

International Journal of Mathematics And its Applications

Algorithmic Aspects of k-Geodetic Sets in Graphs

Research Article

Dr.A.Anto Kinsley^{1*} K.Karthika¹

1 Department of Mathematics, St. Xavier's (Autonomous) College, Palayamkottai, Tamilnadu, India.

Abstract: Let G be a connected graph of order $p \ge 2$. We study about the geodetic sets and k-geodetic sets of G. We study link vectors and prove a theorem to develop an algorithm to find the k-geodetic sets. Initially we study algorithms to find the closed interval between any two vertices of G and to find it's link vectors. In this paper we present two algorithms to check whether a given set of vertices is a k-geodetic set and to find the minimum k-geodetic set of G.

MSC: 68R10, 05C85.

Keywords: Graph, geodetic set, k-geodetic set, graph algorithms. © JS Publication.

1. Introduction

The concepts of a geodetic set and the geodetic number of a graph [3, 4] were introduced by Harary et al., and further studied by several authors. Sergio Bermudo et al., studied about the relation between geodetic and k-geodetic sets in arbitrary graph. Before we present the algorithm, we give a brief description of the computation of link vector of the closed interval of the graph those are involved in our algorithm. By a graph G = (V, E), we mean a finite, undirected, connected graph without loop or multiple edges [5]. We assume that |V| = n throughout this paper. Before we present the algorithm, we give a brief description of the computation of link vector [1] of the graph, which are used to design algorithms [8]. In this paper, we study a binary operation \vee [1] and prove some important results. This operation [1] is used to develop algorithms to check whether a given set of vertices is a k-geodetic set and find the minimum k- geodetic set of G.

In this section, some basic definitions and important results on k-geodetic sets [6, 7] are given.

Definition 1.1. Let G be connected graph of order $p \ge 2$. For an integer $k \ge 1$, a vertex $v \in V$ of G is k-geodominated by a pair $x, y \in V$ if v lies on an x-y geodesic of G and d(x, y) = k. A subset $S \subseteq V$ is a k-geodetic set if each vertex $v \in V/S$ is k-geodominated by some pair of vertices of S. The minimum cardinality of a k-geodetic set of G is the k-geodetic number of G and it is denoted by $g_k(G)$ and that set is called as minimum k-geodetic set.

Example 1.2. For a graph G shown in Figure 1, the k-geodetic number of a graph G is shown in the Table 1.

Κ	k-geodetic set	$g_k(\mathbf{G})$
1	$\{a, b, c, d, e, f\}$	6
2	$\{a, e, b, f\}$	4
3	{a,f}	2

Table 1.

E-mail: antokinsley@yahoo.com

Figure 1.

Theorem 1.3. For any graph G of order n and maximum degree, $g_k(G) \ge \left\lceil \frac{2n}{\Delta(\Delta-1)^{k-1}(k-1)+2} \right\rceil$.

2. Link Vectors

In this section we briefly study about the definition of link vectors, some results [4] and we will use this concept in the algorithm.

Definition 2.1. Characterize each closed interval as a n-tuple. Each place of n-tuple can be represented by a binary 1 or 0. Call this n-tuple as a link vector. Denote LV(I) = I'. Put 1 if the vertex belongs to the closed interval otherwise 0. If all the co-ordinate of the link vector are equal to 1 then it is called as full. Denote I[(1)].

Definition 2.2. Let G be a graph. Let ρ be the set of all LV of G. Define a binary operation $\forall : \rho \times \rho \rightarrow \rho$ by $(v_1, v_2, \dots, v_k) \lor (u_1, u_2, \dots, u_k) = (w_1, w_2, \dots, w_k)$ where $w_i = \max\{v_i, u_i\}$. Now we generalize this idea for more than two LVs. Operation on any number of LVs by \lor can be followed by pairwise. For any $I_i \in \rho(1 \le i \le 4), I'_1 \lor I'_2 \lor I'_3$ means $(I'_1 \lor I'_2) \lor I'_3$ or $I'_1 \lor (I'_2 \lor I'_3)$. $I'_1 \lor I'_2 \lor I'_3 \lor I'_4$ means $(I'_1 \lor I'_2) \lor (I'_3 \lor I'_4)$ and so on.

Theorem 2.3. Let G be a graph with n vertices. Then $\bigvee_{i=1}^{r} I'_i$ is full, where r is the number of closed interval obtained between each pair of vertices of S if and only if $S = \{v_1, v_2, \ldots, v_k\}$ is a geodetic set.

3. Development of Algorithms

In this section first we studied algorithms closed-interval I[S] and link vector $I'[S_2]$ [2] which are used to develop an algorithm to find k-geodetic sets. Next we design an algorithm to check whether a given set of vertices is a k-geodetic set and then find the minimum k-geodetic set of G.

Algorithm 3.1. Algorithm to find $I[v_i, v_j]$.

Procedure closed-interval I[S].

