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Abstract: Let G(V,E) be a simple, finite and undirected connected graph. A non-empty set S ⊆ V of a graph G is a dominating set,

if every vertex in V −S is adjacent to atleast one vertex in S. A dominating set S ⊆ V is called a locating dominating set,
if for any two vertices v, w ∈ V −S, N(v)∩S 6= N(w)∩S. A locating dominating set S ⊆ V is called a co-isolated locating

dominating set (cild - set), if there exists atleast one isolated vertex in 〈V − S〉. The co-isolated locating domination
number γcild is the minimum cardinality of a co-isolated locating dominating set. In this paper, some bounds on co-

isolated locating domination number are obtained. Also minimal cild - sets are characterized. Further the graphs for

which γcild to be p− 2 are obtained.
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1. Introduction

Let G = (V,E) be a simple graph of order p and size q. For v ∈ V (G), the neighborhood NG(v) (or simply N(v)) of v is the

set of all vertices adjacent to v in G. If a graph and its complement are connected, then the graph is said to be a doubly

connected graph. Let v be a vertex of a connected graph G. The eccentricity eG(v) of v is the distance to a vertex farthest

from v. Thus eG(v) = max{dG(u, v) : u ∈ V (G)}. The minimum and maximum eccentricities are the radius and diameter

of G, denoted r(G) and diam(G) respectively. The length of a shortest cycle of G is called girth of G and is denoted by

g(G). A set S of vertices in a graph G is called an independent set if no two vertices in S are adjacent. The independence

number β0(G) is the maximum cardinality of an independent set. The concept of domination in graphs was introduced by

Ore [10]. A nonempty set S ⊆ V (G) of a graph G is a dominating set, if every vertex in V (G)−S is adjacent to some vertex

in S. A special case of dominating set S is called a locating dominating set. It was defined by D. F. Rall and P. J. Slater

in [11]. A dominating set S in a graph G is called a locating dominating set in G, if for any two vertices v, w ∈ V (G)− S,

NG(v) ∩ S, NG(w) ∩ S are distinct. The locating domination number of G is defined as the minimum number of vertices

in a locating dominating set in G. A locating dominating set S ⊆ V (G) is called a co-isolated locating dominating set, if

〈V − S〉 contains atleast one isolated vertex. The minimum cardinality of a co - isolated locating dominating set is called

the co - isolated locating domination number γcild(G). A co - isolated locating dominating set of minimum cardinality is

called γcild - set and a γld - set is defined likewise. In this paper, some bounds on co - isolated locating domination number

are obtained. Also minimal cild - sets are characterized. Further the graphs for which γcild to be p− 2 are found.
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2. Prior Results

The following results are obtained in [2, 6–9]

Theorem 2.1 ([6]). For any nontrivial simple connected graph G, 1 ≤ γcild(G) ≤ p− 1.

Theorem 2.2 ([6]). For any connected graph G, γcild(G) = 1 if and only if G ∼= K2.

Theorem 2.3 ([7]). For any connected graph G, γcild(G) = 2 if and only if G is one of the following graphs

(a). Pp(p = 3, 4, 5), where Pp is a path on p vertices.

(b). Cp(p = 3, 5), where Cp is a cycle on p vertices.

(c). C5 with a chord.

(d). G is the graph obtained by attaching a pendant edge at a vertex of C3 (or) at a vertex of degree 2 in K4 − e.

(e). G is the graph obtained by attaching a path of length 2 at a vertex of C3.

(f). G is the Bull Graph.

Theorem 2.4 ([6]). For any connected graph G, γcild(G) = p − 1 (p ≥ 4) if and only if V(G) can be partitioned into two

sets X and Y such that one of the sets X and Y say, Y is independent and each vertex in X is adjacent to each in Y and the

subgraph 〈X〉 of G induced by X is one of the following,

(a). 〈X〉 is a complete graph

(b). 〈X〉 is totally disconnected

(c). Any two nonadjacent vertices in V (〈X〉) have common neighbors in 〈X〉.

Theorem 2.5 ([8]). Let G be a doubly connected graph of order p ≥ 5 such that diam(G) = diam(Ḡ) = 2. Then G contains

a co - isolated locating dominating set of cardinality p− 3.

Observation 2.6 ([8]).

(i). If S is a co-isolated locating dominating set of a connected graph G, then S will not be co - isolated locating dominating

set of Ḡ.

