International Journal of Mathematics And its Applications

On a Generalized K^{h}-Birecurrent Finsler Space

Research Article

Fahmi Yaseen Abdo Qasem ${ }^{1}$ and Wafa'a Hadi Ali Hadi ${ }^{2 *}$
1 Department of Mathematics, Faculty of Education-Aden, University of Aden, Khormaksar, Aden, Yemen.
2 Department of Mathematics, Community College-Aden, Dar Saad, Aden, Yemen.

Abstract: In the present paper, a Finsler space whose curvature tensor $K_{j k h}^{i}$ satisfies $K_{j k h|\ell| m}^{i}=a_{\ell m} K_{j k h}^{i}+$ $b_{\ell m}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right), K_{j k h}^{i} \neq 0$, where $a_{\ell m}$ and $b_{\ell m}$ are non-zero covariant tensor fields of second order called recurrence tensor fields, is introduced, such space is called as a generalized K^{h}-birecurrent Finsler space. The associate tensor $K_{j r k h}$ of Cartan's fourth curvature tensor $K_{j k h}^{i}$, the torsion tensor $H_{k h}^{i}$, the deviation tensor K_{h}^{i}, the Ricci tensor $K_{j k}$, the vector H_{k} and the scalar curvature K of such space are non-vanishing. Under certain conditions, a generalized K^{h}-birecurrent Finsler space becomes Landsberg space. Some conditions have been pointed out which reduce a generalized K^{h}-birecurrent Finsler space $F_{n}(n>2)$ into Finsler space of scalar curvature.
Keywords: Finsler space, Generalized K^{h}-birecurrent Finsler space, Ricci tensor, Landsberg space, Finsler space of scalar curvature. (C) JS Publication.

1. Introduction

H.S. Ruse [3] considered a three dimensional Riemannian space having the recurrent of curvature tensor and he called such space as Riemannian space of recurrent curvature. This idea was extended to n-dimensional Riemannian and nonRiemannian space by A.G. Walker [1], Y.C.Worg [9], Y.C. Worg and K. Yano [10] and others. This idea was extended to Finsler spaces by A.Moor [2] for the first time. Due to different connections of Finsler space, the recurrent of Cartan's fourth curvature tensor $K_{j k h}^{i}$ have been discussed by N.S.H.Hussien [5], birecurrent of Cartan's fourth curvature tensor $K_{j k h}^{i}$ have been discussed by M.A.A.Ali [4]. P.N.Pandey, S.Saxena and A.Goswami [7] interduced a generalized H-recurrent Finsler space. Let F_{n} be an n-dimensional Finsler space equipped with the metric function a $F(x, y)$ satisfying the request conditions [3]. The vectors y_{i}, y^{i} and the metric tensor $\mathrm{g}_{i j}$ satisfies the following relations
a) $y_{i} y^{i}=F^{2}$
b) $g_{i j}=\dot{\partial}_{i} y_{j}=\dot{\partial}_{j} y_{i}$
c) $y_{i \mid k}=0$

[^0]The unit vector \imath^{i} and the associate vector \imath_{i} is defined by

$$
\begin{equation*}
\text { a) } \imath^{i}=\frac{y^{i}}{F} \quad \text { b) } \imath_{i}=g_{i j} \imath^{j}=\dot{\partial}_{i} F=\frac{y_{i}}{F} \tag{2}
\end{equation*}
$$

The process h- covariant differentiation commute with the partial differentiation with respect to y^{j} according to
a) $\dot{\partial}_{j}\left(X_{\mid k}^{i}\right)-\left(\dot{\partial}_{j} X^{i}\right)_{\mid k}=X^{r}\left(\dot{\partial}_{j} \Gamma_{r k}^{* i}\right)-\left(\dot{\partial}_{r} X^{i}\right) P_{j k}^{r}$,
b) $P_{j k}^{r}=\left(\dot{\partial}_{j} \Gamma_{h k}^{* r}\right) y^{h}=\Gamma_{j h k}^{* r} y^{h}$,
c) $\Gamma_{j k h}^{* i} y^{h}=G_{j k h}^{i} y^{h}=0$,
d) $P_{j k}^{i} y^{j}=0$,
e) $g_{i r} P_{k h}^{i}=P_{r k h}$.

