(G)-\{u, v, a\}$. Then $V-S_{1}=\{u, v, a\}$. In $\left\langle V-S_{1}\right\rangle, \mathrm{v}$ is an isolated vertex and $N(u) \cap S=A ; N(v) \cap S=B$ and $A \cap B=\emptyset$. Therefore, S_{1} is a cild set of G and hence $\gamma_{c i l d}(G) \leq p-3$. Similarly, if there exists a vertex in $V(G)-\{u, v\}$ adjacent to neither u nor v , then also there is a cild set of G having $p-3$ vertices.

Subcase 1.b: Both $\langle A\rangle$ and $\langle B\rangle$ are totally disconnected
Let each vertex in $V(G)-\{u, v\}$ be adjacent to either u or v . Assume one of A and B has atleast two vertices. Let A have atleast two vertices. If there exist vertices $a_{1} \in A, a_{2} \in B$ such that $a_{1} b_{1} \notin E(G)$, then the set $S_{2}=V(G)-\left\{a, a_{1}, b_{1}\right\}$ is a cild set of G, since $V(G)-S_{2}=\left\{a, a_{1}, b_{1}\right\}$ is independent, $N(a) \cap S_{2}=\{u, b\}, N\left(a_{1}\right) \cap S_{2}=\{u\}$ and $N\left(b_{1}\right) \cap S_{2}=\{v\}$. Therefore $\gamma_{c i l d}(G) \leq p-3$. Hence each vertex in A is adjacent to each in B . That is, $\langle A \cup B\rangle$ is a complete bipartite graph. Therefore G is a graph obtained from a complete bipartite graph with bipartition $[A, B]$ by introducing two new vertices u
and v such that $N(u)=A, N(v)=B$ and $A \cap B=\emptyset$. Let there exist a vertex in $V(G)-\{u, v\}$ adjacent to neither u nor v. Assume $|A| \geq 1$ and $|B| \geq 2$. Let $w \in V(G)-\{u, v\}$ be adjacent to neither u nor v. Then w is adjacent to atleast one of the vertices in $N(u) \cup N(v)$. Let $\operatorname{deg}_{G}(w)=1$ and let w be adjacent to the vertex say a_{1} in $\mathrm{N}(\mathrm{u})$. Let $b_{1}, b_{2} \in N(v)$. Then the set $S_{3}=\left\{w, a_{1}, b_{1}\right\}$ is a cild set of G and u is isolated in $V(G)-S_{3}$.

Similarly is the case when $\operatorname{deg}_{G}(w) \geq 2$. Consider $|A|=1$ and $|B|=1$. Let a_{1}, b_{1} be adjacent to a vertex of $N(u)$ and $N(v)$ respectively and if a_{1} is adjacent to b_{1}, then there exists a cildset of cardinality $p-3$. Therefore there exist pendant vertices in G adjavent to vertices in $N(u)$ and $N(v)$. If G is a star, then $\gamma_{\text {cild }}(G)=p-1$. Therefore, G is a double star.

Subcase 1.c: $\langle A\rangle$ is complete and $\langle B\rangle$ is totally disconnected.
Here also the set $V(G)-\{u, v, a\}$ is a cild-set of G and hence $\gamma_{c i l d}(G) \leq p-3$.
Case 2: $A \cap B \neq \emptyset$
Without loss of generality, the sets A and $\mathrm{B}(A \cap B)$ are considered. As in Case(1), one of the following cases arise.
(a). Both $\langle A\rangle$ and $\langle B-(A \cap B)\rangle$ are complete.
(b). Both $\langle A\rangle$ and $\langle B-(A \cap B)\rangle$ are totally disconnected.
(c). $\langle A\rangle$ is complete and $\langle B-(A \cap B)\rangle$ is independent.
(d). $\langle A\rangle$ is independent and $\langle B-(A \cap B)\rangle$ is complete.

