

International Journal of Mathematics And its Applications

Graphs with Equal Total Domination and Inverse Total Domination Numbers

Research Article

V.R.Kulli^{1*}

1 Department of Mathematics, Gulbarga University, Gulbarga, India.

Abstract:	Let D be a minimum total dominating set of $G = (V, E)$. If $V - D$ contains a total dominating set D' of G, then D' is
	called an inverse total dominating set with respect to D. The inverse total domination number $\gamma_t(G)$ of G is the minimum
	cardinality of an inverse total domination set of G. In this paper, we obtain some graphs for which $\gamma_t(G) = \gamma_t^{-1}(G)$. Also
	we find some graphs for which $\gamma_t(G) = \gamma_t^{-1}(G) = \frac{1}{2}$.

MSC: 05C.

Keywords: Total dominating set, inverse total dominating set, inverse total dominating number. © JS Publication.

1. Introduction

By a graph, we mean a finite, undirected without loops, multiple edges or isolated vertices. Any undefined term in this paper may be found in Kulli [1]. A set D of vertices in a graph G = (V, E) is called a dominating set if every vertex in V - D is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. Recently several dominating parameters are given in the books by Kulli in [2–4]. Let D be a minimum dominating set of G. If V - D contains a dominating set D' of G, then D' is called an inverse dominating set of G with respect to D. The inverse domination number $\gamma^{-1}(G)$ of G is the minimum cardinality of an inverse dominating set of G. This concept was introduced by Kulli and Sigarkanti in [5]. Many other inverse domination parameters in domination theory were studied, for example, in [6–16]. A set $D \subseteq V$ is a total dominating set of G if every vertex in V is adjacent to some vertex in D. The total domination number $\gamma_t(G)$ of G is the minimum cardinality of a total dominating set of G.

Let $D \subseteq V$ be a minimum total dominating set of G. If V - D contains a total dominating set D' of G, then D' is called an inverse total dominating set with respect to D. The inverse total dominating number $\gamma_t^{-1}(G)$ of G is the minimum cardinality of an inverse total dominating set of G. This concept was introduced by Kulli and Iyer in [17] and was studied in [18]. A γ_t^{-1} -set is a minimum inverse total dominating set. Similarly other sets can be expected. Note that every graph without isolated vertices has a total dominating set. Hence we consider only graphs without isolated vertices. A vertex that is adjacent to a pendant vertex u is called a support of u. If $D = \{u, v\}$ is a total dominating set of G, then u, v are called total dominating vertices of G. A vertex u of G is said to be a γ_t -required vertex of G if u lies in every γ_t -set of G.

An application of inverse total domination is found in a computer network. We consider a computer network in which a core group of file servers has the ability to communicate directly with every computer outside the core group. In addition, each

 $^{^{*}}$ E-mail: vrkulli@gmail.com

file server is directly linked with at least one other backup file server where duplicate information is stored. A minimum core group with this property is a smallest total dominating set for the graph representing the network. If a second important core group is needed then a separate disjoint total dominating set provides duplication in case the first is corrupted in some way. We have $\gamma_t(G) \leq \gamma_t^{-1}(G)$, (See [17]). From the point of networks, one may demand $\gamma_t^{-1}(G) = \gamma_t(G)$, where as many graphs do not enjoy such a property. For Example, we consider the graph G in Figure 1. Then $\gamma_t(G) = 2$ and $\gamma_t^{-1}(G) = p - 2$. In this case, if p is large, then $\gamma_t^{-1}(G)$ is sufficiently large compare to $\gamma_t(G)$.

Figure 1.

