

International Journal of Mathematics And its Applications

Some Types of Generalized H^h -Recurrent in Finsler Spaces

Research Article

Fahmi Yaseen Abdo Qasem¹ and Adel Mohammed Ali AL-Qashbari^{1*}

1 Department of Mathematics, Faculty of Education, University of Aden, Khomaksar, Aden, Yemen.

- Abstract: The purpose of this paper is to develop some properties of generalized H^h -recurrent affinely connected space, P2-like generalized H^h -recurrent space and P^* -generalized H^h -recurrent space for Berwald curvature tensor H^i_{jkh} which satisfies the condition $H^i_{jkh|l} = \lambda_l H^i_{jkh} + \mu_l(\delta^i_h g_{jk} \delta^i_k g_{jh})$, where |l| is h-covariant differentiation, λ_l and μ_l are non-null covariant vectors field is introduced and such space is called as a generalized H^h -recurrent space and denote it briefly by GH^h - RF_n . Some theorems and conditions have been pointed out which reduce a generalized H^h -recurrent space $F_n(n > 2)$ into a Finsler space of curvature scalar.
- **Keywords:** Finsler space, Generalized H-recurrent space, affinely connected space, P2-like space and P*-space. © JS Publication.

1. Introduction

A Finsler space of recurrent curvature was introduced and studied by R.S.D.Dubey and A.K.Srivastava [3], P.N.Pandy [9], P.N.Pandy and R.B.Misra [10], P.N.Pandy and V.J.Dwivedi [11], P.N.Pandy and S.Pal [12], R.Verma [16], S.Dikshit [2], F.Y.A. Qasem [14], and many others. The concept of C^h -recurrent space have been studied by M.Matsumoto [7], C.K.Mishra and G.Lodhi [8]. U.C.De and M.Guha [1], introduced a generalized recurrent Riemannian manifold. Y.B.Maralabhavi and M.Rathnamma [6], also contributed towards a generalized recurrent and generalized concircular recurrent Riemannian manifolds. P.N.Pandy, S.Saxena and A.Goswami [13] introduced a generalized H-recurrent Finsler space.

Let us consider an n-dimensional Finsler space F_n equipped with the metric function F satisfying the requisite conditions [15]. Let the components of the corresponding metric tensor g_{ij} , Cartan's connection parameters Γ_{jk}^i and Berwald's connection parameters G_{jk}^{i*} . They are symmetric in their lower indices and positively homogeneous of degree zero in the directional arguments. The vectors y_i and y^i satisfies the following relations

a)
$$y_i = g_{ij}y^j$$
,
b) $y_i y^i = F^2$,
c) $g_{ij} = \dot{\partial}_i y_j = \dot{\partial}_j y_i$,
d) $g_{ij}y^j = \frac{1}{2}\dot{\partial}_i F^2 = F\dot{\partial}_i F$ and
e) $\dot{\partial}_j y^i = \delta^i_j$.
(1)

^c E-mail: Adel_ma71@yahoo.com

The tensor C^*_{ijk} defined by

$$C_{ijk} = \frac{1}{2}\dot{\partial}_i g_{jk} = \frac{1}{4}\dot{\partial}_i \dot{\partial}_j \dot{\partial}_k F^2 \tag{2}$$

is known as (h)hv-torsion tensor [7]. It is positively homogeneous of degree -1 in the directional arguments and symmetric in all its indices. The (v)hv-torsion tensor C_{ik}^{h} and its associate (h)hv-torsion tensor C_{ijk} are related by

a)
$$C_{ik}^h := g^{hj} C_{ijk}$$
 and b) $C_{ijk} := g_{hj} C_{ik}^h$. (3)

The (v)hv-torsion tensor C_{ik}^{h} is also positively homogeneous of degree -1 in the directional arguments and symmetric in its lower indices. E.Cartan deduced the h-covariant derivative for an arbitrary vector filed X^{i} with respect to x^{k} given by [15]

$$X^{i}_{|k} := \partial_k X^i - (\dot{\partial}_r X^i) G^r_k + X^r \Gamma^i_{rk}.$$

$$\tag{4}$$

The metric tensor g_{ij} and the vector y^i are covariant constant with respect to above process, i.e.

a)
$$g_{ij|k} = 0$$
 and b) $y_{|k}^{i} = 0.$ (5)

