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Abstract: A Mathematical model for the two phase flow of blood in a narrow capillary surrounded by the tissue has been presented in
this paper. We have developed the earlier two phase models of blood flow in capillaries into a model of capillary-tissue fluid

exchange system by including porous tissue enclosing the capillary. Blood is not a homogeneous fluid, It is a suspension.
The suspended blood cells accumulate at the axis in response to flow, resulting in a blunting of the velocity profile near

the axis in contrast to the parabolic profile observed in homogeneous fluids. Earlier models have not included the effect of

fluid exchange in between the capillary and the tissue while microtubes or capillaries are surrounded by tissue. Therefore,
our aim is to include effects of permeability of the tissue with two phase flow of blood in narrow tubes. The model consists

of a core region of suspension of all erythrocytes and a peripheral layer of plasma surrounding the core. The governing

partial differential equations have been solved by using mathematical and computational techniques. Analytical results,
in the proposed model for apparent viscosity, Bluntness and ratio of capillary hematocrit with discharge hematocrit values

have been presented and discussed through graphs for various values of parameters and with their axial variations.
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1. Introduction

Microcirculation deals with the flow of blood from arterioles to capillaries or sinusoids to venule through a vessel channel

called a thoroughfare channel. Capillaries extend from this channel and structures control the flow of blood between the

arterioles and capillaries due to vasomotion and dilation. The blood flow through narrow tubes has been of great interest

to both physiologist and biomedical engineers due to its relevance to flow in microcirculation, the most important segment

in the whole circulatory system. All exchange between the blood and the organs of nutrients, oxygen, and waste products

and carbon dioxide takes place through capillary tissue exchange system. The blood fulfills its real functions. One could

say that the whole circulatory machine exist for their sake.

Microcirculatory disorders are major contributors to morbidity and mortality. Despite the research and developments

efforts of many laboratories, no substitute has yet been developed that can carry out the essential functions that the whole

blood performs in the circulatory system particularly in microcirculation. There is need to better understand how the

special characteristics of blood and its flow properties make it such an effective means for delivery and exchange in the

microcirculation.

Blood is not a homogeneous fluid: it is a suspension. As a result, the viscosity is no longer a well defined material property,

but rather must be defined as an observed resistance to flow. Expressed in this way, the apparent viscosity of blood will
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depend upon the confining geometry decreasing with decreasing vessel diameter i.e. it is easier to move blood through

a narrow vessel. This is the most famous flow oddity associated with blood and is called the Fahraeus-Lindquist effect.

Blood flow in small vessels shear gradients or wall wall interactions lead to some inhomogeneous particle distribution.

Therefore geometry of flow is an important consideration. Therefore, we may consider a approach that takes account of the

inhomogeneous particle distribution in tube flow by modeling blood as a layered fluid with a viscous core surrounded by

rings of less viscous fluid [Scott [20]]

In the study of anomalous flow behavior two types of approach has been considered. (a) The use of a non-linear shear stress-

shear rate relationship of some form varying with the flow conditions together with the no slip condition (b) the use of a

constant viscosity with slip at the boundaries. The study postulates that the slip may be present blood flow, its magnitude

depending on the nature of the wall surface, shear at the wall and relative cell volume immediately adjacent to the wall. As

blood possesses a specific, flow independent viscosity, studies proposes to interpret its anomalous flow behavior on the basis

of slip.

The rheological properties of blood, including its non-newtonian characteristics have been known for many years. Such

studies have yielded valuable information on the properties of blood under certain well defined conditions. For numerous

reasons this information is not sufficient to understand the flow behavior of blood in the microcirculation. Firstly, the

rheological properties of the blood in a network, such as the microcirculation with its myriad vessel segments of different

lengths, diameter and flow rates, cant be adequately predicted from viscometry in much simpler system. Second, in the

microcirculation, the luminal surface of the vessel wall is coated with a fibrous material that retards, to varying degrees

depending on flow rate, the flow of blood in the immediate vicinity of the wall, the tissue. These factors motivate us to

study the flow of blood in a capillary surrounded by tissue and including capillary tissue fluid exchange phenomena.