(ii). Let S be γcild- set of G such that 〈V − S〉 has exactly one isolated vertex, say v. Let there exist a vertex u ∈ S such

that N(u) ∩ S ⊂ S and N(u) ∩ V − S = (V − S)− {v}.

(a). If there exists no vertex w ∈ V −S such that S ⊆ NG(w), then (S−{u})∪{v} is a co - isolated locating dominating

set of Ḡ. Hence, γcild(Ḡ) ≤ γcild(G).

(b). If there exists a vertex w ∈ V − S such that S ⊆ NG(w), then S ∪ {w} is a co-isolated locating dominating set of

Ḡ and hence γcild(Ḡ) ≤ γcild(G) + 1.

Lemma 2.7 ([8]). If G is a connected graph, then δ(G) ≤ γcild(G), where δ(G) is the minimum degree of G.

Theorem 2.8 ([8]). For any doubly connected graph G of order p ≥ 4,

(a). 4 ≤ γcild(G) + γcildḠ) ≤ 2p− 4 and
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(b). 4 ≤ γcild(G). γcild(Ḡ) ≤ (p− 2)2.

Theorem 2.9 ([8]). Let G be a doubly connected graph with p ≥ 4. Then γcild(G) + γcild(Ḡ) = 4 if and only if G is one

of the following graphs: P4, P5, C5, C5 with a chord and the Bull graph, where Bull graph is a graph obtained by attaching

exactly one pendant edge at any two vertices of C3.

Theorem 2.10 ([8]). Let G = (V,E) be a connected cubic graph with p vertices (p ≥ 4). Then b p+1
3
c ≤ γcild(G) ≤ p

2
.

Theorem 2.11 ([9]). There exists a connected cubic graph G with γcild(G) = a, where a is a positive integer and a ≥ 8.

Theorem 2.12 ([2]). If G is a graph with girth g(G) ≥ 5, then every maximum independent set S is a minimal locating

dominating set. Furthermore, if δ(G) ≥ 2, then V − S is a locating dominating set.

Proposition 2.13 ([2]).

(a). If G is a bipartite graph, then the independence number β0 ≥ p+l(G)−s(G)
2

, where l(G) and s(G) are number of leaves

and that of supports of G respectively.

(b). If G is a bipartite graph with g(G) ≥ 6 and δ(G) ≥ 2, then γcild(G) ≤ p+l(G)−s(G)
2

.

3. Main Results

Observation 3.1. Since every co-isolated locating dominating set is a dominating set as well as a locating dominating set,

γ(G) ≤ γld(G) ≤ γcild(G). Equality holds if G ∼= P5, a path on five vertices.

Example 3.2. In the graph G given in Figure 3.1, {v5} is a γ − set; {v1, v2} is a γld-set and {v1, v2, v3, v5} is a γcild-set.

Therefore (G) = 1, γld(G) = 2 and γcild(G) = 4 and hence γ(G) < γld < γ(G) < γcild(G).

 G  

 

V5 

V4 V3 

V2 V1 

Figure 1.

In the following, the connected graphs for which γcild(G) = p− 2 are characterized.

Theorem 3.3. Let G be a connected graph with p vertices. Then γcild(G) = p − 2 if and only if G is one of the following

graphs.

(a). G is a graph obtained from a complete bipartite graph with bipartition [A,B] by introducing two new nonadjacent vertices

u and v such that N(u) = A, N(v) = B and A ∩B = ∅.

(b). G is a double star Sm,n (m,n ≥ 1).

(c). G is a graph obtained from a complete graph Kp−1 by joining a new vertex to atmost p− 2 vertices of Kp−1.

(d). G is a graph obtained from Kn (n ≥ 3) and K2 by joining a vertex of K2 to a vertex of Kn and the other vertex of K2

to n− 2 vertices of remaining n− 1 vertices of Kn, where n = p− 2.
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(e). G is a graph obtained from two complete graphs Kn and Km (m,n ≥ 2) by joining a vertex of Kn to m− 1 vertices of

Km and a vertex of Km to n− 2 vertices of Kn.

(f). G is a graph obtained from a complete bipartite graph with bipartition [A,B] by introducing two new nonadjacent vertices

u and v such that N(u) ⊃ A, N(v) ⊃ B and N(u) 6= A and N(v) 6= B.

(g). G is a graph obtained from the star K1,p−2 by joining a new vertex to s pendant vertices of K1,p−2, where s < p− 2.