The tensor $H_{j k h}^{i}$ satisfies the relation

$$
\begin{align*}
H_{j k h}^{i} y^{j} & =H_{k h}^{i} \tag{4}\\
H_{j k h}^{i} & =\dot{\partial}_{j} H_{k h}^{i} \tag{5}
\end{align*}
$$

The torsion tensor $H_{k h}^{i}$ satisfies

$$
\begin{align*}
H_{k h}^{i} y^{h} & =H_{k}^{i} \tag{6}\\
K_{j k h}^{i} y^{j} & =H_{k h}^{i} \tag{7}\\
H_{j k} & =H_{j k i}^{i} \tag{8}\\
H_{k} & =H_{k i}^{i}, \quad \text { and } \tag{9}\\
H & =\frac{1}{n-1} H_{i}^{i} \tag{10}
\end{align*}
$$

where $H_{j k}$ and H are called h-Ricci tensor [6] and curvature scalar respectively. Since contraction of the indices does not affect the homogeneity in y^{i}, hence the tensors $H_{r k}, H_{r}$ and the scalar H are also homogeneous of degree zero, one and two in y^{i} respectively. The above tensors are also connected by

$$
\begin{align*}
H_{j k} y^{j} & =H_{k} \tag{11}\\
H_{j k} & =\dot{\partial}_{j} H_{k} \tag{12}\\
H_{k} y^{k} & =(n-1) H \tag{13}
\end{align*}
$$

The tensors $H_{h}^{i}, H_{k h}^{i}$ and $H_{j k h}^{i}$ also satisfy the following :

$$
\begin{align*}
H_{k h}^{i} & =\dot{\partial}_{k} H_{h}^{i} \tag{14}\\
g_{i j} H_{k}^{i} & =g_{i k} H_{j}^{i} \tag{15}
\end{align*}
$$

The associate tensor $K_{i j k h}$ of Cartan's fourth curvature tensor $K_{j k h}^{i}$ is given by

$$
\begin{equation*}
K_{i j k h}=g_{r j} K_{i k h}^{r} \tag{16}
\end{equation*}
$$

The necessary and sufficient condition for a Finsler space $F_{n}(n>2)$ to be a Finsler space of scalar curvature is given by

$$
\begin{equation*}
H_{h}^{i}=F^{2} R\left(\delta_{h}^{i}-\imath^{i} \imath_{h}\right) \tag{17}
\end{equation*}
$$

A Finsler space F_{n} is said to be Landsberg space if satisfies

$$
\begin{equation*}
y_{r} G_{j k h}^{r}=-2 C_{j k h \mid m} y^{m}=-2 P_{j k h}=0 \tag{18}
\end{equation*}
$$

The Ricci tensor $K_{j k}$ of the curvature tensor $K_{j k h}^{i}$, the tensor K_{k}^{i} and the scalar K are given by
a) $K_{j k i}^{i}=K_{j k}$,
b) $g^{j k} K_{j k}=K$,

2. Generalized K^{h}-Birecurrent Finsler Space

Let us consider a Finsler space F_{n} whose Cartan's fourth curvature tensor $K_{j k h}^{i}$ satisfies

$$
\begin{equation*}
K_{j k h \mid \ell}^{i}=\lambda_{\ell} K_{j k h}^{i}+\mu_{\ell}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right), K_{j k h}^{i} \neq 0 \tag{20}
\end{equation*}
$$

where λ_{ℓ} and μ_{ℓ} are non-zero covariant vector fields and called the recurrence vector fields. Such space called it as a generalized K^{h}-recurrent Finsler space. Differentiating (20) covariantly with respect to x^{m} in the sense of Cartan and using (1e), we get

$$
\begin{equation*}
K_{j k h|\ell| m}^{i}=\lambda_{\ell \mid m} K_{j k h}^{i}+\lambda_{\ell} K_{j k h \mid m}^{i}+\mu_{\ell \mid m}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right) \tag{21}
\end{equation*}
$$

Using (20) in (21) we get

$$
K_{j k h|\ell| m}^{i}=\left(\lambda_{\ell \mid m}+\lambda_{\ell} \lambda_{m}\right) K_{j k h}^{i}+\left(\lambda_{\ell} \mu_{m}+\mu_{\ell \mid m}\right)\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right)
$$

which can be written as

$$
\begin{equation*}
K_{j k h|\ell| m}^{i}=a_{\ell m} K_{j k h}^{i}+b_{\ell m}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right), K_{j k h}^{i} \neq 0 \tag{22}
\end{equation*}
$$

Where $a_{\ell m}=\lambda_{\ell \mid m}+\lambda_{\ell} \lambda_{m}$ and $b_{\ell m}=\lambda_{\ell} \mu_{m}+\mu_{\ell \mid m}$ are non-zero covariant tensor fields of second order and called recurrence tensor fields.

Definition 2.1. If Cartan's fourth curvature tensor $K_{j k h}^{i}$ of a Finsler space satisfying the condition (22), where $a_{\ell m}$ and $b_{\ell m}$ are non-zero covariant tensor fields of second order, the space will be called generalized K^{h} - birecurrent Finsler space, we shall denote such space briefly by $G K^{h}-B R-F_{n}$.