The process of h-covariant differentiation defined above commute with partial differentiation with respect to y^{j} for arbitrary vector filed X^{i} , according to

$$\dot{\partial}_j (X^i_{|k}) - (\dot{\partial}_j X^i)_{|k} = X^r (\dot{\partial}_j \Gamma^i_{rk}) - (\dot{\partial}_r X^i) P^r_{jk}, \tag{6}$$

where

a)
$$\dot{\partial}_j \Gamma^r_{hk} = \Gamma^r_{jhk}$$
 and b) $P^i_{kh} y^k = 0 = P^i_{kh} y^h$. (7)

The tensor P_{kh}^i is called v(hv)-torsion tensor and its associate tensor P_{jkh} is given by

$$g_{rj}P_{kh}^r = P_{kjh}. (8)$$

The quantities H^i_{jkh} and H^i_{kh} form the components of tensors and they called h-curvature tensor of Berwald (Berwald curvature tensor) and h(v)-torsion tensor, respectively and defined as follow:

a)
$$H^{i}_{jkh} := \partial_j G^{i}_{kh} + G^{r}_{kh} G^{i}_{rj} + G^{i}_{rhj} G^{r}_k - h/k \text{ and } b) \quad H^{i}_{kh} := \partial_h G^{i}_k + G^{r}_k C^{i}_{rh} - \frac{h}{k}.$$
 (9)

They are skew-symmetric in their lower indices, i.e. k and h. Also they are positively homogeneous of degree zero and one, respectively in their directional arguments. They are also related by

a)
$$H^i_{jkh}y^j = H^i_{kh}$$
, b) $H^i_{jkh} = \partial_j H^i_{kh}$; and c) $H^i_{jk} = \partial_j H^i_{k}$. (10)

These tensors were constructed initially by mean of the tensor H_h^i , called the deviation tensor, given by

$$H_h^i := 2\partial_h G^i - \partial_r G_h^i y^r + 2G_{hs}^i G^s - G_s^i G_h^s.$$

$$\tag{11}$$

The deviation tensor H_h^i is positively homogeneous of degree two in the directional arguments. In view of Euler's theorem on homogeneous functions and by contracting the indices i and h in (10) and (11), we have the following:

a)
$$H_{jk}^{i}y^{j} = -H_{kj}^{i}y^{j} = H_{k}^{i},$$

b) $H_{jk} := H_{jkr}^{r},$
c) $H_{j} := H_{jr}^{r},$
d) $H_{rkh}^{r} = H_{hk} - H_{kh},$
e) $H := \frac{1}{n-1}H_{r}^{r}$ and
f) $y_{i}H_{j}^{i} = 0.$
(12)

The contracted tensor H_{kh} (Ricci tensor), H_k (Curvature vector) and H (curvature scalar) are also connected by

a)
$$H_{kh} = \dot{\partial}_k H_h$$
, b) $H_{kh} y^k = H_h$ and c) $H_k y^k = (n-1)H$. (13)

The quantities H^i_{jkh} and H^i_{kh} are satisfies the following [15]:

a)
$$H_{ijkh} := g_{jr} H^r_{ihk}, \ b) \ H_{jk.h} := g_{jr} H^r_{hk} \ \text{and} \ c) \ H^i_{jkh} + H^i_{hjk} + H^i_{khj} = 0.$$
 (14)

P.N. Pandey proved [9]

$$y_i H^i_{hk} = 0. (15)$$

Cartan's third curvature tensor R^i_{jkh} satisfies the identity known as Bianchi identity [15]

a)
$$R^{i}_{jkh|s} + R^{i}_{jsk|h} + R^{i}_{jhs|k} + (R^{r}_{mhs}P^{i}_{jkr} + R^{r}_{mkh}P^{i}_{jsr} + R^{r}_{msk}P^{i}_{jhr})y^{m} = 0,$$

b) $R^{i}_{jkh}y^{j} = H^{i}_{kh} = K^{i}_{jkh}y^{j}, \ c) \ R_{ijhk} = g_{rj}R^{r}_{ihk} \ and$
d) $R_{jkhm}y^{j} = H_{kh.m}.$
(16)

Also this tensor satisfies the following relation too

a)
$$R_{jkh}^{i} = K_{jkh}^{i} + C_{js}^{i}K_{rhk}^{s}y^{r}$$
 and b) $R_{ijkh} = K_{ijkh} + C_{ijs}H_{kh}^{s}$, (17)

where R_{ijkh} is the associate curvature tensor of R^{i}_{jkh} . Cartan's fourth curvature tensor K^{i}_{jkh} and its associate curvature tensor K_{ijkh} satisfy the following identities known as Bianchi identities

a)
$$K_{jkh}^{i} + K_{hjk}^{i} + K_{khj}^{i} = 0$$
 and b) $K_{jrkh} + K_{hrjk} + K_{krhj} = 0.$ (18)