(h). G is a graph obtained from a complete bipartite graph Km,n (m,n ≥ 2 and m + n = p − 1) by joining a new vertex to

m+ n− 1(= p− 2) vertices of Km,n.

(i). G is a graph such that V(G) can be partitioned into two sets X and Y such that 〈X〉 is complete, 〈Y 〉 is a star and each

vertex in Y is adjacent to the same |V (G)| − 1 vertices of 〈X〉.

(j). G is a graph such that V(G) can be partitioned into two sets X and Y such that 〈X〉 is a star and 〈Y 〉 is complete and

each vertex in Y is adjacent to all the vertices of the star except the central vertex.

Proof. Assume γcild(G) = p− 2. Then there exists a γcild set S of G having p− 2 vertices and V − S has 2 vertices. Let

V − S = {u, v}, where u, v ∈ V (G). Since 〈V − S〉 contains atleast one isolated vertex, uv 6∈ E(G). Also S is a locating

dominating set and hence N(u) ∩ S 6= N(v) ∩ S. Let N(u) ∩ S = A and N(v) ∩ S = B. Therefore A 6= B.

Case 1: A ∩B = ∅

Assume both 〈A〉 and 〈B〉 have atleast one edge. Since G is connected, there exists an edge in G joining a vertex of A and

a vertex of B. If 〈A〉 is not complete, then there exists a pair of nonadjacent vertices say a1, a2 in 〈A〉 such that atleast one

of a1, a2 has degree greater than or equal to 2. Then the set V (G)− {u, v, a1} (or) V (G)− {u, v, a2} is a cild set of G and

hence γcild(G) ≤ p − 3. Therefore 〈A〉 is complete. Similarly, it can be proved that 〈B〉 is also complete. That is, if both

〈A〉 and 〈B〉 have atleast one edge, then 〈A〉 and 〈B〉 are complete. Therefore, one of the following cases arises.

(a). Both 〈A〉 and 〈B〉 are complete.

(b). Both 〈A〉 and 〈B〉 are totally disconnected.

(c). One of 〈A〉 and 〈B〉 is complete and the other is totally disconnected.

Let e = (a, b) (a ∈ A, b ∈ B) be an edge in G.

Subcase 1.a: Both 〈A〉 and 〈B〉 are complete

Assume each vertex in V (G)−{u, v} is adjacent to either u (or) v. If |A| = |B| = 1, then G ∼= P4 and γcild(G) = 2. Assume

one of A and B has atleast two vertices. Let |A| = 1 and |B| ≥ 2 and N(u) = {a1}, N(v) = {b1, b2}. Then V (G)−{u, b1, b2}

is a cild set of G. Assume |A| ≥ 2 and |B| ≥ 2. Consider the set S1 = V (G) − {u, v, a}. Then V − S1 = {u, v, a}. In

〈V −S1〉, v is an isolated vertex and N(u)∩S = A; N(v)∩S = B and A∩B = ∅. Therefore, S1 is a cild set of G and hence

γcild(G) ≤ p− 3. Similarly, if there exists a vertex in V (G)− {u, v} adjacent to neither u nor v, then also there is a cild set

of G having p− 3 vertices.

Subcase 1.b: Both 〈A〉 and 〈B〉 are totally disconnected

Let each vertex in V (G)− {u, v} be adjacent to either u or v. Assume one of A and B has atleast two vertices. Let A have

atleast two vertices. If there exist vertices a1 ∈ A, a2 ∈ B such that a1b1 6∈ E(G), then the set S2 = V (G)− {a, a1, b1} is a

cild set of G, since V (G) − S2 = {a, a1, b1} is independent, N(a) ∩ S2 = {u, b}, N(a1) ∩ S2 = {u} and N(b1) ∩ S2 = {v}.

Therefore γcild(G) ≤ p− 3. Hence each vertex in A is adjacent to each in B. That is, 〈A∪B〉 is a complete bipartite graph.

Therefore G is a graph obtained from a complete bipartite graph with bipartition [A,B] by introducing two new vertices u
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and v such that N(u) = A, N(v) = B and A∩B = ∅. Let there exist a vertex in V (G)−{u, v} adjacent to neither u nor v.

Assume |A| ≥ 1 and |B| ≥ 2. Let w ∈ V (G) − {u, v} be adjacent to neither u nor v. Then w is adjacent to atleast one of

the vertices in N(u) ∪N(v). Let degG(w) = 1 and let w be adjacent to the vertex say a1 in N(u). Let b1, b2 ∈ N(v). Then

the set S3 = {w, a1, b1} is a cild set of G and u is isolated in V (G)− S3.

