International Journal of Mathematics And its Applications

Graphs with Equal Total Domination and Inverse Total Domination Numbers

Research Article

V.R.Kulli ${ }^{1 *}$
1 Department of Mathematics, Gulbarga University, Gulbarga, India.

Abstract

Let D be a minimum total dominating set of $G=(V, E)$. If $V-D$ contains a total dominating set D^{\prime} of G , then D^{\prime} is called an inverse total dominating set with respect to D . The inverse total domination number $\gamma_{t}(G)$ of G is the minimum cardinality of an inverse total domination set of G. In this paper, we obtain some graphs for which $\gamma_{t}(G)=\gamma_{t}^{-1}(G)$. Also we find some graphs for which $\gamma_{t}(G)=\gamma_{t}^{-1}(G)=\frac{p}{2}$. MSC: 05 C .

Keywords: Total dominating set, inverse total dominating set, inverse total dominating number.
(C) JS Publication.

1. Introduction

By a graph, we mean a finite, undirected without loops, multiple edges or isolated vertices. Any undefined term in this paper may be found in Kulli [1]. A set D of vertices in a graph $G=(V, E)$ is called a dominating set if every vertex in $V-D$ is adjacent to some vertex in D . The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G . Recently several dominating parameters are given in the books by Kulli in [2-4]. Let D be a minimum dominating set of G. If $V-D$ contains a dominating set D^{\prime} of G , then D^{\prime} is called an inverse dominating set of G with respect to D . The inverse domination number $\gamma^{-1}(G)$ of G is the minimum cardinality of an inverse dominating set of G . This concept was introduced by Kulli and Sigarkanti in [5]. Many other inverse domination parameters in domination theory were studied, for example, in [6-16]. A set $D \subseteq V$ is a total dominating set of G if every vertex in V is adjacent to some vertex in D. The total domination number $\gamma_{t}(G)$ of G is the minimum cardinality of a total dominating set of G .

Let $D \subseteq V$ be a minimum total dominating set of G . If $V-D$ contains a total dominating set D^{\prime} of G , then D^{\prime} is called an inverse total dominating set with respect to D . The inverse total dominating number $\gamma_{t}^{-1}(G)$ of G is the minimum cardinality of an inverse total dominating set of G. This concept was introduced by Kulli and Iyer in [17] and was studied in [18]. A γ_{t}^{-1}-set is a minimum inverse total dominating set. Similarly other sets can be expected. Note that every graph without isolated vertices has a total dominating set. Hence we consider only graphs without isolated vertices. A vertex that is adjacent to a pendant vertex u is called a support of u. If $D=\{u, v\}$ is a total dominating set of G, then u, v are called total dominating vertices of G . A vertex u of G is said to be a γ_{t}-required vertex of G if u lies in every γ_{t}-set of G .

An application of inverse total domination is found in a computer network. We consider a computer network in which a core group of file servers has the ability to communicate directly with every computer outside the core group. In addition, each

[^0]file server is directly linked with at least one other backup file server where duplicate information is stored. A minimum core group with this property is a smallest total dominating set for the graph representing the network. If a second important core group is needed then a separate disjoint total dominating set provides duplication in case the first is corrupted in some way. We have $\gamma_{t}(G) \leq \gamma_{t}^{-1}(G)$, (See [17]). From the point of networks, one may demand $\gamma_{t}^{-1}(G)=\gamma_{t}(G)$, where as many graphs do not enjoy such a property. For Example, we consider the graph G in Figure 1. Then $\gamma_{t}(G)=2$ and $\gamma_{t}^{-1}(G)=p-2$. In this case, if p is large, then $\gamma_{t}^{-1}(G)$ is sufficiently large compare to $\gamma_{t}(G)$.

Figure 1.