2. An Generalized H^h -Recurrent Space

Let us consider a Finsler space F_n whose Berwald curvature tensor H^i_{jkh} satisfies the condition

$$H^i_{jkh?l} = \lambda_l H^i_{jkh} + \mu_l (\delta^i_h g_{jk} - \delta^i_k g_{jh}), \quad H^i_{jkh} \neq 0, \tag{19}$$

where λ_l and μ_l are non-null covariant vectors field. We shall call such space as a generalized H^h - recurrent space. We shall denote it briefly by GH^h - RF_n . Now, let us consider a generalized H^h - recurrent space characterized by the condition (19). Transvecting the condition (19) by y^j , using (5b), (10a) and (1a), we get

$$H^i_{kh|l} = \lambda_l H^i_{kh} + \mu_l (\delta^i_h y_k - \delta^i_k y_h).$$
⁽²⁰⁾

Further, transvecting the condition (20) by y^k , using (5b), (12a) and (1b), we get

$$H_{h|l}^{i} = \lambda_{l} H_{h}^{i} + \mu_{l} (\delta_{h}^{i} F^{2} - y_{h} y^{i}).$$
⁽²¹⁾

Trausvecting the condition (20) by g_{ip} , using (5a) and (14b), we get

$$H_{kp,h|l} = \lambda_l H_{kp,h} + \mu_l (g_{hp} y_k - g_{kp} y_h).$$
(22)

Therefore, we have

Theorem 2.1. In GH^h - RF_n , the h-covariant derivative of the h(v)-torsion tensor H^i_{kh} , the deviation tensor H^i_h and the tensor $H_{kp,h}$ is given by the conditions (20),(21) and (22), respectively.

Differentiating (20) partially with respect to y^{j} , using (10b), (7a), (1c) and using the commutation formula exhibited by (6) for the h(v)-torsion tensor H_{jk}^{i} , we get

$$H^{i}_{jkh|l} + H^{r}_{kh}\Gamma^{i}_{jrl} - H^{i}_{rh}\Gamma^{r}_{jkl} - H^{i}_{kr}\Gamma^{r}_{jhl} - H^{i}_{rkh}P^{r}_{jl} = (\dot{\partial}_{j}\lambda_{l})H^{i}_{kh} + \lambda_{l}H^{i}_{jkh} + (\dot{\partial}_{j}\mu_{l})(\delta^{i}_{h}y_{k} - \delta^{i}_{k}y_{h}) + \mu_{l}(\delta^{i}_{h}g_{jk} - \delta^{i}_{k}g_{jh}).$$
(23)

This shows that $H^i_{jkh|l} = \lambda_l H^i_{jkh} + \mu_l (\delta^i_h g_{jk} - \delta^i_k g_{jh})$ if and only if

$$H^r_{kh}\Gamma^i_{jrl} - H^i_{rh}\Gamma^r_{jkl} - H^i_{kr}\Gamma^r_{jhl} - H^i_{rkh}P^r_{jl} = (\dot{\partial}_j\lambda_l)H^i_{kh} + (\dot{\partial}_j\mu_l)(\delta^i_h y_k - \delta^i_k y_h).$$
(24)

Thus, we conclude

Theorem 2.2. In GH^h - RF_n , Berwald curvature tensor H^i_{jkh} is generalized recurrent if and only if (24) holds good. Transvecting (23) by g_{ip} , using (7a) and (14a), we get

$$H_{jpkh|l} + g_{ip}(H_{kh}^{r}\Gamma_{jrl}^{i} - H_{rh}^{i}\Gamma_{jkl}^{r} - H_{kr}^{i}\Gamma_{jhl}^{r} - H_{rkh}^{i}P_{jl}^{r}) = \lambda_{l}H_{jpkh} + g_{ip}[(\dot{\partial}_{j}\lambda_{l})H_{kh}^{i} + (\dot{\partial}_{j}\mu_{l})(\delta_{h}^{i}y_{k} - \delta_{k}^{i}y_{h})] + \mu_{l}(g_{hp}g_{jk} - g_{kp}g_{jh}).$$
(25)

This shows that $H_{jpkh?l} = \lambda_l H_{jpkh} + \mu_l (g_{jk}g_{hp} - g_{jh}g_{kp})$ if and only if

$$g_{ip}(H_{kh}^{r}\Gamma_{jrl}^{i} - H_{rh}^{i}\Gamma_{jkl}^{r} - H_{kr}^{i}\Gamma_{jhl}^{r} - H_{rkh}^{i}P_{jl}^{r}) = g_{ip}[(\dot{\partial}_{j}\lambda_{l})H_{kh}^{i} + (\dot{\partial}_{j}\mu_{l})(\delta_{h}^{i}y_{k} - \delta_{k}^{i}y_{h})].$$
(26)

Thus, we conclude

Theorem 2.3. In GH^h - RF_n , the associate tensor H_{jpkh} of Berwald curvature tensor H^i_{jkh} is generalized recurrent if and only if (26) holds good.