Similarly is the case when degG(w) ≥ 2. Consider |A| = 1 and |B| = 1. Let a1, b1 be adjacent to a vertex of N(u) and N(v)

respectively and if a1 is adjacent to b1, then there exists a cildset of cardinality p− 3. Therefore there exist pendant vertices

in G adjavent to vertices in N(u) and N(v). If G is a star, then γcild(G) = p− 1. Therefore, G is a double star.

Subcase 1.c: 〈A〉 is complete and 〈B〉 is totally disconnected.

Here also the set V (G)− {u, v, a} is a cild-set of G and hence γcild(G) ≤ p− 3.

Case 2: A ∩B 6= ∅

Without loss of generality, the sets A and B (A ∩B) are considered. As in Case(1), one of the following cases arise.

(a). Both 〈A〉 and 〈B − (A ∩B)〉 are complete.

(b). Both 〈A〉 and 〈B − (A ∩B)〉 are totally disconnected.

(c). 〈A〉 is complete and 〈B − (A ∩B)〉 is independent.

(d). 〈A〉 is independent and 〈B − (A ∩B)〉 is complete.

Subcase 2.a: Both 〈A〉 and 〈B − (A ∩B)〉 are complete.

Assume B − (A ∩B) 6= ∅. Let b1 ∈ B − (A ∩B) be not adjacent to a vertex, say a1 ∈ A ∩B. Then V (G)− {a1, b1, u} is a

cild-set of G and hence γcild(G) ≤ p− 3. Therefore each vertex in B − (A ∩B) is adjacent to each in A ∩B. Similarly v is

adjacent to all the vertices of A− (A∩B). That is, v is adjacent to all the vertices of A. In this case G is a graph obtained

from a complete graph Kp−1 by joining a new vertex to atmost p − 2 vertices of Kp−1. Assume B − (A ∩ B) = ∅. Then

B = A ∩ B. That is, u is adjacent to all the vertices of N(u)(= B). Since A 6= B, A ∩ B 6= A. That is v is not adjacent

to atleast one vertex of N(u)(= A). Therefore, |A| ≥ 2, |B| ≥ 1. Assume |A| ≥ 2 and |B| = 1. Let |B| = b1. Then u is

adjacent to b1 if one of the following conditions holds

(i). v is adjacent to |A| − 1 vertices of A(= N(u))

(ii). v is adjacent to t vertices of A(= N(u)) where 1 ≤ t ≤ |A| − 2 and each vertex in A is adjacent to b1.

If (i) holds, then G is a graph obtained from Kn(n ≥ 2) and K2 by joining a vertex of K2 to a vertex of Kn and the other

vertex of K2 to n− 2 vertices of remaining n− 1 vertices of Kn(n = p− 2).

If (ii) holds, then G is a graph obtained from Kp−1 by joining a new vertex of atmost p− 2 vertices of Kp−1. Let |A| ≥ 2,

|B| ≥ 2. As above one of the following holds

(iii). v is adjacent to |A| − 1 vertices of A.

(iv). v is adjacent to t vertices of A where 1 ≤ t ≤ |A| − 2 and each vertex in A is adjacent to each in B.

If (iii) holds, then G is a graph obtained from complete graphs Kn and Km (m,n ≥ 2) by joining a vertex of Kn to m− 1

vertices of Km and a vertex of Km to n− 2 vertices of Kn.

If (iv) holds, then G is a graph obtained from Kp−1 by joining a new vertex to atmost p− 2 vertices of Kp−1.

Subcase 2.b: Both 〈A〉 and 〈B(A ∩B)〉 are totally disconnected.
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Assume B− (A∩B) 6= ∅. Here also each vertex in B− (A∩B) is adjacent to each in A and v is adjacent to each vertex in A.

Therefore G is a graph obtained from a complete bipartite graph with bipartition [A,B] by introducing two new nonadjacent

vertices u and v such that N(u) ⊃ A, N(v) ⊃ B and N(u) 6= A, N(v) 6= B. Assume B − (A ∩ B) = ∅. Then B = A ∩ B.

That is, u is adjacent to all the vertices of N(v). Then either G is a graph obtained from the star K1,p−2 by joining a new

vertex to s pendant vertices of K1,p−2 where s < p − 2 and this graph is denoted by Ks
1,p−2 (s < p − 2) (or) G is a graph

obtained from a complete bipartite graph Km,n (m,n ≥ 2 and m+n = p− 1) by joining a new vertex to m+n− 1(= p− 2)

pendant vertices of Km,n.