Subcase 2.a: Both $\langle A\rangle$ and $\langle B-(A \cap B)\rangle$ are complete.
Assume $B-(A \cap B) \neq \emptyset$. Let $b_{1} \in B-(A \cap B)$ be not adjacent to a vertex, say $a_{1} \in A \cap B$. Then $V(G)-\left\{a_{1}, b_{1}, u\right\}$ is a cild-set of G and hence $\gamma_{\text {cild }}(G) \leq p-3$. Therefore each vertex in $B-(A \cap B)$ is adjacent to each in $A \cap B$. Similarly v is adjacent to all the vertices of $A-(A \cap B)$. That is, v is adjacent to all the vertices of A . In this case G is a graph obtained from a complete graph K_{p-1} by joining a new vertex to atmost $p-2$ vertices of K_{p-1}. Assume $B-(A \cap B)=\emptyset$. Then $B=A \cap B$. That is, u is adjacent to all the vertices of $N(u)(=B)$. Since $A \neq B, A \cap B \neq A$. That is v is not adjacent to atleast one vertex of $N(u)(=A)$. Therefore, $|A| \geq 2,|B| \geq 1$. Assume $|A| \geq 2$ and $|B|=1$. Let $|B|=b_{1}$. Then u is adjacent to b_{1} if one of the following conditions holds
(i). v is adjacent to $|A|-1$ vertices of $A(=N(u))$
(ii). v is adjacent to t vertices of $A(=N(u))$ where $1 \leq t \leq|A|-2$ and each vertex in A is adjacent to b_{1}.

If (i) holds, then G is a graph obtained from $K_{n}(n \geq 2)$ and K_{2} by joining a vertex of K_{2} to a vertex of K_{n} and the other vertex of K_{2} to $n-2$ vertices of remaining $n-1$ vertices of $K_{n}(n=p-2)$.

If (ii) holds, then G is a graph obtained from K_{p-1} by joining a new vertex of atmost $p-2$ vertices of K_{p-1}. Let $|A| \geq 2$, $|B| \geq 2$. As above one of the following holds
(iii). v is adjacent to $|A|-1$ vertices of A .
(iv). v is adjacent to t vertices of A where $1 \leq t \leq|A|-2$ and each vertex in A is adjacent to each in B .

If (iii) holds, then G is a graph obtained from complete graphs K_{n} and $K_{m}(m, n \geq 2)$ by joining a vertex of K_{n} to $m-1$ vertices of K_{m} and a vertex of K_{m} to $n-2$ vertices of K_{n}.

If (iv) holds, then G is a graph obtained from K_{p-1} by joining a new vertex to atmost $p-2$ vertices of K_{p-1}.
Subcase 2.b: Both $\langle A\rangle$ and $\langle B(A \cap B)\rangle$ are totally disconnected.

Assume $B-(A \cap B) \neq \emptyset$. Here also each vertex in $B-(A \cap B)$ is adjacent to each in A and v is adjacent to each vertex in A . Therefore G is a graph obtained from a complete bipartite graph with bipartition $[A, B]$ by introducing two new nonadjacent vertices u and v such that $N(u) \supset A, N(v) \supset B$ and $N(u) \neq A, N(v) \neq B$. Assume $B-(A \cap B)=\emptyset$. Then $B=A \cap B$. That is, u is adjacent to all the vertices of $N(v)$. Then either G is a graph obtained from the star $K_{1, p-2}$ by joining a new vertex to s pendant vertices of $K_{1, p-2}$ where $\mathrm{s}<p-2$ and this graph is denoted by $K_{1, p-2}^{s}(s<p-2)$ (or) G is a graph obtained from a complete bipartite graph $K_{m, n}(m, n \geq 2$ and $m+n=p-1)$ by joining a new vertex to $m+n-1(=p-2)$ pendant vertices of $K_{m, n}$.