However, if we start from condition (22), we cannot obtain the condition (20), we may conclude

Theorem 2.2. Every generalized $K^{h}-$ recurrent Finsler space is generalized $K^{h}-$ birecurrent Finsler space, but the converse need not be true.

Transvecting (22) by the metric tensor $g_{i r}$, using (1e) and (16), we get

$$
\begin{equation*}
K_{j r k h|\ell| m}=a_{\ell m} K_{j r k h}+b_{\ell m}\left(g_{k r} g_{j h}-g_{h r} g_{j k}\right) \tag{23}
\end{equation*}
$$

Transvecting (22) by y^{j}, using (1d) and (7) we get

$$
\begin{equation*}
H_{k h|\ell| m}^{i}=a_{\ell m} H_{k h}^{i}+b_{\ell m}\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right) \tag{24}
\end{equation*}
$$

Further transvecting (24) by y^{k}, using (1d), (6) and (1a), we get

$$
\begin{equation*}
H_{h|\ell| m}^{i}=a_{\ell m} H_{h}^{i}+b_{\ell m}\left(y^{i} y_{h}-\delta_{h}^{i} F^{2}\right) \tag{25}
\end{equation*}
$$

Thus we have

Theorem 2.3. In $G K^{h}-B R-F_{n}$, the associate tensor $K_{j r k h}$ of Cartan's fourth curvature tensor $K_{j k h}^{i}$, the torsion tensor $H_{k h}^{i}$ and the deviation tensor H_{h}^{i} are non- vanishing.

Contracting the indices i and h in equations (22), (24) and (25), using (19a), (9), (10) and (1a), we get

$$
\begin{gather*}
K_{j k|\ell| m}=a_{\ell m} K_{j k}+(1-n) b_{\ell m} g_{j k} \tag{26}\\
H_{k|\ell| m}=a_{\ell m} H_{k}+(1-n) b_{\ell m} y_{k} \tag{27}\\
H_{|\ell| m}=a_{\ell m} H-b_{\ell m} F^{2} \tag{28}
\end{gather*}
$$

Transvecting (26) by $g^{i j}$, using (1f), (19c), we get

$$
\begin{equation*}
K_{k|\ell| m}^{i}=a_{\ell m} K_{k}^{i}+(1-n) b_{\ell m} \delta_{k}^{i} \tag{29}
\end{equation*}
$$

Transvecting (26) by $g^{j k}$, using (1f) and (19b), we get

$$
\begin{equation*}
K_{|\ell| m}=a_{\ell m} K+(1-n) b_{\ell m} \tag{30}
\end{equation*}
$$

Thus, we conclude

Theorem 2.4. In $G K^{h}-B R-F_{n}$, the Ricci tensor $K_{j k}$, the curvature vector H_{k}, the scalar curvature H the deviation tensor K_{k}^{i} and the scalar curvature tensor K are non- vanishing.

Differentiating (24) partially with respect to y^{j}, using (5) and (1b), we get

$$
\begin{equation*}
\dot{\partial}_{j}\left(H_{k h|\ell| m}^{i}\right)=\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k h}^{i}+a_{\ell m} H_{j k h}^{i}+\left(\dot{\partial}_{j} b_{\ell m}\right)\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right)+b_{\ell m}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right) \tag{31}
\end{equation*}
$$

Using commutation formula exhibited by (1.3a) for $\left(H_{k h \mid \ell}^{i}\right)$ in (31), we get

$$
\begin{align*}
\left\{\dot{\partial}_{j}\left(H_{k h \mid \ell}^{i}\right)\right\}_{\mid m}+H_{k h \mid \ell}^{r}\left(\dot{\partial}_{j} \Gamma_{r m}^{* i}\right) & -H_{r h \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right)-H_{r k \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{h m}^{* r}\right)-H_{k h \mid r}^{r}\left(\dot{\partial}_{j} \Gamma_{m \ell}^{* i}\right)-\dot{\partial}_{r}\left(H_{k h \mid \ell}^{i}\right) P_{j m}^{r} \\
& =\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k h}^{i}+a_{\ell m} H_{j k h}^{i}+\left(\dot{\partial}_{j} b_{\ell m}\right)\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right)+b_{\ell m}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right) \tag{32}
\end{align*}
$$