2. Graphs with $\gamma_t(G) = \gamma_t^{-1}(G)$

Proposition 2.1. If K_p is a complete graph with $p \ge 2$ vertices, then $\gamma_t(K_p) = \gamma_t^{-1}(K_p) = 2$. **Proposition 2.2.** If $K_{m,n}$ is a complete bipartite graph with $2 \le m \le n$, then $\gamma_t(K_{m,n}) = \gamma_t^{-1}(K_{m,n}) = 2$. **Proposition 2.3.** If $K_{m,n}$ is a complete bipartite graph with $2 \le m \le n$, then $\gamma_t(\overline{K_{m,n}}) = \gamma_t^{-1}(\overline{K_{m,n}}) = 4$. *Proof.* Clearly $\overline{K_{m,n}} = K_m \cup K_n$. Therefore $\gamma_t(\overline{K_{m,n}}) = \gamma_t(K_m) + \gamma_t(K_n) = 2 + 2 = 4$.

$$\gamma_t^{-1}(\overline{K_{m,n}}) = \gamma_t^{-1}(K_m) + \gamma_t^{-1}(K_n) = 2 + 2 = 4$$

- 1		
- 1		
- L		_

Thus the result follows.

Theorem 2.4. Let G be a graph with $\gamma_t(G) = \gamma_t^{-1}(G)$. Then G has no γ_t -required vertex.

Proof. Let G be a graph with $\gamma_t(G) = \gamma_t^{-1}(G)$. Let D be a γ_t -set and D_1 be a γ_t^{-1} -set of G. Suppose G contains a γ_t -required vertex u. Then u lies in every γ_t -set of G. Thus $u \in D$ and $u \in D_1$, which is a contradiction to $D_1 \subseteq V - D$.

Theorem 2.5. If u, v are total dominating vertices of a graph G, then $\gamma_t^{-1}(G) = \gamma_t(G - u - v)$.

Proof. Since u, v are total dominating vertices of G, $\{u, v\}$ is a γ_t -set of G. Thus any γ_t^{-1} -set of G lies in $G - \{u, v\}$ and is a minimum total dominating set of $G - \{u, v\}$. Hence $\gamma_t^{-1}(G) = \gamma_t(G - u - v)$.

Theorem 2.6. Let G be a graph such that G and \overline{G} are connected with at least two pendant vertices a, b in G. Let a', b' be the supports of a and b respectively.

- (1) If $a' \neq b'$, then $\gamma_t(\overline{G} + aa' + bb') = \gamma_t^{-1}(\overline{G} + aa' + bb') = 2$.
- (2) If a' = b', then $\gamma_t(\overline{G} + aa') = \gamma_t^{-1}(\overline{G} + aa') = 2$.

Proof. Suppose G and \overline{G} are connected. Then $\Delta(G) \leq p-2$ and $\Delta(\overline{G}) \leq p-2$. Thus $\gamma_t(\overline{G}) \geq 2$ and $\gamma_t^{-1}(\overline{G}) \geq 2$. Let a, b be two pendant vertices in G. Let a', b' be the supports of a and b respectively.

- (1) Suppose $a' \neq b'$. Let $G_1 = \overline{G} + aa' + bb'$. In G_1 , a, a' are adjacent and b, b' are adjacent. Clearly $D = \{a, a'\}$ is a γ_t -set of G_1 and $D_1 = \{b, b'\}$ is a γ_t^{-1} -set of G_1 . Hence $\gamma_t(G_1) = \gamma_t^{-1}(G_1) = 2$.
- (2) Suppose a' = b'. Let $G_2 = \overline{G} + aa'$. In G_2 , a, a' are adjacent. Then $D = \{a, a'\}$ is a γ_t -set of G_2 . Since G_2 is connected, a' is adjacent to some vertex c in G_2 . Thus $D_1 = \{b, c\}$ is a γ_t^{-1} -set of G_2 . Thus $\gamma_t(G_2) = \gamma_t^{-1}(G_2) = 2$.

We characterize cycles C_p for which $\gamma_t(C_p) = \gamma_t^{-1}(C_p)$.

Theorem 2.7. For any integer $p \ge 4$, $\gamma_t(C_p) = \gamma_t^{-1}(C_p) = \frac{p}{2}$ if and only if $p = 0 \pmod{4}$.