Contracting the indices i and h in the condition (23), using (12b) and (12c), we get

$$H_{jk|l} + H_{kp}^{r} \Gamma_{jrl}^{p} - H_{r} \Gamma_{jkl}^{r} - H_{kr}^{p} \Gamma_{jpl}^{r} - H_{rk} P_{jl}^{r} = \lambda_{l} H_{jk} + (\dot{\partial}_{j} \lambda_{l}) H_{k} + (n-1) y_{k} (\dot{\partial}_{j} \mu_{l}) + (n-1) \mu_{l} g_{jk}.$$
(27)

This shows that $H_{jk|l} = \lambda_l H_{jk} + (n-1)\mu_l g_{jk}$ if and only if

$$H_{kp}^{r}\Gamma_{jrl}^{p} - H_{r}\Gamma_{jkl}^{r} - H_{kr}^{p}\Gamma_{jpl}^{r} - H_{rk}P_{jl}^{r} = (\dot{\partial}_{j}\lambda_{l})H_{k} + (n-1)y_{k}(\dot{\partial}_{j}\mu_{l}).$$
(28)

Thus, we conclude

Theorem 2.4. In GH^h - RF_n , the H-Ricci tensor H_{jk} is non-vanishing if and only if (28) holds good. Contracting the indices i and j in (23) and using (12d), we get

$$(H_{hk} - H_{kh})_{|l} + H_{kh}^{r} \Gamma_{prl}^{p} - H_{rh}^{p} \Gamma_{pkl}^{r} - H_{kr}^{p} \Gamma_{phl}^{r} - H_{rkh}^{p} P_{pl}^{r} = (\dot{\partial}_{p} \lambda_{l}) H_{kh}^{p} + \lambda_{l} (H_{hk} - H_{kh}) + (\dot{\partial}_{p} \mu_{l}) (\delta_{h}^{p} y_{k} - \delta_{k}^{p} y_{h}).$$
(29)

This shows that $(H_{hk} - H_{kh})_{|l} = \lambda_l (H_{hk} - H_{kh})$ if and only if

$$H_{kh}^{r}\Gamma_{prl}^{p} - H_{rh}^{p}\Gamma_{pkl}^{r} - H_{kr}^{p}\Gamma_{phl}^{r} - H_{rkh}^{p}P_{pl}^{r} = (\dot{\partial}_{p}\lambda_{l})H_{kh}^{p} + (\dot{\partial}_{p}\mu_{l})(\delta_{h}^{p}y_{k} - \delta_{k}^{p}y_{h}).$$
(30)

Thus, we conclude

Theorem 2.5. In GH^h - RF_n , the tensor $(H_{hk} - H_{kh})$ behaves as recurrent if and only if (30) holds good.

Differentiating the condition (21) partially with respect to y^k , using (11c), (1d), (1a), (1c), (1e) and using the commutation formula exhibited by (6) for the h(v) deviation tensor H_h^i , we get

$$H_{kh|l}^{i} + H_{h}^{r} \Gamma_{krl}^{i} - H_{r}^{i} \Gamma_{khl}^{r} - H_{rh}^{i} P_{kl}^{r} = (\dot{\partial}_{k} \lambda_{l}) H_{h}^{i} + \lambda_{l} H_{kh}^{i} + (\dot{\partial}_{k} \mu_{l}) (\delta_{h}^{i} F^{2} - y_{h} y^{i}) + \mu_{l} (2\delta_{h}^{i} y_{k} - g_{kh} y^{i} - \delta_{k}^{i} y_{h}).$$
(31)