Again applying the commutation formula exhibited by (1.3a) for $\left(H_{k h}^{i}\right)$ in (32) and using (5), we get

$$
\begin{align*}
& \left\{H_{j k h \mid \ell}^{i}+H_{k h}^{r}\left(\dot{\partial}_{j} \Gamma_{r \ell}^{* i}\right)-H_{r h}^{i}\left(\dot{\partial}_{j} \Gamma_{k \ell}^{* r}\right)-H_{r k}^{i}\left(\dot{\partial}_{j} \Gamma_{h \ell}^{* r}\right)-H_{r k h}^{i} P_{j \ell}^{r}\right\}_{\mid m}+H_{k h \mid \ell}^{r}\left(\dot{\partial}_{j} \Gamma_{r m}^{* i}\right)-H_{r h \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right)-H_{r k \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{h m}^{* r}\right) \\
& -H_{k h \mid r}^{i}\left(\dot{\partial}_{j} \Gamma_{m \ell}^{* r}\right)-\left\{H_{r k h \mid \ell}^{i}+H_{k h}^{s}\left(\dot{\partial}_{r} \Gamma_{s \ell}^{* i}\right)-H_{s h}^{i}\left(\dot{\partial}_{r} \Gamma_{k \ell}^{* s}\right)-H_{s k}^{i}\left(\dot{\partial}_{r} \Gamma_{h \ell}^{* s}\right)-H_{s k h}^{i} P_{r \ell}^{s}\right\} P_{j m}^{r} \\
& =\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k h}^{i}+a_{\ell m} H_{j k h}^{i}+\left(\dot{\partial}_{j} b_{\ell m}\right)\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right)+b_{\ell m}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right) . \tag{33}
\end{align*}
$$

This shows that

$$
\begin{equation*}
H_{j k h|\ell| m}^{i}=a_{\ell m} H_{j k h}^{i}+b_{\ell m}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right) \tag{34}
\end{equation*}
$$

if and only if

$$
\begin{align*}
& \left\{H_{k h}^{r}\left(\dot{\partial}_{j} \Gamma_{r \ell}^{* i}\right)-H_{r h}^{i}\left(\dot{\partial}_{j} \Gamma_{k \ell}^{* r}\right)-H_{r k}^{i}\left(\dot{\partial}_{j} \Gamma_{h \ell}^{* r}\right)-H_{r k h}^{i} P_{j \ell}^{r}\right\}_{\mid m}+H_{k h \mid \ell}^{r}\left(\dot{\partial}_{j} \Gamma_{r m}^{* i}\right)-H_{r h \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right) \\
& -H_{r k \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{h m}^{* r}\right)-H_{k h \mid r}^{i}\left(\dot{\partial}_{j} \Gamma_{m \ell}^{* r}\right)-\left\{H_{r k h \mid \ell}^{i}+H_{k h}^{s}\left(\dot{\partial}_{r} \Gamma_{s \ell}^{* i}\right)-H_{s h}^{i}\left(\dot{\partial}_{r} \Gamma_{k \ell}^{* s}\right)-H_{s k}^{i}\left(\dot{\partial}_{r} \Gamma_{h \ell}^{* s}\right)-H_{s k h}^{i} P_{r \ell}^{s}\right\} P_{j m}^{r} \\
& =\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k h}^{i}+\left(\dot{\partial}_{j} b_{\ell m}\right)\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right) . \tag{35}
\end{align*}
$$

Contracting the i and h in (33) and using (8), we get

$$
\begin{align*}
& H_{j k|\ell| m}+\left\{H_{k p}^{r}\left(\dot{\partial}_{j} \Gamma_{r \ell}^{* p}\right)-H_{r}\left(\dot{\partial}_{j} \Gamma_{k \ell}^{* r}\right)-H_{r k}^{p}\left(\dot{\partial}_{j} \Gamma_{p \ell}^{* r}\right)-H_{r k} P_{j \ell}^{r}\right\}_{\mid m}+H_{k p \mid \ell}^{r}\left(\dot{\partial}_{j} \Gamma_{r m}^{* p}\right)-H_{r \mid \ell}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right) \\
& -H_{r k \mid \ell}^{p}\left(\dot{\partial}_{j} \Gamma_{p m}^{* r}\right)-H_{k \mid r}\left(\dot{\partial}_{j} \Gamma_{m \ell}^{* r}\right)-\left\{H_{r k \mid \ell}+H_{k p}^{s}\left(\dot{\partial}_{r} \Gamma_{s \ell}^{* p}\right)-H_{s}\left(\dot{\partial}_{r} \Gamma_{k \ell}^{* s}\right)-H_{s k}^{p}\left(\dot{\partial}_{r} \Gamma_{p \ell}^{* s}\right)-H_{s k} P_{r \ell}^{s}\right\} P_{j m}^{r} \\
& =\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k}+a_{\ell m} H_{j k}+(1-n)\left(\dot{\partial}_{j} b_{\ell m}\right) y_{k}+(1-n) d_{\ell m} g_{j k} . \tag{36}
\end{align*}
$$