2. Graphs with $\gamma_{t}(G)=\gamma_{t}^{-1}(G)$

Proposition 2.1. If K_{p} is a complete graph with $p \geq 2$ vertices, then $\gamma_{t}\left(K_{p}\right)=\gamma_{t}^{-1}\left(K_{p}\right)=2$.
Proposition 2.2. If $K_{m, n}$ is a complete bipartite graph with $2 \leq m \leq n$, then $\gamma_{t}\left(K_{m, n}\right)=\gamma_{t}^{-1}\left(K_{m, n}\right)=2$.
Proposition 2.3. If $K_{m, n}$ is a complete bipartite graph with $2 \leq m \leq n$, then $\gamma_{t}\left(\overline{K_{m, n}}\right)=\gamma_{t}^{-1}\left(\overline{K_{m, n}}\right)=4$.
Proof. Clearly $\overline{K_{m, n}}=K_{m} \cup K_{n}$. Therefore $\gamma_{t}\left(\overline{K_{m, n}}\right)=\gamma_{t}\left(K_{m}\right)+\gamma_{t}\left(K_{n}\right)=2+2=4$.

$$
\gamma_{t}^{-1}\left(\overline{K_{m, n}}\right)=\gamma_{t}^{-1}\left(K_{m}\right)+\gamma_{t}^{-1}\left(K_{n}\right)=2+2=4
$$

Thus the result follows.

Theorem 2.4. Let G be a graph with $\gamma_{t}(G)=\gamma_{t}^{-1}(G)$. Then G has no γ_{t}-required vertex.
Proof. Let G be a graph with $\gamma_{t}(G)=\gamma_{t}^{-1}(G)$. Let D be a γ_{t}-set and D_{1} be a γ_{t}^{-1}-set of G. Suppose G contains a γ_{t}-required vertex u . Then u lies in every γ_{t}-set of G. Thus $u \in D$ and $u \in D_{1}$, which is a contradiction to $D_{1} \subseteq V-D$.

Theorem 2.5. If u, v are total dominating vertices of a graph G, then $\gamma_{t}^{-1}(G)=\gamma_{t}(G-u-v)$.
Proof. Since u, v are total dominating vertices of G, $\{u, v\}$ is a γ_{t}-set of G. Thus any γ_{t}^{-1}-set of G lies in $G-\{u, v\}$ and is a minimum total dominating set of $G-\{u, v\}$. Hence $\gamma_{t}^{-1}(G)=\gamma_{t}(G-u-v)$.

Theorem 2.6. Let G be a graph such that G and \bar{G} are connected with at least two pendant vertices a, b in G. Let a^{\prime}, b^{\prime} be the supports of a and b respectively.
(1) If $a^{\prime} \neq b^{\prime}$, then $\gamma_{t}\left(\bar{G}+a a^{\prime}+b b^{\prime}\right)=\gamma_{t}^{-1}\left(\bar{G}+a a^{\prime}+b b^{\prime}\right)=2$.
(2) If $a^{\prime}=b^{\prime}$, then $\gamma_{t}\left(\bar{G}+a a^{\prime}\right)=\gamma_{t}^{-1}\left(\bar{G}+a a^{\prime}\right)=2$.

Proof. Suppose G and \bar{G} are connected. Then $\Delta(G) \leq p-2$ and $\Delta(\bar{G}) \leq p-2$. Thus $\gamma_{t}(\bar{G}) \geq 2$ and $\gamma_{t}^{-1}(\bar{G}) \geq 2$. Let a, b be two pendant vertices in G. Let a^{\prime}, b^{\prime} be the supports of a and b respectively.
(1) Suppose $a^{\prime} \neq b^{\prime}$. Let $G_{1}=\bar{G}+a a^{\prime}+b b^{\prime}$. In G_{1}, a, a^{\prime} are adjacent and b, b^{\prime} are adjacent. Clearly $D=\left\{a, a^{\prime}\right\}$ is a $\gamma_{t^{-}}$ set of G_{1} and $D_{1}=\left\{b, b^{\prime}\right\}$ is a γ_{t}^{-1}-set of G_{1}. Hence $\gamma_{t}\left(G_{1}\right)=\gamma_{t}^{-1}\left(G_{1}\right)=2$.
(2) Suppose $a^{\prime}=b^{\prime}$. Let $G_{2}=\bar{G}+a a^{\prime}$. In G_{2}, a, a^{\prime} are adjacent. Then $D=\left\{a, a^{\prime}\right\}$ is a γ_{t}-set of G_{2}. Since G_{2} is connected, a^{\prime} is adjacent to some vertex c in G_{2}. Thus $D_{1}=\{b, c\}$ is a γ_{t}^{-1}-set of G_{2}. Thus $\gamma_{t}\left(G_{2}\right)=\gamma_{t}^{-1}\left(G_{2}\right)=2$.