Pries and coworkers in a series of papers [15–19, 19] derived empirical relationship for the relative apparent viscosity, mean

tube diameter and discharge hematocrit in vivo and in vitro. Prahlad and Scultz [14] used a two fluid model of polar fluid

to analyze the flow of blood with and without stenotic artery. Sharan and Popel [21] suggested a modification on the models

of Haynes [11] and Bugliarello and Sevilla [1] assuming the viscosity in the peripheral layer to be higher than that of plasma

due to additional dissipation of energy caused by the red cell motion near the cell free layer. Two fluid model analysis have

been carried out by Srivastava [23, 24]. Bassinghwaighte applied the two layered models of Haynes [11] and Sharan and

Popel [21] to discuss flow of blood in narrow curved tubes etc. Sheshadri and Jaffrin [22] introduced the outer layer as cell

depleted layer. Hematocrit of cell depleted layer is lower than the core hematocrit. Several other authors [Gupta et. al.

[10], Haynes [11], Casson [4], Charm and Kurland [3], Eringen [9], Chaturani and Upadhyay [5, 6] have studied the flow

behavior of blood subject to physiological aspects observed in small capillaries. Nair et. al. [13] considered a cell rich core

surrounded by a cell free plasma layer. In this paper, the hematocrit distribution in radial direction was expressed as power

law profile with maximum hematocrit at the centre of the tube. Damiano [7] has presented a semi-empirical model for the

blood flow in glycocalyx lined microvessels greater than 20µm in diameter. The model assumes a steady axisymmetric flow

of a viscous fluid having a smoothly varying crossectional viscosity throughout the tube.

The above models shows the popularity of layered fluid model in the modeling of blood rheology but in all the above models

blood flow has been studied in rigid circular pipe but they have not considered the tube surrounded by tissuea very important

aspect of microcirculation. Therefore, in this paper we have taken the capillary surrounded by the tissue.

Two phase continuum models considering a core of Newtonian viscous fluid, representing the concentrated RBC core sus-

pension and an annual concentric layer of a less viscous Newtonian fluid representing the cell depleted layer are in reasonable

quantitative agreement with experimental data on the apparent viscosity (Fehraeus-Lindquist effect) of blood flow in tubes

≥ 30 µm in diameter.
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Blood in the capillary is considered as two phase flow: cell rich core and the peripheral layer of plasma. Under the high

shear stress the fluid in both regions are considered as Newtonian fluid of different viscosities. We have studied the effect of

tissue permeability and discharge hematocrit on the Fahraeus effect and Fehraeus-Lindquist effect. We have also discussed

effects of discharge hematocrit and permeability on apparent viscosity, Bluntness of the velocity profile and ratio of core

hematocrit to the discharge hematocrit in capillary.

2. Formulation of The Problem

We have considered a uniform cylindrical capillary of length l and radius R. The capillary is surrounded by a tissue of

thickness H. In the capillary region blood is represented as a two fluid model consist of central core region and peripheral

layer region. Central core region is assumed to be uniform hematocrit of radius rh and viscosity µc and central core region

is covered by cell free layer containing plasma with viscosity µ0. The fluid in both regions is assumed Newtonian. Under

the high shear stress the fluid in both regions are considered as Newtonian fluid of different viscosities.

Figure 1. Schematic diagram of the model

We restrict ourselves to small enough Reynoldss number so that under the assumptions of slow viscous motion inertia terms

are neglected and hence the governing equations for the fluid flow in different regions are represented by the creeping flow

equation given below:

(i). For the central core region with red blood cells

− ∂P′

∂x′
+
µc
r′

∂

∂r′

(
r′
∂uc
′

∂r′

)
= 0 (1)

(0 ≤ r < rh)

− ∂uc
′

∂x′
+

1

r′
∂

∂r′
(
r′vc

′) = 0 (2)

where x′ and r′ are the axial and radial coordinates, P ′ is the pressure in of the fluid in capillary µc is the viscosities

of fluid in core and region, µc , and vc are axial and radial component of the velocity in core region, is the radius of

central core region.