This shows that

$$
\begin{equation*}
H_{j k|\ell| m}=a_{\ell m} H_{j k}+(1-n) d_{\ell m} g_{j k} . \tag{37}
\end{equation*}
$$

if and only if

$$
\begin{align*}
& \left\{H_{k p}^{r}\left(\dot{\partial}_{j} \Gamma_{r \ell}^{* p}\right)-H_{r}\left(\dot{\partial}_{j} \Gamma_{k \ell}^{* r}\right)-H_{r k}^{p}\left(\dot{\partial}_{j} \Gamma_{p \ell}^{* r}\right)-H_{r k} P_{j \ell}^{r}\right\}_{\mid m}+H_{k p \mid \ell}^{r}\left(\dot{\partial}_{j} \Gamma_{r m}^{* p}\right)-H_{r \mid \ell}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right) \\
& -H_{r k \mid \ell}^{p}\left(\dot{\partial}_{j} \Gamma_{p m}^{* r}\right)-H_{k \mid r}\left(\dot{\partial}_{j} \Gamma_{m \ell}^{* r}\right)-\left\{H_{r k \mid \ell}+H_{k p}^{s}\left(\dot{\partial}_{r} \Gamma_{s \ell}^{* p}\right)-H_{s}\left(\dot{\partial}_{r} \Gamma_{k \ell}^{* s}\right)-H_{s k}^{p}\left(\dot{\partial}_{r} \Gamma_{p \ell}^{* s}\right)-H_{s k} P_{r \ell}^{s}\right\} P_{j m}^{r} \\
& =\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k}+(1-n)\left(\dot{\partial}_{j} b_{\ell m}\right) y_{k} . \tag{38}
\end{align*}
$$

Thus, we have
Theorem 2.5. In $G K^{h}-B R-F_{n}$, Berwald curvature tensor $H_{j k h}^{i}$ and Ricci curvature tensor $H_{j k}$ are non-vanishing if and only if conditions (35) and (38) hold, respectively.

Differentiating (27) partially with respect to y^{j}, using (??) and (1b), we get

$$
\begin{equation*}
\dot{\partial}_{j}\left(H_{k|\ell| m}\right)=\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k}+a_{\ell m} H_{j k}+(1-n)\left(\dot{\partial}_{j} b_{\ell m}\right) y_{k}+(1-n) b_{\ell m} g_{j k} . \tag{39}
\end{equation*}
$$

Using the commutation formula exhibited by (1. 3a) for $\left(H_{k \mid \ell}\right)$ and using (12), we get

$$
\begin{gather*}
\left(\dot{\partial}_{j} H_{k \mid \ell}\right)_{\mid m}-H_{r \mid \ell}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right)-H_{k \mid r}\left(\dot{\partial}_{j} \Gamma_{\ell m}^{* r}\right)-\left(\dot{\partial}_{r} H_{k \mid \ell}\right) P_{j m}^{r}=\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k}+a_{\ell m} H_{j k}+(1-n)\left(\dot{\partial}_{j} b_{\ell m}\right) y_{k} \\
(1-n) b_{\ell m} g_{j k} \tag{40}
\end{gather*}
$$

Again using commutation formula exhibited by (3a) for $\left(H_{k}\right)$ in (40), we get

$$
\begin{align*}
\left\{\left(\dot{\partial}_{j} H_{k}\right)_{\mid \ell}-H_{r}\left(\dot{\partial}_{j} \Gamma_{\ell k}^{* r}\right)-\left(\dot{\partial}_{r} H_{k}\right) P_{j \ell}^{r}\right\}_{\mid m} & -H_{r \mid \ell}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right)-H_{k \mid r}\left(\dot{\partial}_{j} \Gamma_{\ell m}^{* r}\right)-\left\{\left(\dot{\partial}_{r} H_{k}\right)_{\mid \ell}-H_{s}\left(\dot{\partial}_{r} \Gamma_{\ell k}^{* s}\right)-\left(\dot{\partial}_{s} H_{k}\right) P_{r \ell}^{s}\right\} P_{j m}^{r} \\
& =\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k}+a_{\ell m} H_{j k}+(1-n)\left(\dot{\partial}_{j} b_{\ell m}\right) y_{k}+(1-n) b_{\ell m} g_{j k} \tag{41}
\end{align*}
$$