The interchange of the indices k and h in (31), the subtraction of the equation thus obtained from (31) and by using (12c), we get

$$(\dot{\partial}_{k}H_{h}^{i} - \dot{\partial}_{h}H_{k}^{i})_{|l} + (H_{h}^{r}\Gamma_{krl}^{i} - H_{r}^{i}\Gamma_{khl}^{r} - H_{rh}^{i}P_{kl}^{r}\frac{-k}{h}) = \lambda_{l}(\dot{\partial}_{k}H_{h}^{i} - \dot{\partial}_{h}H_{k}^{i}) + 3\mu_{l}(\delta_{h}^{i}y_{k} - \delta_{k}^{i}y_{h})$$

$$+ [(\dot{\partial}_{k}\lambda_{l})H_{h}^{i} + (\dot{\partial}_{k}\mu_{l})(\delta_{h}^{i}F^{2} - y_{h}y^{i})\frac{-k}{h}].$$

$$(32)$$

This shows that $(\dot{\partial}_k H_h^i - \dot{\partial}_h H_k^i)_{|l} = \lambda_l (\dot{\partial}_k H_h^i - \dot{\partial}_h H_k^i)$ if and only if

$$H_{h}^{r}\Gamma_{krl}^{i} - H_{r}^{i}\Gamma_{khl}^{r} - H_{rh}^{i}P_{kl}^{r}\frac{-k}{h} = 3\mu_{l}(\delta_{h}^{i}y_{k} - \delta_{k}^{i}y_{h}) + [(\dot{\partial}_{k}\lambda_{l})H_{h}^{i}(+(\dot{\partial}_{k}\mu_{l})(\delta_{h}^{i}F^{2} - y_{h}y^{i})\frac{-k}{h}].$$
(33)

Thus, we conclude

Theorem 2.6. In GH^h - RF_n , the tensor $(\dot{\partial}_k H_h^i - \dot{\partial}_h H_k^i)$ behaves as recurrent if and only if (33) holds good.

3. An Generalized H^h-Recurrent Affinely Connected Space

A Finsler space F_n whose connection parameter G_{jk}^i is independent of y^i is called an affinely connected space (Berwald space). Thus, an affinely connected space is characterized by any one of the following equivalent conditions

a)
$$G_{jkh}^{i} = 0$$
 and b) $C_{ijk|h} = 0$, (34)

the connection parameters Γ_{kh}^i of Cartan and G_{kh}^i of Berwald coincides in affinely connected space and they are independent of directional arguments [?], i.e.

a)
$$\dot{\partial}_j G^i_{kh} = 0$$
 and b) $\dot{\partial}_j \Gamma^i_{kh} = 0.$ (35)

Definition 3.1. If the generalized H^h -recurrent space is affinely connected space [satisfies any one of the conditions (34a), (34b), (35a) and (35b)] we called it a generalized H^h -recurrent affinely connected space and denoted briefly by GH^h - RF_n affinely connected space.

Let us consider a $GH^h - R$ affinely connected space, if $\dot{\partial}_j \lambda_l = 0$ and $\dot{\partial}_j \mu_l = 0$, so in view of the condition (35b) and (7a), the condition (23) reduces to

$$H_{jkh?l}^{i} = \lambda_{l} H_{jkh}^{i} + H_{rkh}^{i} P_{jl}^{r} + \mu_{l} (\delta_{h}^{i} g_{jk} - \delta_{k}^{i} g_{jh}).$$
(36)

This shows that $H^i_{jkh|l} = \lambda_l H^i_{jkh} + \mu_l (\delta^i_h g_{jk} - \delta^i_k g_{jh})$ if and only if $H^i_{rkh} P^r_{jl} = 0$. Thus, we conclude

Theorem 3.2. In $GH^h - R$ affinely connected space, if the directional derivative of covariant vectors field of one order vanish, then Berwald curvature tensor H^i_{jkh} is generalized recurrent if and only if $H^i_{rkh}P^r_{jl} = 0$.

Consider a GH^h -R affinely connected space, if $\dot{\partial}_j \lambda_l = 0$ and $\dot{\partial}_j \mu_l = 0$, so in view of the condition (35b), (7a) and (14a), equation (25) reduces to $H_{jpkh|l} = \lambda_l H_{jpkh} + H_{rpkh} P_{jl}^r + \mu_l (g_{jk}g_{hp} - g_{jh}g_{kp})$. This shows that $H_{jpkh|l} = \lambda_l H_{jpkh} + \mu_l (g_{jk}g_{hp} - g_{jh}g_{kp})$ if and only if $H_{rpkh} P_{jl}^r = 0$. Thus, we conclude

Theorem 3.3. In $GH^h - R$ affinely connected space, if the directional derivative of covariant vectors field of one order vanish, then Berwald associate curvature tensor H_{jpkh} is generalized recurrent if and only if $H_{rpkh}P_{jl}^r = 0$.