(ii). For the cell free layer (Plasma layer)

− ∂P′

∂x′
+
µ0

r′
∂

∂r′

(
r′
∂u0

′

∂r′

)
= 0 (3)

(rh < r < R)

− ∂u0
′

∂x′
+

1

r′
∂

∂r′
(
r′v0

′) = 0 (4)

where µ0 are the viscosity of fluid in peripheral layer, u0 and v0 are axial and radial component of the velocity in the

cell free layer, R is the radius of capillary region.
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(iii). For the Tissue region

ū′ = −K
µ0

∂P̄′

∂x′
, v̄′ = −K

µ0

∂P̄′

∂r′
(5)

(R < r′ < R+H)

∂ū′

∂x′
+

1

r′
∂

∂r′
(
r′ v̄′

)
= 0 (6)

where P̄′ is the pressure in tissue region, ū′ and v̄′ are the axial and radial component of velocity of fluid in tissue

region, K is the permeability of the fluid at the interface, H is the thickness of the tissue.

The Boundary Conditions for Solving the above Equations are Given as

Due to symmetry, the velocity gradient vanishes along the axis of the tube

∂uc
′

∂r′
= 0 at r′ = 0

The velocity and shear stress are continuous at the interface of plasma and the core

uc
′ = u0

′ at r′ = r′h

µc
∂uc
′

∂r′
= µ0

∂u0
′

∂r′
at r′ = r′h

Slip velocity is assumed at the porous boundary

u0
′ − ū′ = −σ∂u0

′

∂r′
at r′ = R

No flux condition is assumed at the outer surface of tissue

∂P̄′

∂r′
= 0 at r′ = R+H ′

There is no transfer of fluid through the annular ends of the tissue

∂P̄′

∂x′
= 0 at x′ = 0

∂P̄′

∂x′
= 0 at x′ = l′

Pressure across the boundary are assumed continuous

P′ = P̄′ at r′ = R

Normal velocity at the central line is assumed zero

vc
′ = 0 at r′ = 0

At the entry of the capillary the fluid pressure is equal to the pressure at the arterial end we assume the fluid pressure equal

to the pressure at venous end

P′ = P0
′ at x′ = 0

P′ = Pl
′ at x′ = l′ (7)
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where σ is the slip parameter and l′ is the length of the capillary, P ′0 is the pressure at the arterial end and P 1 is the pressure

at the venous end.

Solutions

We now introduce the following non-dimensional scheme before finding the solution of the problem.

P =
P′

ρ ub0
2
, x =

x′

R
, Pl =

Pl
′

ρ ub0
2
, r =

r′

R
, uc =

uc
′

ub0
, l =

l′

R
, P̄ =

P̄′

ρ ub0
2

u0 =
u0
′

ub0
, vc =

vc
′

ub0
, v0 =

v0
′

ub0
, rh =

rh
′

R
, H =

H ′

R
, P0 =

P0
′

ρ ub0
2
, Re =

ρ ub0R

µ0
(8)

where Ub0 is the mean velocity in the capillary, Re is the Reynolds number.

Solution of the Problem

Substituting and in equation of continuity we get the Laplace equation, which has been solved by method of separation of

variables, Thus we get pressure distribution in porous region using boundary and interfaces conditions as:

P̄ = E0 +
KRe

R2

∞∑
n=1

En

{
K0 〈αn, r〉 I1 〈αn, 〈1 +H〉〉+ I0 〈αn, r〉K1 〈αn, 〈1 +H〉〉

I1 〈αn, 〈1 +H〉〉

}
cos 〈αn, x〉 (9)

where

αn =
nπ

l

E0 = 2

(
C5

l

2
+ C6

)
En =

2C5

`

αn
2 {(−1)n − 1}

{αn2F1 〈αn〉 − 16DF3 〈αn〉}

F3 〈αn〉 =
F2 〈αn〉+ αnF1 〈αn〉

Re
{
rh2

(
µ0
µc

)
− (1 + 4σ)

}
F1 (αn) =

{
K0 〈αn〉 I1 〈αn 〈1 +H〉〉+ I0 〈αn〉K1 〈αn 〈1 +H〉〉

I1 〈αn 〈1 +H〉〉

}
F2 (αn) =

{
I1 〈αn〉K1 〈αn 〈1 +H〉〉 −K1 〈αn〉 I1 〈αn 〈1 +H〉〉

I1 〈αn 〈1 +H〉〉

}

and K0, K1, I0 and I1 are modified Bessel’s functions of order zero and one respectively. Solving equation of motion using

boundary and interfacial conditions velocity in peripheral layer as given by:

u0 =

[
Re

∂P

∂x

{
r2 − (1 + 4σ)