Using (12) and (37) in (41), we get

$$
\begin{align*}
\left\{-H_{r}\left(\dot{\partial}_{j} \Gamma_{\ell k}^{* r}\right)-\left(H_{k r}\right) P_{j \ell}^{r}\right\}_{\mid m} & -H_{r \mid \ell}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right)-H_{k \mid r}\left(\dot{\partial}_{j} \Gamma_{\ell m}^{* r}\right) \\
& -\left\{H_{k r \mid \ell}-H_{s}\left(\dot{\partial}_{r} \Gamma_{\ell k}^{* s}\right)-H_{k s} P_{r \ell}^{s}\right\} P_{j m}^{r}=\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k}+(1-n)\left(\dot{\partial}_{j} b_{\ell m}\right) y_{k} \tag{42}
\end{align*}
$$

Transvecting (42) by y^{k}, using (1d), (??), (3b) and (1a), we get

$$
-2 H_{r \mid \ell} P_{j m}^{r}-(n-1) H_{\mid r}\left(\dot{\partial}_{j} \Gamma_{\ell m}^{* r}\right)=(n-1)\left(\dot{\partial}_{j} a_{\ell m}\right) H-(n-1)\left(\dot{\partial}_{j} b_{\ell m}\right) F^{2}
$$

Which can be written as

$$
\begin{equation*}
\left(\dot{\partial}_{j} b_{\ell m}\right)=\frac{\left(\dot{\partial}_{j} a_{\ell m}\right) H}{F^{2}} \tag{43}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
-2 H_{r \mid \ell} P_{j m}^{r}-(n-1) H_{\mid r}\left(\dot{\partial}_{j} \Gamma_{\ell m}^{* r}\right)=0 . \tag{44}
\end{equation*}
$$

If the tensor $a_{\ell m}$ is independent of y^{i}, the equation (43) shows that the tensor $b_{\ell m}$ is also independent of y^{i}. Conversely, if the tensor $b_{\ell m}$ is independent of y^{i}, we get $H \dot{\partial}_{j} a_{\ell m}=0$. In view of Theorem 2.3, the condition $H \dot{\partial}_{j} a_{\ell m}=0$ implies $\dot{\partial}_{j} a_{\ell m}=0$, i.e. the covariant tensor $a_{\ell m}$ is also independent of y^{i}. This leads to

Theorem 2.6. The covariant tensor $b_{\ell m}$ is independent of the directional arguments if the covariant tensor $a_{\ell m}$ is independent of directional arguments if and only if conditions (44) and (38) hold.

Suppose the tensor $a_{\ell m}$ is not independent of y^{i}, then (42) and (43) together imply

$$
\begin{align*}
\left\{-H_{r}\left(\dot{\partial}_{j} \Gamma_{\ell k}^{* r}\right)-\left(H_{k r}\right) P_{j \ell}^{r}\right\}_{\mid m} & -H_{r \mid \ell}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right)-H_{k \mid r}\left(\dot{\partial}_{j} \Gamma_{\ell m}^{* r}\right)-\left\{H_{k r \mid \ell}-H_{s}\left(\dot{\partial}_{r} \Gamma_{\ell k}^{* s}\right)-H_{k s} P_{r \ell}^{s}\right\} P_{j m}^{r} \\
& =\left(\dot{\partial}_{j} a_{\ell m}\right)\left[H_{k}-\frac{(n-1)}{F^{2}} H y_{k}\right] . \tag{45}
\end{align*}
$$

Transvecting (45) by y^{m} and using (1d), (3c) and (3d), we get

$$
\begin{equation*}
\left\{-H_{r}\left(\dot{\partial}_{j} \Gamma_{\ell k}^{* r}\right)-\left(H_{k r}\right) P_{j \ell}^{r}\right\}_{\mid m} y^{m}=\left(\dot{\partial}_{j} a_{\ell}-a_{j \ell}\right)\left(H_{k}-\frac{(n-1)}{F^{2}} H y_{k}\right) . \tag{46}
\end{equation*}
$$

where $a_{\ell m} y^{m}=a_{\ell}$, if

$$
\begin{equation*}
\left\{-H_{r}\left(\dot{\partial}_{j} \Gamma_{\ell k}^{* r}\right)-\left(H_{k r}\right) P_{j \ell}^{r}\right\}_{\mid m} y^{m}=0 \tag{47}
\end{equation*}
$$

Equation (46) implies at least one of the following conditions

$$
\begin{equation*}
\text { a) } a_{j \ell}=\dot{\partial}_{j} a_{\ell}, \quad \text { b) } H_{k}=\frac{(n-1)}{F^{2}} H y_{k} \tag{48}
\end{equation*}
$$

Thus, we have

Theorem 2.7. In $G K^{h}-B R-F_{n}$ for which the covariant tensor $a_{\ell m}$ is not independent of the directional arguments and if conditions (47) and (38), (44) hold, at least one of the conditions (48a) and (48b) hold.