We characterize cycles C_{p} for which $\gamma_{t}\left(C_{p}\right)=\gamma_{t}^{-1}\left(C_{p}\right)$.
Theorem 2.7. For any integer $p \geq 4, \gamma_{t}\left(C_{p}\right)=\gamma_{t}^{-1}\left(C_{p}\right)=\frac{p}{2}$ if and only if $p=0(\bmod 4)$.
Proof. Let $V\left(C_{p}\right)=\{1,2, \ldots, p\}$. Assume $p=0(\bmod 4)$ and $p \geq 4$. Then $p=4 k$ for some integer $k \geq 1$. When $p=4 k$, the set $D=\{3,4,7,8, \ldots, 4 k-1,4 k\}$ is a γ_{t}-set with $2 k=\frac{p}{2}$ vertices and $D^{\prime}=\{1,2,5,6, \ldots, 4 k-3,4 k-2\}$ is a γ_{t}^{-1}-set with $2 k=\frac{p}{2}$ vertices. Hence $\gamma_{t}\left(C_{p}\right)=\gamma_{t}^{-1}\left(C_{p}\right)=\frac{p}{2}$.
Conversely suppose $\gamma_{t}\left(C_{p}\right)=\gamma_{t}^{-1}\left(C_{p}\right)=\frac{p}{2}$. We now prove that $p=0(\bmod 4)$. On the contrary, assume $p \neq 0(\bmod 4)$. Then $p=4 k+1$ or $4 k+2$ or $4 k+3$ for some integer $k \geq 1$. If $p=4 k+1$, then the set $D=\{1,2,5,6, \ldots, 4 k+1\}$ is a γ_{t}-set with $2 k+1$ vertices and $D_{1}=\{3,4,7,8, \ldots, 4 k-1,4 k\}$ is not a γ_{t}^{-1}-set in C_{p}. If $p=4 k+2$, then $D=$ $\{1,2,5,6, \ldots, 4 k+1,4 k+2\}$ is a γ_{t}-set with $2 k+2$ vertices and $D_{1}=\{3,4,7,8, \ldots, 4 k-1,4 k\}$ is not a γ_{t}^{-1}-set in C_{p}. If $p=4 k+3$, then $D=\{1,2,5,6, \ldots, 4 k+1,4 k+2\}$ is a γ_{t}-set with $2 k+2$ vertices and $D_{1}=\{3,4,7,8, \ldots, 4 k-1,4 k, 4 k+3\}$ is not a γ_{t}^{-1}-set in C_{p}. Thus $p=0(\bmod 4)$.

Theorem 2.8. For any integer $p \geq 4, \gamma_{t}\left(\overline{C_{p}}+v_{i} v_{i+1}+v_{j} v_{j+1}\right)=\gamma_{t}^{-1}\left(\overline{C_{p}}+v_{i} v_{i+1}+v_{j} v_{j+1}\right)=2$.

Proof. Let $V\left(C_{p}\right)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. Then each vertex v_{i} in C_{p} is adjacent to v_{i-1} and v_{i+1} modulo p. Hence each vertex v_{i} in C_{p} is adjacent to the remaining $p-3$ vertices. Also v_{i-1} and $v_{i}+1$ are adjacent in $\overline{C_{p}}$. Let $G=\overline{C_{p}}+v_{i} v_{i+1}+v_{j} v_{j+1}$. In G, v_{i}, v_{i+1} are adjacent and v_{j}, v_{j+1} are adjacent. Hence $D=\left\{v_{i}, v_{i+1}\right\}$ is a γ_{t}-set of G and $D_{1}=\left\{v_{j}, v_{j+1}\right\}$ is a γ_{t}^{-1}-set of G. Thus $\gamma_{t}(G)=\gamma_{t}^{-1}(G)=2$.

Theorem 2.9. If P_{p} is a path with $p \geq 4$ vertices, v_{1}, v_{p} are end vertices and v_{i}, v_{i+1} are adjacent non-end vertices, then $\gamma_{t}\left(\overline{P_{p}}+v_{i} v_{i+1}\right)=\gamma_{t}^{-1}\left(\overline{P_{p}}+v_{i} v_{i+1}\right)=2$.