4

}]
− 16

KRe

R2

∞∑
n=1

EnαnF1 (αn) sin (αnx) (10)

and velocity in the core region is obtained as:

uc = Re
∂P

∂x

[{(
r2 − rh2

)
µ0

4µc

}
−
{
rh

2 − (1 + 4σ)

4

}]
− 16

KRe

R2

∞∑
n=1

EnαnF1 (αn) sin (αnx) (11)

Using equation of continuity, we obtained the expression for Pressure distribution in capillary region with the help of

boundary condition

P = 16
KRe

R2

∞∑
n=1

En F3 〈αn〉 cos 〈αnx〉+ C1x+ C2 (12)
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where

C1 =
Pl − P0

ε+ l

ε = 16
KRe

R2

∞∑
n=1

{(−1)n − 1}2F3 〈αn〉
lαn

{
αn2F1 〈αn〉 − 16KRe

R2 F3 〈αn〉
}

C2 = P0 − 16
KRe

R2

∞∑
n=1

EnF3 〈αn〉
1

αn

Equation (11) can be expressed as

uc = umax

(
1−Br2

)
(13)

where

umax =

{
Re

∂P

∂x

{(
rh

2 − (1 + 4σ)
)

4
− µ0

4µc
rh

2

}
+

(
KRe

R2

) ∞∑
n=1

EnF1 (αn) sin (αnx)

}
(14)

and B is defined as bluntness as given by

B =

16D
(
ρub0

R

µc

) ∞∑
n=0

EnF3 〈αn〉 cos 〈αnx〉+ C1{
Re ∂P

∂x

{
(rh2−(1+4σ))

4
− µ0

4µc
rh2
}

+
(
16KRe
R2

) ∞∑
n=1

EnF1 (αn) sin (αnx)

} , (15)

Volumetric flow rate of the blood is given as

Q = 2πR2

rh∫
0

uc(r) r dr + 2πR2

1∫
rh

u0(r) r dr (16)

Overall mass balance of the cells defined in the capillary is

QHd = 2πR2

1∫
0

r u(r)h(r) dr (17)

where Hd is the discharge hematocrit

h (r) =

 Hc

0

0 ≤ r ≤ rh

rh < r < 1

 (18)

By solving the equation (16) and (17) and using the velocity from equation (10) and (11) we have

Q = 2πR2

{
Re

∂P

∂x

{
rh

4

16

(
−µ0

µc

)
+

{
rh

4

4
− (1 + 4σ)

4

}}
+

(
KRe

R2

) ∞∑
n=1

EnαnF1 (αn) sin (αnx)
1

2

}
(19)

QHd = 2πR2Hc

[
Re

∂P

∂x

{
rh

4

16

(
−µ0

µc

)
+

{
rh

4

4
− (1 + 4σ)

4

}}
−
(
KRe

R2

) ∞∑
n=1

EnαnF1 (αn) sin (αnx)
rh

2

2

]
(20)

Hc
Hd

=
Q

2πR2

[
Re ∂P

∂x

{
rh

4

16

(
−µ0
µc

)
+
{
rh

4

4
− (1+4σ)

4

}}
−
(
KRe
R2

) ∞∑
n=1

EnαnF1 (αn) sin (αnx) rh
2

2

] (21)

By Poiseuille Law we have

Q =
πPR4

8µapp
(22)

Comparing (20) and (22) we have obtained the expression for apparent viscosity as given below:

µapp =

16KRe
∞∑
n=0

En
1
αn
F3 〈αn〉 cos 〈αnx〉+ C1

16Hc
Hd

[
Re ∂P

∂x

{
rh

4

16

(
−µ0
µc

)
+
{
rh

4

4
− (1+4σ)

4

}}
−
(
KRe
R2

) ∞∑
n=1

EnαnF1 (αn) sin (αnx) rh
2

2

]
It is worth mentioning for the validation of the above model that in the absence of surrounding tissue (i.e. permeability

K = 0) and when the core fluid changes to fluid as in peripheral region (i.e. when µc = µ0) Poiseuille’s flow is recovered.
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3. Results and Discussions

In this paper, we have studied the anomalous behavior of blood in capillaries surrounded by the tissue. When capillary is

surrounded by tissue, some fluid exchange also exists between the capillary and tissue. The tissue being porous imbibes

the plasma, therefore total flux does not remain constant throughout the capillary length. Therefore, pressure gradient,

apparent viscosity, hematocrit and bluntness depend also on axial distance due to the axial variation of fluid flux at the

capillary-tissue interface. Therefore, we have analysed the effect of permeability of the tissue on pressure gradient(figures-2

& 3), apparent viscosity of blood(figures-4 & 5), hematocrit (FahraeusLindquist effect (figures-6 & 7) and the bluntness of

velocity profile for different discharge hematocrit and permeability of the tissue(figures-8 & 9) with diameter of the tube.