Suppose (48b) holds equation (45) implies

$$
\begin{gather*}
\left\{-\frac{(n-1)}{F^{2}} H y_{r} \dot{\partial}_{j} \Gamma_{\ell k}^{* r}-H_{k r} P_{j \ell}^{r}\right\}_{\mid m}-\left\{\frac{(n-1)}{F^{2}} H y_{r}\right\}_{\mid \ell} \dot{\partial}_{j} \Gamma_{k m}^{* r} \tag{49}\\
-\left\{\frac{(n-1)}{F^{2}} H y_{k}\right\}_{\mid r} \dot{\partial}_{j} \Gamma_{\ell m}^{* r}-H_{k r \mid \ell} P_{j m}^{r}-\frac{(n-1)}{F^{2}} H y_{s}\left(\dot{\partial}_{r} \Gamma_{\ell k}^{* s}\right) P_{j m}^{r}-H_{k s} P_{r \ell}^{s} P_{j m}^{r}=0 .
\end{gather*}
$$

Transvecting (49) by y^{j}, using (1d), (3b) and (3d), we get

$$
\begin{equation*}
\left\{\frac{(n-1)}{F^{2}} H y_{r} \mathrm{P}_{\ell k}^{r}\right\}_{\mid m}+\left\{\frac{(n-1)}{F^{2}} H y_{r}\right\}_{\mid \ell} P_{k m}^{r}+\left\{\frac{(n-1)}{F^{2}} H y_{k}\right\}_{\mid r} \mathrm{P}_{\ell m}^{r}=0 \tag{50}
\end{equation*}
$$

Thus, we have

Theorem 2.8. In $G K^{h}-B R-F_{n}$, we have the identity (50) provided (48b).

Transvecting (50) by the metric tensor $g_{r j}$, using (1e) and (3e), we get

$$
\begin{equation*}
\left\{\frac{(n-1)}{F^{2}} H y_{r} P_{j \ell k}\right\}_{\mid m}+\left\{\frac{(n-1)}{F^{2}} H y_{r}\right\}_{\mid \ell} P_{j k m}+\left\{\frac{(n-1)}{F^{2}} H y_{k}\right\}_{\mid r} P_{j \ell m}=0 \tag{51}
\end{equation*}
$$

By using (1c), equation (51) can be written as

$$
y_{r}\left(H P_{j \ell k}\right)_{\mid m}+y_{r} H_{\mid \ell} P_{j k m}+y_{k} H_{\mid r} P_{j \ell m}=0
$$

In view of Theorem 2.3, we have

$$
\begin{equation*}
P_{j \ell m}=0 \tag{52}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
y_{r}\left(H P_{j \ell k}\right)_{\mid m}+y_{r} H_{\mid \ell} P_{j k m}=0 \tag{53}
\end{equation*}
$$

Therefore the space is Landsberg space. Thus, we have

Theorem 2.9. An $G K^{h}-B R-F_{n}$ is Landsberg space if and only if conditions (53), (48b), (38) and (44) hold good.

If the covariant tensor $a_{j \ell} \neq \dot{\partial}_{j} a_{\ell}$, in view of Theorem $2.6,(48 \mathrm{~b})$ holds good. In view of this fact, we may rewrite Theorem 2.8 in the following form

Theorem 2.10. An $G K^{h}-B R-F_{n}$ is necessarily Landsberg space if and only if conditions (53), (38), (44) and (48b) hold good and provided $a_{j \ell} \neq \dot{\partial}_{j} a_{\ell}$.

Using (34) in (33), we get

$$
\begin{align*}
& \left\{H_{k h}^{r}\left(\dot{\partial}_{j} \Gamma_{r \ell}^{* i}\right)-H_{r h}^{i}\left(\dot{\partial}_{j} \Gamma_{k \ell}^{* r}\right)-H_{r k}^{i}\left(\dot{\partial}_{j} \Gamma_{h \ell}^{* r}\right)-H_{r k h}^{i} P_{j \ell}^{r}\right\}_{\mid m}+H_{k h \mid \ell}^{r}\left(\dot{\partial}_{j} \Gamma_{r m}^{* i}\right)-H_{r h \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right) \\
& -H_{r k \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{h m}^{* r}\right)-H_{k h \mid r}^{i}\left(\dot{\partial}_{j} \Gamma_{m \ell}^{* r}\right)-\left\{H_{r k h \mid \ell}^{i}+H_{k h}^{s}\left(\dot{\partial}_{r} \Gamma_{s \ell}^{* i}\right)-H_{s h}^{i}\left(\dot{\partial}_{r} \Gamma_{k \ell}^{* s}\right)-H_{s k}^{i}\left(\dot{\partial}_{r} \Gamma_{h \ell}^{* s}\right)-H_{s k h}^{i} P_{r \ell}^{s}\right\} P_{j m}^{r} \\
& =\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k h}^{i}+\left(\dot{\partial}_{j} b_{\ell m}\right)\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right) \tag{54}
\end{align*}
$$