Proof. Let $V\left(P_{p}\right)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. Join v_{1} and v_{p} in P_{p}. Then $P_{p}+v_{1} v_{p}=C_{p}$. By Theorem 2.8, $\gamma_{t}\left\{\left(\overline{P_{p}+v_{1} v_{p}}\right)+v_{1} v_{p}+v_{i} v_{i+1}\right\}=\gamma_{t}^{-1}\left\{\left(\overline{P_{p}+v_{1} v_{p}}\right)+v_{1} v_{p}+v_{i} v_{i+1}\right\}=2$. Thus $\gamma_{t}\left(\overline{P_{p}}+v_{i} v_{i+1}\right)=\gamma_{t}^{-1}\left(\overline{P_{p}}+v_{i} v_{i+1}\right)=$ 2.

Theorem 2.10. For any integers $m, n \geq 2, \gamma_{t}\left(\overline{P_{m}} \cup P_{n}\right)=\gamma_{t}^{-1}\left(\overline{P_{m}} \cup P_{n}\right)=2$.
Proof. Let $V\left(P_{m}\right)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ and $V\left(P_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Then each vertex v_{i} in $\overline{P_{m} \cup P_{n}}$ is adjacent to each vertex u_{j}. Also each vertex u_{j} in $\overline{P_{m} \cup P_{n}}$ is adjacent to each vertex v_{i}. Then $D=\left\{v_{1}, u_{1}\right\}$ is a γ_{t}-set of $\overline{P_{m} \cup P_{n}}$ and $D_{1}=\left\{v_{2}, u_{2}\right\}$ is a γ_{t}^{-1}-set of $\overline{P_{m} \cup P_{n}}$. Thus $\gamma_{t}\left(\overline{P_{m} \cup P_{n}}\right)=\gamma_{t}^{-1}\left(\overline{P_{m} \cup P_{n}}\right)=2$.

3. \quad Graphs with $\gamma_{t}(G)=\gamma_{t}^{-1}(G)=\frac{p}{2}$

In this section, we obtain some results for which $\gamma_{t}(G)=\gamma_{t}^{-1}(G)=\frac{p}{2}$.
Theorem 3.1. If $G=C_{4 n}$ or K_{4} or $K_{4}-e$, then $\gamma_{t}(G)=\gamma_{t}^{-1}(G)=\frac{p}{2}$, where p is the number of vertices of G.
Proof. If $G=C_{4 n}$, then by Theorem 2.7, $\gamma_{t}(G)=\gamma_{t}^{-1}(G)=\frac{p}{2}$. If $G=K_{4}$ or $K_{4}-e$, then we have $\gamma_{t}(G)=\gamma_{t}^{-1}(G)=\frac{p}{2}$, where p is the number of vertices of G.

Remark 3.2. Let $G_{1}, G_{2}, \ldots, G_{m}$ be the m connected components of a graph G. Let D_{i} be a γ_{t}-set of G_{i} and D_{i}^{\prime} be a γ_{t}^{-1}-set of G_{i} for $i=1,2, \ldots, m$. Then $\sum_{i=1}^{m} D_{i}$ is a γ_{t}-set of G and $\sum_{i=1}^{m} D_{i}^{\prime}$ is a γ_{t}^{-1}-set of G. Therefore $\gamma_{t}(G)=\sum_{i=1}^{m} \gamma_{t}\left(G_{i}\right)$ and $\gamma_{t}^{-1}(G)=\sum_{i=1}^{m} \gamma_{t}^{-1}\left(G_{i}\right)$.

Theorem 3.3. Let $G_{1}, G_{2}, \ldots, G_{m}$ be the m connected components of a graph G. Then $\gamma_{t}(G)=\gamma_{t}^{-1}(G)$ if and only if $\gamma_{t}\left(G_{i}\right)=\gamma_{t}^{-1}\left(G_{i}\right)$, for $i=1,2, \ldots, m$.