Proof. Let $V(C_p) = \{1, 2, ..., p\}$. Assume $p = 0 \pmod{4}$ and $p \ge 4$. Then p = 4k for some integer $k \ge 1$. When p = 4k, the set $D = \{3, 4, 7, 8, ..., 4k - 1, 4k\}$ is a γ_t -set with $2k = \frac{p}{2}$ vertices and $D' = \{1, 2, 5, 6, ..., 4k - 3, 4k - 2\}$ is a γ_t^{-1} -set with $2k = \frac{p}{2}$ vertices. Hence $\gamma_t(C_p) = \gamma_t^{-1}(C_p) = \frac{p}{2}$.

Conversely suppose $\gamma_t(C_p) = \gamma_t^{-1}(C_p) = \frac{p}{2}$. We now prove that $p = 0 \pmod{4}$. On the contrary, assume $p \neq 0 \pmod{4}$. Then p = 4k + 1 or 4k + 2 or 4k + 3 for some integer $k \geq 1$. If p = 4k + 1, then the set $D = \{1, 2, 5, 6, \dots, 4k + 1\}$ is a γ_t -set with 2k + 1 vertices and $D_1 = \{3, 4, 7, 8, \dots, 4k - 1, 4k\}$ is not a γ_t^{-1} -set in C_p . If p = 4k + 2, then $D = \{1, 2, 5, 6, \dots, 4k + 1, 4k + 2\}$ is a γ_t -set with 2k + 2 vertices and $D_1 = \{3, 4, 7, 8, \dots, 4k - 1, 4k\}$ is not a γ_t^{-1} -set in C_p . If p = 4k + 3, then $D = \{1, 2, 5, 6, \dots, 4k + 1, 4k + 2\}$ is a γ_t -set with 2k + 2 vertices and $D_1 = \{3, 4, 7, 8, \dots, 4k - 1, 4k\}$ is not a γ_t^{-1} -set in C_p . If p = 4k + 3, then $D = \{1, 2, 5, 6, \dots, 4k + 1, 4k + 2\}$ is a γ_t -set with 2k + 2 vertices and $D_1 = \{3, 4, 7, 8, \dots, 4k - 1, 4k, 4k + 3\}$ is not a γ_t^{-1} -set in C_p . Thus $p = 0 \pmod{4}$.

Theorem 2.8. For any integer $p \ge 4$, $\gamma_t \left(\overline{C_p} + v_i v_{i+1} + v_j v_{j+1}\right) = \gamma_t^{-1} \left(\overline{C_p} + v_i v_{i+1} + v_j v_{j+1}\right) = 2$.

Proof. Let $V(C_p) = \{v_1, v_2, \dots, v_p\}$. Then each vertex v_i in C_p is adjacent to v_{i-1} and v_{i+1} modulo p. Hence each vertex v_i in C_p is adjacent to the remaining p-3 vertices. Also v_{i-1} and $v_i + 1$ are adjacent in $\overline{C_p}$. Let $G = \overline{C_p} + v_i v_{i+1} + v_j v_{j+1}$. In G, v_i, v_{i+1} are adjacent and v_j, v_{j+1} are adjacent. Hence $D = \{v_i, v_{i+1}\}$ is a γ_t -set of G and $D_1 = \{v_j, v_{j+1}\}$ is a γ_t^{-1} -set of G. Thus $\gamma_t(G) = \gamma_t^{-1}(G) = 2$.