Subcase 2.c: Either 〈A〉 is complete and 〈B − (A ∩ B)〉 is totally disconnected (or) 〈A〉 is totally disconnected and

〈B − (A ∩B)〉 is complete.

Assume B − (A ∩B) 6= ∅. In both the cases, each vertex in B − (A ∩B) is adjacent to each in A and v is adjacent to each

vertex in A. Then either G is a graph in which V (G) can be partitioned into two sets X and Y such that 〈X〉 is complete,

〈Y 〉 is a star and each vertex in Y is adjacent to the same |V (X)| − 1 vertices of 〈X〉 (or) G is a graph in which V (G) can

be partitioned into two sets X and Y such that 〈X〉 is a star and 〈Y 〉 is complete and each vertex in Y is adjacent to all the

vertices of the star except the central vertex. From all the cases, it is concluded that G is one of the graphs given in the

theorem. Conversely if G is one of the graphs given in the theorem, then γcild(G) = p− 2.

In the following, the minimal cild-sets are characterized.

Theorem 3.4. A cild-set S of a connected graph G is minimal if and only if each vertex v ∈ S satisfies one of the following

conditions,

(i). v is an isolated vertex of S.

(ii). There exists a vertex u ∈ V − S such that N(u) ∩ S = {v}

(iii). v is adjacent to all the isolated vertices in V − S.

(iv). there exists a vertex u ∈ V − S such that both u and v have common neighbor in S.

Proof. Let S be a minimal cild-set of G. Then for every v ∈ S, S − {v} is not a cild-set of G. Then one of the following

conditions holds

(a). S − {v} is not a dominating set

(b). V − (S − {v}) does not contain any isolated vertices.

(c). Any two vertices in V − (S − {v}) have common neighbors in S − {v}.

(a). implies the conditions (i) and (ii).

(b). implies that, v is adjacent to all the isolated vertices in V − S.

(c). implies that there exists a vertex u ∈ V − S such that u and v have common neighbors in S.

Conversely, let S be a cild-set of G. Assume for each v ∈ S, one of the conditions (i)-(iv) holds. By (i) and (ii), S − {v} is

not a dominating set of G, since v is not adjacent to any vertex in S − {v}. By (iii), V − (S − {v}) has no isolated vertices.

By (iv), S − {v} is not a locating set of G. Therefore, S − {v} is not a cild-set of G, for all v ∈ S. Hence, S is a minimal

cild-set of G.

In the following, an upper bound of γcild(G) in terms of maximum degree ∆(G) is obtained.
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Theorem 3.5. For any connected graph G on p vertices, γcild(G) + ∆(G) ≤ 2p− 2.

Proof. For any connected graph G, γcild(G) ≤ p− 1 and ∆(G) ≤ p− 1 and hence γcild(G) + ∆(G) ≤ 2p− 2.

In the following, the connected graphs G for which γcild(G) + ∆(G) = 2p− 2 are characterized.

Theorem 3.6. For any connected graph G on p (p ≥ 4) vertices, γcild(G) + ∆(G) = 2p−2 if and only if G ∼= K1,p−1, p ≥ 4

(or) V (G) can be partitioned into two sets X and Y such that Y is independent and each vertex in Y is adjacent to each in

X and either |Y | = 1 (or) there exists atleast one vertex in 〈X〉 of degree (m− 1) where |V (X)| = m.

Proof. Let γcild(G) + ∆(G) = 2p− 2. Then γcild(G) = p− 1 and ∆(G) = p− 1. But γcild(G) = p− 1 if and only if V (G)

can be partitioned into two sets X and Y such that one of the sets X and Y, say Y is independent and each vertex in X is

adjacent to each vertex in Y and 〈X〉 is one of the following.

(a). 〈X〉 is a complete subgraph of G.

(b). 〈X〉 is totally disconnected.

(c). Any two non - adjacent vertices in V (〈X〉) have common neighbors in 〈X〉.

Case 1: 〈X〉 is a complete subgraph of G

Since each vertex in X is adjacent to each in Y, the vertices of X have degree (p− 1) in G. For this graph, ∆(G) = p− 1.

Case 2: 〈X〉 is totally disconnected

Since ∆(G) = p− 1, X contains exactly one vertex. Therefore, G ∼= K1,p−1, p ≥ 4.