Proof. Let $G_{1}, G_{2}, \ldots, G_{m}$ be the m connected components of G. By Remark 3.2, $\gamma_{t}(G)=\sum \gamma_{t}\left(G_{i}\right)$ and $\gamma_{t}^{-1}(G)=$ $\sum \gamma_{t}^{-1}\left(G_{i}\right)$. Clearly, $\gamma_{t}(G)=\gamma_{t}^{-1}(G)$ if $\gamma_{t}\left(G_{i}\right)=\gamma_{t}^{-1}\left(G_{i}\right)$ for $1,2, \ldots, m$.
Conversely suppose $\gamma_{t}(G)=\gamma_{t}^{-1}(G)$. We have $\gamma_{t}\left(G_{i}\right) \leq \gamma_{t}^{-1}\left(G_{i}\right)$ for $i=1,2, \ldots, m$. We now prove that $\gamma_{t}\left(G_{i}\right)=\gamma_{t}^{-1}\left(G_{i}\right)$, for $i=1,2, \ldots, m$. On the contrary, assume $\gamma_{t}\left(G_{i}\right)<\gamma_{t}^{-1}\left(G_{i}\right)$ for some i. Then $\gamma_{t}\left(G_{j}\right)>\gamma_{t}^{-1}\left(G_{j}\right)$, for some $\mathrm{j}, j \neq i$, which is a contradiction. Thus $\gamma_{t}\left(G_{i}\right)=\gamma_{t}^{-1}\left(G_{i}\right)$ for $i=1,2, \ldots, m$.

Corollary 3.4. If the connected components G_{i} of G are either $C_{4 n}$ or $K_{4} z$ or $K_{4}-e$, then $\gamma_{t}(G)=\gamma_{t}^{-1}(G)=\frac{p}{2}$.
Proof. The result follows from Theorem 3.1 and Theorem 3.3.
Problem 3.5. Characterize graphs G for which $\gamma_{t}(G)=\gamma_{t}^{-1}(G)$.

References

[1] V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India, (2012).
[2] V.R.Kulli, Theory of Domination in Graphs, Vishwa International Publications, Gulbarga, India, (2010).
[3] V.R.Kulli, Advances in Domination Theory I, Vishwa International Publications, Gulbarga, India, (2012).
[4] V.R.Kulli, Advances in Domination Theory II, Vishwa International Publications, Gulbarga, India, (2013).
[5] V.R.Kulli and S.C.Sigarkanti, Inverse domination in graphs, Nat. Acad. Sci. Lett., 14(1991), 473-475.
[6] V.R.Kulli, Inverse total edge domination in graphs, In Advances in Domination Theory I, V.R.Kulli ed., Vishwa International Publications, Gulbarga, India, (2012), 35-44.
[7] V.R.Kulli, Inverse and disjoint neighborhood total dominating sets in graphs, Far East J. of Applied Mathematics, 83(1)(2013), 55-65.
[8] V.R.Kulli, The disjoint vertex covering number of a graph, International J. of Math. Sci. and Engg. Appls., 7(5)(2013), 135-141.
[9] V.R.Kulli, Inverse and disjoint neighborhood connected dominating sets in graphs, Acta Ciencia Indica, XLM(1)(2014), 65-70.
[10] V.R.Kulli and R.R.Iyer, Inverse vertex covering number of a graph, Journal of Discrete Mathematical Sciences and Cryptography, 15(6)(2012), 389-393.
[11] V.R.Kulli and B.Janakiram, On n-inverse domination number in graphs, International Journal of Mathematics and Information Technology, 4(2007), 33-42.
[12] V.R.Kulli and M.B.Kattimani, The inverse neighborhood number of a graph, South East Asian J. Math. and Math. Sci., 6(3)(2008), 23-28.
[13] V.R.Kulli and M.B.Kattimani, Inverse efficient domination in graphs, In Advances in Domination Theory I, V.R. Kulli, ed., Vishwa International Publications, Gulbarga, India, (2012), 45-52.
[14] V.R.Kulli and Nirmala R.Nandargi, Inverse domination and some new parameters, Advances in Domination Theory I, V.R.Kulli, ed., Vishwa International Publications, Gulbarga, India, (2012), 15-24.
[15] V.R.Kulli and N.D.Soner, Complementary edge domination in graphs, Indian J. Pure Appl. Math., 28(7)(1997), 917-920.
[16] T.Tamizh Chelvam and G.S.Grace Prema, Equality of domination and inverse domination numbers, Ars. Combin., 95(2010), 103-111.
[17] V.R.Kulli and R.R.Iyer, Inverse total domination in graphs, Journal of Discrete Mathematical Sciences and Cryptography, 10(5)(2007), 613-620.
[18] V.R.Kulli, Inverse total domination in the corona and join of graphs, Journal of Computer and Mathematical Sciences, 7(2)(2016), 61-64.

[^0]: * E-mail: vrkulli@gmail.com