Theorem 2.9. If P_p is a path with $p \ge 4$ vertices, v_1 , v_p are end vertices and v_i , v_{i+1} are adjacent non-end vertices, then $\gamma_t(\overline{P_p} + v_iv_{i+1}) = \gamma_t^{-1}(\overline{P_p} + v_iv_{i+1}) = 2.$

Proof. Let $V(P_p) = \{v_1, v_2, \dots, v_p\}$. Join v_1 and v_p in P_p . Then $P_p + v_1v_p = C_p$. By Theorem 2.8, $\gamma_t \{(\overline{P_p + v_1v_p}) + v_1v_p + v_iv_{i+1}\} = \gamma_t^{-1} \{(\overline{P_p + v_1v_p}) + v_1v_p + v_iv_{i+1}\} = 2$. Thus $\gamma_t (\overline{P_p} + v_iv_{i+1}) = \gamma_t^{-1} (\overline{P_p} + v_iv_{i+1}) = 2$.

Theorem 2.10. For any integers $m, n \ge 2$, $\gamma_t \left(\overline{P_m} \cup P_n\right) = \gamma_t^{-1} \left(\overline{P_m} \cup P_n\right) = 2$.

Proof. Let $V(P_m) = \{v_1, v_2, \dots, v_m\}$ and $V(P_n) = \{u_1, u_2, \dots, u_n\}$. Then each vertex v_i in $\overline{P_m \cup P_n}$ is adjacent to each vertex u_j . Also each vertex u_j in $\overline{P_m \cup P_n}$ is adjacent to each vertex v_i . Then $D = \{v_1, u_1\}$ is a γ_t -set of $\overline{P_m \cup P_n}$ and $D_1 = \{v_2, u_2\}$ is a γ_t^{-1} -set of $\overline{P_m \cup P_n}$. Thus $\gamma_t (\overline{P_m \cup P_n}) = \gamma_t^{-1} (\overline{P_m \cup P_n}) = 2$.

3. Graphs with $\gamma_t(G) = \gamma_t^{-1}(G) = \frac{p}{2}$

In this section, we obtain some results for which $\gamma_t(G) = \gamma_t^{-1}(G) = \frac{p}{2}$.

Theorem 3.1. If $G = C_{4n}$ or K_4 or $K_4 - e$, then $\gamma_t(G) = \gamma_t^{-1}(G) = \frac{p}{2}$, where p is the number of vertices of G.

Proof. If $G = C_{4n}$, then by Theorem 2.7, $\gamma_t(G) = \gamma_t^{-1}(G) = \frac{p}{2}$. If $G = K_4$ or $K_4 - e$, then we have $\gamma_t(G) = \gamma_t^{-1}(G) = \frac{p}{2}$, where p is the number of vertices of G.

177

Remark 3.2. Let G_1, G_2, \ldots, G_m be the *m* connected components of a graph *G*. Let D_i be a γ_t -set of G_i and D'_i be a γ_t^{-1} -set of G_i for $i = 1, 2, \ldots, m$. Then $\sum_{i=1}^m D_i$ is a γ_t -set of *G* and $\sum_{i=1}^m D'_i$ is a γ_t^{-1} -set of *G*. Therefore $\gamma_t(G) = \sum_{i=1}^m \gamma_t(G_i)$ and $\gamma_t^{-1}(G) = \sum_{i=1}^m \gamma_t^{-1}(G_i)$.

Theorem 3.3. Let G_1, G_2, \ldots, G_m be the *m* connected components of a graph *G*. Then $\gamma_t(G) = \gamma_t^{-1}(G)$ if and only if $\gamma_t(G_i) = \gamma_t^{-1}(G_i)$, for $i = 1, 2, \ldots, m$.

Proof. Let G_1, G_2, \ldots, G_m be the m connected components of G. By Remark 3.2, $\gamma_t(G) = \sum \gamma_t(G_i)$ and $\gamma_t^{-1}(G) = \sum \gamma_t^{-1}(G_i)$. Clearly, $\gamma_t(G) = \gamma_t^{-1}(G)$ if $\gamma_t(G_i) = \gamma_t^{-1}(G_i)$ for $1, 2, \ldots, m$.