Consider a GH^h -R affinely connected space, if $\dot{\partial}_j \lambda_l = 0$ and $\dot{\partial}_j \mu_l = 0$, so in view of the condition (35b) and (7a), the equation (27) reduces to $H_{jk|l} = \lambda_l H_{jk} + H_{rk} P_{jl}^r + (n-1)\mu_l g_{jk}$. This shows that $H_{jk|l} = \lambda_l H_{jk} + (n-1)\mu_l g_{jk}$ if and only if $H_{rk} P_{jl}^r = 0$. Thus, we conclude

Theorem 3.4. In GH^h -R affinely connected space, if the directional derivative of covariant vectors field of one order vanish, then H-Ricci tensor H_{jk} is non-vanishing if and only if $H_{rk}P_{jl}^r = 0$.

Consider a GH^h -R affinely connected space, if $\dot{\partial}_j \lambda_l = 0$ and $\dot{\partial}_j \mu_l = 0$, so in view of the condition (35b) and (7a), the equation (29) reduces to $(H_{hk} - H_{kh})_{?l} = \lambda_l (H_{hk} - H_{kh}) + H^p_{rkh} P^r_{pl}$. This shows that $(H_{hk} - H_{kh})_{|l} = \lambda_l (H_{hk} - H_{kh})$ if and only if $H^p_{rkh} P^r_{pl} = 0$.

Thus, we conclude

Theorem 3.5. In GH^h -R affinely connected space, if the directional derivative of covariant vectors field of one order vanish, then the tensor $(H_{hk} - H_{kh})$ behaves as recurrent if and only if $H^p_{rkh}P^r_{pl} = 0$.

Consider a GH^h -R affinely connected space, if $\dot{\partial}_j \lambda_l = 0$ and $\dot{\partial}_j \mu_l = 0$, so in view of the condition (35b) and (7a), the equation (31) reduces to

$$H_{kh|l}^{i} = \lambda_{l} H_{kh}^{i} + H_{rh}^{i} P_{kl}^{r} + \mu_{l} (2\delta_{h}^{i} y_{k} - g_{kh} y^{i} - \delta_{k}^{i} y_{h}).$$
(37)

This shows that

$$H^i_{kh|l} = \lambda_l H^i_{kh} + \mu_l (2\delta^i_h y_k - g_{kh} y^i - \delta^i_k y_h)$$

$$\tag{38}$$

if and only if $H_{rh}^i P_{kl}^r = 0$.

Thus, we conclude

Theorem 3.6. In GH^h -R affinely connected space, if the directional derivative of covariant vectors field of one order vanish, then the h-covariant derivative of the h(v)-torsion tensor H_{kh}^i is given by the condition (37) if and only if $H_{rh}^i P_{kl}^r = 0$.

Transvecting (14) by y^k , using (5b), (12a), (7b), (1b) and (1a), we get

$$H_{h|l}^{i} = \lambda_{l} H_{h}^{i} + 2\mu_{l} (\delta_{h}^{i} F^{2} - y_{h} y^{i}).$$
(39)

Thus, we conclude

Theorem 3.7. In GH^h -R affinely connected space, if the directional derivative of covariant vectors field of one order vanish, then the h-covariant derivative of the deviation H_h^i is given by the condition (3.5). Contracting the indices i and h in equation (3.5), using (12e) and (1b), we get

$$H_{|l} = \lambda_l H + 2\mu_l F^2. \tag{40}$$

Thus, we conclude

Theorem 3.8. In GH^h -R affinely connected space, if the directional derivative of covariant vectors field of one order vanish, then the covariant scalar H is non-vanishing.

Trausvecting (3.3) by g_{ip} , using(5a), (14b) and (1a), we get

$$H_{kp,h|l} = \lambda_l H_{kp,h} + H_{rp,h} P_{kl}^r + \mu_l (2g_{hp}y_k - g_{kh}y_p - g_{kp}y_h).$$
(41)

This shows that

$$H_{kp,h|l} = \lambda_l H_{kp,h} + \mu_l (2g_{hp}y_k - g_{kh}y_p - g_{kp}y_h)$$
(42)

if and only if $H_{rp.h}P_{kl}^r = 0$.

Thus, we conclude

Theorem 3.9. In GH^h -R affinely connected space, if the directional derivative of covariant vectors field of one order vanish, then the h-covariant derivative of the associate tensor $H_{kp,h}$ of the h(v)-torsion tensor H_{kh}^i is given by the condition (3.8) if and only if $H_{rp,h}P_{kl}^r = 0$.