Figure 2 and 3 depict that the pressure gradient decreases with axial distance within the capillary and with increasing values

of the discharge hematocrit and permeability of the tissue. As the discharge hematocrit decreases core hematocrit increases

which intern increases the viscosity of the blood therefore pressure gradient increases. We also know that if the permeability

increases, more plasma will enter the tissue and the pressure gradient will increase due to the increase in viscosity of blood

in capillary. The same result have been observed through graphs of figure 2 and 3.

Figures 4 and 5 present the variation of apparent viscosity with diameter of the capillary for different values of discharge

hematocrit and permeability respectively. Figigure-4 shows the variation of apparent viscosity with the diameter of capillary
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for different discharge hematocrit. When discharge hematocrit increases, ratio of Hc/Hd decreases and apparent viscosity

decreases near the arterial end and thereafter it increases with increasing values of the diameter of capillary. This may be

due to the capillary tissue fluid exchange phenomena. As the diameter decreases more fluid enters the tissue due to the

increase in intra-transmural pressure. Apparent viscosity of the blood in the capillary increases as the discharge hematocrit

decreases. It causes an increase in the viscosity. Apparent viscosity decreases as diameter of the vessel decreases. Results

are similar to the Fahraeus effect i.e. dependence of tube or vessel hematocrit on tube diameter. This reduction of apparent

viscosity may be due to the flexibility of erythrocytes which makes them more prone to radial migration. Figure-4 shows

the decrease in apparent viscosity with tube diameter as the permeability increases for the same reason.

128



Rekha Bali, Swati Mishra and P.N.Tandon

Figures 6 & 7 present the variation of Hc/Hd with capillary diameter for different values of discharge hematocrit and tissue

permeability respectively. As the discharge hematocrit increases, the ratio (Hc/Hd) decreases and the results of the figure-6

are in order. As permeability increases more fluid (i.e. base fluid or plasma) enters inside tissue which increases concentration

of red blood cells in the capillary and the ratio (Hc/Hd) increases near the arterial end and decreases thereafter.

Figures 8 and 9 show that the bluntness increases as the tube diameter increases. B is the bluntness parameter. It represents

the deviation from parabolic profile. If B = 1, velocity profile is parabolic and when B = 0 corresponds to total plug flow,

Thus, B represents deviation from parabolic velocity profile. These figures shows that as diameter decreases Bluntness
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parameter decreases therefore velocity profile become more blunt. It has already been observed that measurements of

velocity in arterioles under 60µm internal diameter demonstrate blunted velocity profiles with some degree of asymmetry.

The degree of bluntness increases in the smaller vessels [Ellsworth & Pittman [8], Nakano et al [12]]. The effects discharge

hematocrit and Permeability also depict the anticipated results with increase in tube hematocrit.

4. Conclusion

As we described earlier that blood is not a homogeneous fluid: it is a suspension. As a result the viscosity is no longer a well

defined property, but rather must be defined as a observed resistance to flow. Express in this way, the apparent viscosity of

blood will depend upon the confining geometry. But in blood vessels like capillaries which are surrounded by porous tissue

some fluid exchange occurs between the capillary and tissue. Therefore apparent viscosity total flux, resistance to flow, tube

hematocrit does not remain constant throughout the capillary length. The same result has been observed in present model

which is evident from the graphical results presented above. The result of the analysis has also some effect on Fahraeus

effect and Fahraeus Lindquist effect. The reason behind this is porous boundary of the tube. We have considered a layered

fluid approach for modeling blood rheology to account core annular microstructure as at high of red blood cell along the

axis. However we may use non Newtonian fluid models as a more general approach rather than a layered fluid model and

would be considered in the subsequent communication.
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