Conversely suppose $\gamma_t(G) = \gamma_t^{-1}(G)$. We have $\gamma_t(G_i) \le \gamma_t^{-1}(G_i)$ for i = 1, 2, ..., m. We now prove that $\gamma_t(G_i) = \gamma_t^{-1}(G_i)$, for i = 1, 2, ..., m. On the contrary, assume $\gamma_t(G_i) < \gamma_t^{-1}(G_i)$ for some i. Then $\gamma_t(G_j) > \gamma_t^{-1}(G_j)$, for some j, $j \ne i$, which is a contradiction. Thus $\gamma_t(G_i) = \gamma_t^{-1}(G_i)$ for i = 1, 2, ..., m.

Corollary 3.4. If the connected components G_i of G are either C_{4n} or K_{42} or $K_4 - e$, then $\gamma_t(G) = \gamma_t^{-1}(G) = \frac{p}{2}$.

Proof. The result follows from Theorem 3.1 and Theorem 3.3.

Problem 3.5. Characterize graphs G for which $\gamma_t(G) = \gamma_t^{-1}(G)$.

References

- [1] V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India, (2012).
- [2] V.R.Kulli, Theory of Domination in Graphs, Vishwa International Publications, Gulbarga, India, (2010).
- [3] V.R.Kulli, Advances in Domination Theory I, Vishwa International Publications, Gulbarga, India, (2012).
- [4] V.R.Kulli, Advances in Domination Theory II, Vishwa International Publications, Gulbarga, India, (2013).
- [5] V.R.Kulli and S.C.Sigarkanti, Inverse domination in graphs, Nat. Acad. Sci. Lett., 14(1991), 473-475.
- [6] V.R.Kulli, Inverse total edge domination in graphs, In Advances in Domination Theory I, V.R.Kulli ed., Vishwa International Publications, Gulbarga, India, (2012), 35-44.
- [7] V.R.Kulli, Inverse and disjoint neighborhood total dominating sets in graphs, Far East J. of Applied Mathematics, 83(1)(2013), 55-65.
- [8] V.R.Kulli, The disjoint vertex covering number of a graph, International J. of Math. Sci. and Engg. Appls., 7(5)(2013), 135-141.
- [9] V.R.Kulli, Inverse and disjoint neighborhood connected dominating sets in graphs, Acta Ciencia Indica, XLM(1)(2014), 65-70.
- [10] V.R.Kulli and R.R.Iyer, Inverse vertex covering number of a graph, Journal of Discrete Mathematical Sciences and Cryptography, 15(6)(2012), 389-393.
- [11] V.R.Kulli and B.Janakiram, On n-inverse domination number in graphs, International Journal of Mathematics and Information Technology, 4(2007), 33-42.
- [12] V.R.Kulli and M.B.Kattimani, The inverse neighborhood number of a graph, South East Asian J. Math. and Math. Sci., 6(3)(2008), 23-28.
- [13] V.R.Kulli and M.B.Kattimani, *Inverse efficient domination in graphs*, In Advances in Domination Theory I, V.R. Kulli, ed., Vishwa International Publications, Gulbarga, India, (2012), 45-52.
- [14] V.R.Kulli and Nirmala R.Nandargi, Inverse domination and some new parameters, Advances in Domination Theory I, V.R.Kulli, ed., Vishwa International Publications, Gulbarga, India, (2012), 15-24.

178

- [15] V.R.Kulli and N.D.Soner, Complementary edge domination in graphs, Indian J. Pure Appl. Math., 28(7)(1997), 917-920.
- [16] T.Tamizh Chelvam and G.S.Grace Prema, Equality of domination and inverse domination numbers, Ars. Combin., 95(2010), 103-111.
- [17] V.R.Kulli and R.R.Iyer, Inverse total domination in graphs, Journal of Discrete Mathematical Sciences and Cryptography, 10(5)(2007), 613-620.
- [18] V.R.Kulli, Inverse total domination in the corona and join of graphs, Journal of Computer and Mathematical Sciences, 7(2)(2016), 61-64.