Input: A graph G = (V, E) with its distance matrix and a subset $S = \{v_i, v_j\}$ of V. **Output:** $I[v_i, v_j]$ Let $I[v_i, v_j] = \{v_i\}$ find nbh $\{v_i\}$ if $d(nbh(v_i), v_j) = d(v_i, v_j) - 1$ $I[v_i, v_j] = I[v_i, v_j] \cup \{nbh(v_i)\}$ $v_i = nbh(v_i)$

Here the algorithm collects the neighborhood of each vertex. That is, it works in $deg(v_i)$ number of times to find the neighborhood of v_i . That is, totally it works in 2q times, q is the number of edges in G. Thus it requires O(q) cost of time. Next we develop an algorithm to find the link vector of the closed interval I[S]. **Algorithm 3.2.** Algorithm to find the link vector $I[S_2]$.

Procedure Link vector $I'[S_2]$.

Input: A graph G = (V, E) and a 2-subset S_2 of V with its closed interval $I[S_2]$.

Output: The link vector $I'[S_2]$

 $LV: (x_1, x_2, \dots, x_n)$ for i = 1 to n if $v_i \in I[S_2]$ then put $x_i = 1$

else $x_i = 0$

Here the algorithm takes n verifications. That is, it works O(n) cost of times. Next we develop the following algorithm to check whether the given set S of vertices is k-geodetic or not.

Algorithm 3.3. k-geodetic set confirmation algorithm

Procedure k-geodetic [S].

Input: A graph G = (V, E) with its distance matrix and a subset $S = \{v_1, v_2, \ldots, v_m\}$ and k.

Output: S is a k-geodetic set or not.

Step 1: Find all the 2-subsets S_2 of S

{There are $\binom{m}{2}$ number of subsets S_2 of S}

Step 2: for j=1 to $\binom{m}{2}$

check $d_j(S_2) = k$

if all $d_j(S_2) = k$, then take $L \leftarrow (0)$

for i = 1 to $\binom{m}{2}$

closed interval $I_i[S_2]$

link vector $I'_i[S_2]$

$$L = L \vee I'_i[S_2]$$

If L is full then the given set is a k-geodetic set.

Otherwise S is not a k-geodetic set.

else S is not a k-geodetic set.

In this algorithm, step 2 will work in $\frac{m(m-1)}{2}$ times. Next part of step 2 is the Algorithm 3.1 and 3.2 and hence this part will work with $\frac{m(m-1)}{2}(2q+n)$ verifications. Thus this algorithm requires $O(m^2 + m^2(q+n))$ cost of time, where m is the cardinality of the given vertex subset and q is the number of edges in G. But in this step the given vertex acts as a root and all other vertices are approached through a spanning tree. Therefore there are n + (n-1) verifications needed, since q = n-1 for a tree. Total cost of time is $O(m^2 + ((n-1)+n)m^2)$, that is $O(n^2 + (2n-1)n^2)$, that is $O(n^3)$. Thus this algorithm requires $O(n^3)$ cost of time. Finally we develop an algorithm to find all minimum k-geodetic sets of a graph G.

Algorithm 3.4. Minimum k-geodetic set algorithm.

Input: A graph G = (V, E) with $V(G) = \{v_1, v_2, \dots, v_n\}$ of vertices, it's distance matrix, the maximum degree and the value k.

Output: S_j 's with $g_k(G)$ vertices. **Step 1:** Take $r \leftarrow \lceil \frac{2n}{\Delta(\Delta-1)^{k-1}(k-1)+2} \rceil$ **Step 2:** Take all the $\binom{n}{r}$ subsets S_j of V with m vertices. **Step 3:** for j = 1 to $\binom{n}{r}$ begin

k-geodetic $[S_j]$

if yes then stop and print S_j is a minimum k-geodetic set.

 end

Step 5: Otherwise take r = r + 1 and return to step 2.

In this algorithm, we work on all subsets of V and hence it will be a NP-complete problem.

4. Conclusion

In this paper we studied about the k-geodetic sets on a finite, undirected, connected graph without loop or multiple edges, whose distance and maximum degree are known. We have studied about the link vector of the closed interval of G and a binary operations \vee . Some important results which play a vital role in the algorithm development are found. Initially we have designed an algorithm to check whether the given set of vertices is a k-geodetic set. Then we have presented an algorithm to find the minimum k-geodetic sets of a graph.

References

- A.Anto Kinsley, S.Somasundaram and C.Xavier, An algorithm to find the strong domination number of a graph, 34th Annual Convention of the Computer Society of India, Tata McGraw-Hill Publishing Company limited, New Delhi, (2000), 255-262.
- [2] Dr.A.Anto Kinsley and K.Karthika, An algorithm to find geodetic sets of a graph, (communicated).
- [3] F.Buckley and F.Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA (1990).
- [4] G.Chartrand, F.Harary, H.Swart and P.Zang, Geodomination in graphs, Bull. Inst. Appl., 31(2001), 51-59.
- [5] F.Harary, Graph Theory, Addison-Wesley, New York, (1972).
- [6] R.Muntean and P.Zhang, k-geodomination in graphs, Ars Combinatoria, 63(2002), 161-174.
- [7] Sergio Bermudo, Juan A.Rodriguez-Velazquez, Jose M.Sigarreta and G.Yero, On geodetic and k-geodetic sets in graphs, Arts Combinatoria, 96(2010), 469-478.
- [8] H.S.Wilf, Algorithms and Complexity, Prentice-Hall International, Inc., U.S.A, (1986).