Case 3: Any two non-adjacent vertices in V (〈X〉) have common neighbors in 〈X〉

In this case 〈X〉 is not complete. Let |V (〈X〉)| = m, m < p. Therefore, |Y | = p −m. Let v be vertex in 〈X〉 of degree t,

where t < m − 1. Let u, v ∈ V . If u, v ∈ X, then dG(u, v) ≤ 2. Therefore, diameter of G is 2. If diam(G) = rad(G) = 2,

then there exists no vertex of degree p − 1 in G. Therefore ∆(G) ≤ p − 2. Assume γ(G) = 1. If Y has exactly one vertex,

then that vertex has degree p − 1 in G. Otherwise there must exist a vertex in 〈X〉 of degree m − 1 in 〈X〉. Hence G is a

graph with γ(G) = 1 and V (G) can be partitioned into two sets X and Y such that Y is independent and each vertex in X

is adjacent to each vertex in Y and either |Y | = 1 (or) 〈X〉 has a vertex of degree (m− 1), where |V (X)| = m.

In the following, an upper bound of γcild(G) in terms of order and diameter is proved.

Theorem 3.7. Let G be a connected graph of order p and diameter d ≥ 4. Then γcild(G) + d 3d−3
5
e ≤ p and the bound is

sharp.

Proof. Let u, v ∈ V (G) be two diametral vertices and let P be a diametral path joining u and v. Let V (P ) = {u =

1, 2, 3, . . . , v = d}, where d = 5h + k with 0 ≤ k ≤ 4. Then for k = 0, the set A1 = {2, 4, . . . , 5h − 3, d − 1}; for 1 ≤ k ≤ 2,

the set A2 = {2, 4, . . . , 5h− 3, 5h− 1, d} and for 3 ≤ k ≤ 4, the set A3 = {2, 4, . . . , 5h− 3, 5h− 1, d− 2, d} are the γcild-sets

of P and these sets have b 2d+4
5
c elements. The set S = V (G) − V (P ) − Ai has p − d 3d−3

5
e elements and it is a co-isolated

locating dominating set of G. Hence γcild(G) ≤ p − d 3d−3
5
e. That is, γcild(G) + d 3d−3

5
e ≤ p. This bound is attained when

G ∼= P5n+1, n ≥ 1.

Lemma 3.8. Let G be a graph of order p and γcild(G) ≥ p− 2. Then diam(G) ≤ 3.

Proof. Assume γcild(G) ≥ p−2. Suppose that diam(G) ≥ 4. Let u, v ∈ V (G) such that d(u, v) = 4 and let P be a shortest

path joining u and v. Let P = {u, x, w, y, v} where x,w, y ∈ V (G). Let S = V (G) − {u,w, v} and N(u) ∩ S, N(v) ∩ S,

N(w) ∩ S, are nonempty and distinct. Also the vertices u, w, and v are isolated in 〈V − S〉. Therefore γcild(G) ≤ p − 3,

which is a contradiction. Hence diam(G) ≤ 3.
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In the following, an upper bound of γcild(G) in terms of order and independence number is proved.

Theorem 3.9. If G is a connected graph with g(G) ≥ 5 and δ(G) ≥ 2 then γcild(G) ≤ p− β0(G).

Proof. By Theorem 2.12, if girth g(G) ≥ 5 and δ(G) ≥ 2 and if S is a maximum independent set, then V − S is also a

co-isolated locating dominating set. Hence γcild(G) ≤ |V − S| = p− β0(G). Equality holds, if G ∼= C2n, n ≥ 3.

In the following, an upper bound of γcild(G) in terms of order, leaves and supports of G is obtained.

Theorem 3.10. If G is a bipartite graph with g(G) ≥ 5 and δ(G) ≥ 2 then γcild(G) ≤ p−l(G)+s(G)
2

.

Proof. Assume δ(G) ≥ 2 and g(G) ≥ 6. By Proposition 2.13, β0(G) ≥ p+l(G)−s(G)
2

. Therefore, p − β0(G) ≤ p −
p+l(G)−s(G)

2
= p−l(G)+s(G)

2
.

4. Conclusion

In this paper, an upper bounds of γcild(G) in terms of the order, maximum degree, diameter, independence number are

obtained. Also the graphs for which γcild(G) = p − 2 are characterized. This paper can also be developed by finding the

lower bound of γcild(G) in terms of the some other parameters like minimum degree, girth of G. Finding the co-isolated

locating domatic number is the future work.
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