Consider a GH^h -R affinely connected space, if $\dot{\partial}_j \lambda_l = 0$ and $\dot{\partial}_j \mu_l = 0$, so in view of the condition (3.2b) and (7a), the equation (2.14) reduces to

$$(\dot{\partial}_k H_h^i - \dot{\partial}_h H_k^i)_{|l} = \lambda_l (\dot{\partial}_k H_h^i - \dot{\partial}_h H_k^i) + 3\mu_l (\delta_h^i y_k - \delta_k^i y_h) + H_{rh}^i P_{kl}^r - H_{rk}^i P_{hl}^r.$$

29

This shows that

$$(\dot{\partial}_k H_h^i - \dot{\partial}_h H_k^i)_{|l} = \lambda_l (\dot{\partial}_k H_h^i - \dot{\partial}_h H_k^i)$$

if and only if

$$3\mu_l(\delta_h^i y_k - \delta_k^i y_h) + H_{rh}^i P_{kl}^r - H_{rk}^i P_{hl}^r = 0.$$
(43)

Thus, we conclude

Theorem 3.10. In GH^h -R affinely connected space, if the directional derivative of covariant vectors field of one order vanish, then the tensor $(\dot{\partial}_k H_h^i - \dot{\partial}_h H_k^i)$ behaves as recurrent if and only if (3.9) holds.

4. P2-like Generalized *H^h*-Recurrent Space

A P2-like space [4] is characterized by

$$P_{jkh}^{i} = \emptyset_{j} C_{kh}^{i} - \emptyset^{i} C_{jkh}, \tag{44}$$

where \emptyset_j and \emptyset^i are non-zero covariant and contravariant vectors field, respectively.

Definition 4.1. If the generalized H^h -recurrent space is a P2-like space satisfies the condition (4.1) we called it a P2-like generalized H^h -recurrent space and denoted briefly by P2-like $GH^h - RF_n$.

Let us consider a P2-like $GH^h - RF_n$, then necessarily we have the condition (4.1). Putting the condition (4.1) in the identity (16a) and using (16b), we get

$$R^{i}_{jkh|s} + R^{i}_{jsk?h} + R^{i}_{jhs|k} + \emptyset_{j}(H^{r}_{hs}C^{i}_{kr} + H^{r}_{kh}C^{i}_{sr} + H^{r}_{sk}C^{i}_{hr}) - \emptyset^{i}(H^{r}_{hs}C_{jkr} + H^{r}_{kh}C_{jsr} + H^{r}_{sk}C_{jhr}) = 0.$$

$$(45)$$

Using (17a), (18a), (17b) and (18b) in (4.2), we get

$$R_{jkh|s}^{i} + R_{jsk?h}^{i} + R_{jhs|k}^{i} + \emptyset_{j}(R_{hsk}^{i} + R_{khs}^{i} + R_{skh}^{i}) - \emptyset^{i}(R_{jskh} + R_{jhsk} + R_{jkhs}) = 0.$$

Transvecting the above equation by g_{ip} , using (5a) and (16c), we get

$$R_{jpkh|s} + R_{jpsk?h} + R_{jphs|k} + \emptyset_j (R_{hpsk} + R_{kphs} + R_{spkh}) - \emptyset_p (R_{jskh} + R_{jhsk} + R_{jkhs}) = 0, \tag{46}$$

where $g_{ip} \emptyset^i = \emptyset_p$. Transvecting (4.3) by y^j , using (5b) and (16d), we get

$$H_{pk.h|s} + H_{ps.k|h} + H_{ph.s?k} + \emptyset(R_{hpsk} + R_{kphs} + R_{spkh}) - \emptyset_p(H_{sk.h} + H_{hs.k} + H_{kh.s}) = 0,$$
(47)

where $\emptyset_j y^j = \emptyset$. Now, differentiating (15) partially with respect to y^j , using (1c) and (10b), we get

$$g_{ij}H^i_{hk} + y_iH^i_{jhk} = 0. (48)$$

Taking skew-symmetric part of (4.5) with respect to the indices j, k and h, using (14b) and (14c), we get

$$H_{kh,j} + H_{jk,h} + H_{hj,k} = 0. (49)$$

putting equation (4.6) in (4.4), we get

$$H_{pk,h|s} + H_{ps,k|h} + H_{ph,s?k} + \emptyset(R_{hpsk} + R_{kphs} + R_{spkh}) = 0.$$
(50)

Using the condition (22) in (4.7), we get

$$\lambda_s H_{pk,h} + \lambda_h H_{ps,k} + \lambda_k H_{ph,s} + \mu_s (g_{hk}y_p - g_{pk}y_h) + \mu_h (g_{ks}y_p - g_{ps}y_k) + \mu_k (g_{sh}y_p - g_{ph}y_s) + \emptyset (R_{hpsk} + R_{kphs} + R_{spkh}) = 0.$$
(51)

Thus, we conclude

Theorem 4.2. In P2-like $GH^h - RF_n$, we have the identities (4.7) and (4.8) holds good.