Subcase 2.c: Either $\langle A\rangle$ is complete and $\langle B-(A \cap B)\rangle$ is totally disconnected (or) $\langle A\rangle$ is totally disconnected and $\langle B-(A \cap B)\rangle$ is complete.
Assume $B-(A \cap B) \neq \emptyset$. In both the cases, each vertex in $B-(A \cap B)$ is adjacent to each in A and vis adjacent to each vertex in A . Then either G is a graph in which $V(G)$ can be partitioned into two sets X and Y such that $\langle X\rangle$ is complete, $\langle Y\rangle$ is a star and each vertex in Y is adjacent to the same $|V(X)|-1$ vertices of $\langle X\rangle$ (or) G is a graph in which $V(G)$ can be partitioned into two sets X and Y such that $\langle X\rangle$ is a star and $\langle Y\rangle$ is complete and each vertex in Y is adjacent to all the vertices of the star except the central vertex. From all the cases, it is concluded that G is one of the graphs given in the theorem. Conversely if G is one of the graphs given in the theorem, then $\gamma_{\text {cild }}(G)=p-2$.

In the following, the minimal cild-sets are characterized.

Theorem 3.4. A cild-set S of a connected graph G is minimal if and only if each vertex $v \in S$ satisfies one of the following conditions,
(i). v is an isolated vertex of S.
(ii). There exists a vertex $u \in V-S$ such that $N(u) \cap S=\{v\}$
(iii). v is adjacent to all the isolated vertices in $V-S$.
(iv). there exists a vertex $u \in V-S$ such that both u and v have common neighbor in S.

Proof. Let S be a minimal cild-set of G. Then for every $v \in S, S-\{v\}$ is not a cild-set of G. Then one of the following conditions holds
(a). $S-\{v\}$ is not a dominating set
(b). $V-(S-\{v\})$ does not contain any isolated vertices.
(c). Any two vertices in $V-(S-\{v\})$ have common neighbors in $S-\{v\}$.
(a). implies the conditions (i) and (ii).
(b). implies that, v is adjacent to all the isolated vertices in $V-S$.
(c). implies that there exists a vertex $u \in V-S$ such that u and v have common neighbors in S .

Conversely, let S be a cild-set of G . Assume for each $v \in S$, one of the conditions (i)-(iv) holds. By (i) and (ii), $S-\{v\}$ is not a dominating set of G , since v is not adjacent to any vertex in $S-\{v\}$. By (iii), $V-(S-\{v\})$ has no isolated vertices. By (iv), $S-\{v\}$ is not a locating set of G. Therefore, $S-\{v\}$ is not a cild-set of G , for all $v \in S$. Hence, S is a minimal cild-set of G.

In the following, an upper bound of $\gamma_{c i l d}(G)$ in terms of maximum degree $\Delta(G)$ is obtained.

Theorem 3.5. For any connected graph G on p vertices, $\gamma_{\text {cild }}(G)+\Delta(G) \leq 2 p-2$.
Proof. For any connected graph G, $\gamma_{\text {cild }}(G) \leq p-1$ and $\Delta(G) \leq p-1$ and hence $\gamma_{\text {cild }}(G)+\Delta(G) \leq 2 p-2$.
In the following, the connected graphs G for which $\gamma_{\text {cild }}(G)+\Delta(G)=2 p-2$ are characterized.
Theorem 3.6. For any connected graph G on $p(p \geq 4)$ vertices, $\gamma_{\text {cild }}(G)+\Delta(G)=2 p-2$ if and only if $G \cong K_{1, p-1}, p \geq 4$ (or) $V(G)$ can be partitioned into two sets X and Y such that Y is independent and each vertex in Y is adjacent to each in X and either $|Y|=1$ (or) there exists atleast one vertex in $\langle X\rangle$ of degree $(m-1)$ where $|V(X)|=m$.

Proof. Let $\gamma_{c i l d}(G)+\Delta(G)=2 p-2$. Then $\gamma_{c i l d}(G)=p-1$ and $\Delta(G)=p-1$. But $\gamma_{c i l d}(G)=p-1$ if and only if $V(G)$ can be partitioned into two sets X and Y such that one of the sets X and Y , say Y is independent and each vertex in X is adjacent to each vertex in Y and $\langle X\rangle$ is one of the following.
(a). $\langle X\rangle$ is a complete subgraph of G .
(b). $\langle X\rangle$ is totally disconnected.
(c). Any two non - adjacent vertices in $\mathrm{V}(\langle X\rangle)$ have common neighbors in $\langle X\rangle$.

Case 1: $\langle X\rangle$ is a complete subgraph of G
Since each vertex in X is adjacent to each in Y , the vertices of X have degree $(p-1)$ in G . For this graph, $\Delta(G)=p-1$.
Case 2: $\langle X\rangle$ is totally disconnected
Since $\Delta(G)=p-1$, X contains exactly one vertex. Therefore, $G \cong K_{1, p-1}, p \geq 4$.
Case 3: Any two non-adjacent vertices in $\mathrm{V}(\langle X\rangle)$ have common neighbors in $\langle X\rangle$
In this case $\langle X\rangle$ is not complete. Let $|V(\langle X\rangle)|=m, m<p$. Therefore, $|Y|=p-m$. Let v be vertex in $\langle X\rangle$ of degree t , where $t<m-1$. Let $u, v \in V$. If $u, v \in X$, then $d_{G}(u, v) \leq 2$. Therefore, diameter of G is 2 . If $\operatorname{diam}(G)=\operatorname{rad}(G)=2$, then there exists no vertex of degree $p-1$ in G . Therefore $\Delta(G) \leq p-2$. Assume $\gamma(G)=1$. If Y has exactly one vertex, then that vertex has degree $p-1$ in G . Otherwise there must exist a vertex in $\langle X\rangle$ of degree $m-1$ in $\langle X\rangle$. Hence G is a graph with $\gamma(G)=1$ and $V(G)$ can be partitioned into two sets X and Y such that Y is independent and each vertex in X is adjacent to each vertex in Y and either $|Y|=1$ (or) $\langle X\rangle$ has a vertex of degree $(m-1)$, where $|V(X)|=m$.

In the following, an upper bound of $\gamma_{\text {cild }}(G)$ in terms of order and diameter is proved.
Theorem 3.7. Let G be a connected graph of order p and diameter $d \geq 4$. Then $\gamma_{c i l d}(G)+\left\lceil\frac{3 d-3}{5}\right\rceil \leq p$ and the bound is sharp.

Proof. Let $u, v \in V(G)$ be two diametral vertices and let P be a diametral path joining u and v . Let $V(P)=\{u=$ $1,2,3, \ldots, v=d\}$, where $d=5 h+k$ with $0 \leq k \leq 4$. Then for $k=0$, the set $A_{1}=\{2,4, \ldots, 5 h-3, d-1\}$; for $1 \leq k \leq 2$, the set $A_{2}=\{2,4, \ldots, 5 h-3,5 h-1, d\}$ and for $3 \leq k \leq 4$, the set $A_{3}=\{2,4, \ldots, 5 h-3,5 h-1, d-2, d\}$ are the $\gamma_{\text {cild }}$-sets of P and these sets have $\left\lfloor\frac{2 d+4}{5}\right\rfloor$ elements. The set $S=V(G)-V(P)-A_{i}$ has $p-\left\lceil\frac{3 d-3}{5}\right\rceil$ elements and it is a co-isolated locating dominating set of G. Hence $\gamma_{c i l d}(G) \leq p-\left\lceil\frac{3 d-3}{5}\right\rceil$. That is, $\gamma_{c i l d}(G)+\left\lceil\frac{3 d-3}{5}\right\rceil \leq p$. This bound is attained when $G \cong P_{5 n+1}, n \geq 1$.

Lemma 3.8. Let G be a graph of order p and $\gamma_{\text {cild }}(G) \geq p-2$. Then $\operatorname{diam}(G) \leq 3$.
Proof. Assume $\gamma_{\text {cild }}(G) \geq p-2$. Suppose that $\operatorname{diam}(G) \geq 4$. Let $u, v \in V(G)$ such that $d(u, v)=4$ and let P be a shortest path joining u and v. Let $P=\{u, x, w, y, v\}$ where $x, w, y \in V(G)$. Let $S=V(G)-\{u, w, v\}$ and $N(u) \cap S, N(v) \cap S$, $N(w) \cap S$, are nonempty and distinct. Also the vertices u, w, and v are isolated in $\langle V-S\rangle$. Therefore $\gamma_{c i l d}(G) \leq p-3$, which is a contradiction. Hence $\operatorname{diam}(G) \leq 3$.