5. P^* -Generalized H^h -Recurrent Space

A P^* -Finsler space is characterized by the condition ([4, 5])

$$P_{kh}^{i} = \emptyset C_{kh}^{i}, \quad \emptyset \neq 0, \quad \text{where} \quad P_{jkh}^{i} y^{j} = P_{kh}^{i} = C_{kh|j}^{i} y^{j}. \tag{52}$$

H. Izumi [14] denoted \emptyset by λ .

Definition 5.1. If the generalized H^h -recurrent space is P^* - space [satisfies the condition (5.1)] we called it P^* -generalized recurrent space and denoted briefly by $P^* - GH^h - RF_n$.

Now, taking h-covariant derivative of (5.1) covariantly with respect to x^{l} , we get

$$P_{kh|l}^{i} = \emptyset_{|l}C_{kh}^{i} + \emptyset C_{kh|l}^{i}.$$
(53)

If the (v) hv-torsion tensor C_{kh}^{i} is recurrent, i.e. $C_{kh|l}^{i} = b_l C_{kh}^{i}$, then (5.2) can be written as

$$P_{kh|l}^{i} = \emptyset_{|l}C_{kh}^{i} + b_{l}\emptyset C_{kh}^{i}.$$
(54)

Putting equation (5.1) in (5.3), we get $P_{kh|l}^i = \emptyset_{|l}C_{kh}^i + b_lP_{kh}^i$ which implies $P_{kh|l}^i = b_lP_{kh}^i$ if and only if $\emptyset_{|l}C_{kh}^i = 0$. Thus, we conclude

Theorem 5.2. In $P^* - GH^h - RF_n$, the v(hv)-torsion tensor P_{kh}^i behaves as recurrent if and only if $\emptyset_{|l}C_{kh}^i = 0$ [provided the (v)hv-torsion tensor C_{kh}^i behaves as recurrent].

References

- [1] U.C.De and N.Guha, On generalized recurrent manifolds, proc. Math. Soc., 7(1991), 711.
- [2] S.Dikshit, Certain types of recurrences in Finsler spaces, D. Phil. Thesis, University of Allahabad, (Allahabad) (India), (1992).
- [3] R.S.D.Dubey and A.K.Srivastava, On recurrent Finsler spaces, Bull. Soc. Math. Belgique, 33(1981), 283-288.
- [4] H.Izumi, On P*- Finsler space I, Memo. Defence Acad. (Japan), 16(1976), 133-138.
- [5] H.Izumi, On P*- Finsler space II, Memo. Defence Acad. (Japan), 17(1977), 1-9.

- Y.B.Maralebhavi and M.Rathnamma, Generalized recurrent and concircular recurrent manifolds, Indian J. Pure Appl. Math., 30(11)(1999), 1167-1171.
- [7] M.Matsumoto, On h-isotropic and Ch-recurrent Finsler, J. Math. Kyoto Univ., 11(1971), 1-9.
- [8] C.K.Mishra and G.Lodhi, On C^h-recurrent and C^v-recurrent Finsler Spaces of Second Order, Int. J. Contemp. Math. Sciences, 3(17)(2008), 801-810.
- [9] P.N.Pandey, A note on recurrence vector, Proc. Nat. Acad. Sci. (India), 51(A)(1981), 6-8.
- [10] P.N.Pandey and R.B.Misra, Projective recurrent Finsler manifold I, Publications Mathematicae Debrecen, 28(3-4)(1981), 191-198.
- [11] P.N.Pandey and V.J.Dwivedi, On T-recurrent Finsler spaces, Progr. Math., (Varanasi), 21(2)(1987), 101-112.
- [12] P.N.Pandey and S.Pal, Hyper surface of a recurrent Finsler spaces, J. Int. Acad. Phy. Sci. ,7(2003), 9-18.
- [13] P.N.Pandey, S.Saxena and A.Goswani, On a Generalized H-Recurrent Space, Journal of International Academy of Physical Sciences, 15(2011), 201-211.
- [14] F.Y.A.Qasem, On Transformation in Finsler Spaces, D.Phil Thesis, University of Allahabad, (Allahabad) (India), (2000).
- [15] H.Rund, The Differential Geometry of Finsler Spaces, Springer-Verlag, Berlin-Gttingen-Heidelberg, (1959), 2nd edit. (in Russian), Nauka, (Moscow), (1981).
- [16] R.Verma, Some transformations in Finsler spaces, D. Phil. Thesis, University of Allahabad, (Allahabad) (India), (1991).