In the following, an upper bound of $\gamma_{\text {cild }}(G)$ in terms of order and independence number is proved.

Theorem 3.9. If G is a connected graph with $g(G) \geq 5$ and $\delta(G) \geq 2$ then $\gamma_{\text {cild }}(G) \leq p-\beta_{0}(G)$.
Proof. By Theorem 2.12, if girth $g(G) \geq 5$ and $\delta(G) \geq 2$ and if S is a maximum independent set, then $V-S$ is also a co-isolated locating dominating set. Hence $\gamma_{\text {cild }}(G) \leq|V-S|=p-\beta_{0}(G)$. Equality holds, if $G \cong C_{2 n}, n \geq 3$.

In the following, an upper bound of $\gamma_{c i l d}(G)$ in terms of order, leaves and supports of G is obtained.
Theorem 3.10. If G is a bipartite graph with $g(G) \geq 5$ and $\delta(G) \geq 2$ then $\gamma_{c i l d}(G) \leq \frac{p-l(G)+s(G)}{2}$.
Proof. Assume $\delta(G) \geq 2$ and $g(G) \geq 6$. By Proposition 2.13, $\beta_{0}(G) \geq \frac{p+l(G)-s(G)}{2}$. Therefore, $p-\beta_{0}(G) \leq p-$ $\frac{p+l(G)-s(G)}{2}=\frac{p-l(G)+s(G)}{2}$.

4. Conclusion

In this paper, an upper bounds of $\gamma_{\text {cild }}(\mathrm{G})$ in terms of the order, maximum degree, diameter, independence number are obtained. Also the graphs for which $\gamma_{\text {cild }}(G)=p-2$ are characterized. This paper can also be developed by finding the lower bound of $\gamma_{\text {cild }}(G)$ in terms of the some other parameters like minimum degree, girth of G. Finding the co-isolated locating domatic number is the future work.

References

[1] N.Bertrand, I.Charon, O.Hudry and A.Lobstein, Identifying And Locating Dominating Codes on Chains And Cycles, European Journal Of Combinatorics, 25(7)(2004), 969987.
[2] M.Chellai, M.Mimouni and P.J.Slater, On Locating-domination in graphs, Discuss. Math. Graph Theory., 30(2010), 223235.
[3] F.Harary, Graph Theory, AddisonWesley, Reading Mass, (1969).
[4] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamental Of Domination In Graphs, Marcel Dekker, New York, (1997).
[5] V.R.Kulli, Theory of Domination in Graphs, Vishwa International Publications, (2010).
[6] S.Muthammai and N.Meenal, Co-isolated locating Domination Number for some standard Graphs, National conference on Applications of Mathematics \& Computer Science (NCAMCS-2012), S.D.N.B Vaishnav College for Women(Autonomous), Chennai, February 10, (2012), 6061.
[7] S.Muthammai and N.Meenal, Co-isolated Locating Domination Number of a Graph, Proceedings of the UGC sponsored National Seminar on Applications in Graph Theory, Seethalakshmi Ramaswamy College (Autonomous), Tiruchirappalli, 18th \& 19th December (2012), 79.
[8] S.Muthammai and N.Meenal, Coisolated Locating Domination Number For The Complement Of a Doubly Connected Graph, International Journal of Mathematics And Scientific Computing, 5(1)(2015), 5759.
[9] S.Muthammai and N.Meenal, CoIsolated Locating Dominating Number For Cubic Graphs, International Conference on Mathematical Computer Engineering(ICMCE 2015), Organized by the School of Advanced Sciences, VIT University, Chennai, December (2015), 1415.
[10] O.Ore, Theory of Graphs, Amer. Math. Soc. Coel. Publ. 38, Providence, RI, (1962).
[11] D.F.Rall and P.J.Slater, On location domination number for certain classes of graphs, Congrences Numerantium, 45(1984), 77106.

[^0]: * E-mail: meenal_thillai@rediffmail.com