Transvecting (54) by y^{k}, using (1d), (1a), (3b), (4) and (6), we get

$$
\begin{align*}
& \left\{H_{h}^{r}\left(\dot{\partial}_{j} \Gamma_{r \ell}^{* i}\right)-H_{r}^{i}\left(\dot{\partial}_{j} \Gamma_{h \ell}^{* r}\right)-2 H_{r h}^{i} P_{j \ell}^{r}\right\}_{\mid m}+H_{h \mid \ell}^{r}\left(\dot{\partial}_{j} \Gamma_{r m}^{* i}\right)-H_{r h \mid \ell}^{i}\left(\mathrm{P}_{j m}^{r}\right)-H_{r \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{h m}^{* r}\right)-H_{h \mid r}^{i}\left(\dot{\partial}_{j} \Gamma_{m \ell}^{* r}\right) \\
& -\left\{H_{r h \mid \ell}^{i}+H_{h}^{s}\left(\dot{\partial}_{r} \Gamma_{s \ell}^{* i}\right)-H_{s}^{i}\left(\dot{\partial}_{r} \Gamma_{h \ell}^{* s}\right)-2 H_{s h}^{i} P_{r \ell}^{s}\right\} P_{j m}^{r}=\left(\dot{\partial}_{j} a_{\ell m}\right) H_{h}^{i}+\left(\dot{\partial}_{j} b_{\ell m}\right)\left(y^{i} y_{h}-\delta_{h}^{i} F^{2}\right) . \tag{55}
\end{align*}
$$

Substituting the value of $\dot{\partial}_{j} b_{\ell m}$ from (43), in (55), we get

$$
\begin{align*}
& \left\{H_{h}^{r}\left(\dot{\partial}_{j} \Gamma_{r \ell}^{* i}\right)-H_{r}^{i}\left(\dot{\partial}_{j} \Gamma_{h \ell}^{* r}\right)-2 H_{r h}^{i} P_{j \ell}^{r}\right\}_{\mid m}+H_{h \mid \ell}^{r}\left(\dot{\partial}_{j} \Gamma_{r m}^{* i}\right)-H_{r h \mid \ell}^{i}\left(\mathrm{P}_{j m}^{r}\right)-H_{r \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{h m}^{* r}\right)-H_{h \mid r}^{i}\left(\dot{\partial}_{j} \Gamma_{m \ell}^{* r}\right) \\
& -\left\{H_{r h \mid \ell}^{i}+H_{h}^{s}\left(\dot{\partial}_{r} \Gamma_{s \ell}^{* i}\right)-H_{s}^{i}\left(\dot{\partial}_{r} \Gamma_{h \ell}^{* s}\right)-2 H_{s h}^{i} P_{r \ell}^{s}\right\} P_{j m}^{r}=\left(\dot{\partial}_{j} a_{\ell m}\right)\left[H_{h}^{i}-H\left(\delta_{h}^{i}-\imath^{i}{ }_{\imath}{ }_{h}\right)\right] . \tag{56}
\end{align*}
$$

if

$$
\begin{align*}
& \left\{H_{h}^{r}\left(\dot{\partial}_{j} \Gamma_{r \ell}^{* i}\right)-H_{r}^{i}\left(\dot{\partial}_{j} \Gamma_{h \ell}^{* r}\right)-2 H_{r h}^{i} P_{j \ell}^{r}\right\}_{\mid m}+H_{h \mid \ell}^{r}\left(\dot{\partial}_{j} \Gamma_{r m}^{* i}\right)-H_{r h \mid \ell}^{i}\left(\mathrm{P}_{j m}^{r}\right) \\
& -H_{r \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{h m}^{* r}\right)-H_{h \mid r}^{i}\left(\dot{\partial}_{j} \Gamma_{m \ell}^{* r}\right)-\left\{H_{r \mid \ell}^{i}+H_{h}^{s}\left(\dot{\partial}_{r} \Gamma_{s \ell}^{* i}\right)-H_{s}^{i}\left(\dot{\partial}_{r} \Gamma_{h \ell}^{* s}\right)-2 H_{s h}^{i} P_{r \ell}^{s}\right\} P_{j m}^{r}=0 . \tag{57}
\end{align*}
$$

We have at least one of the following conditions :

$$
\begin{equation*}
\text { a) }\left(\dot{\partial}_{j} a_{\ell m}\right)=0, \quad \text { b) } H_{h}^{i}=H\left(\delta_{h}^{i}-\imath^{i} \imath_{h}\right) \text {. } \tag{58}
\end{equation*}
$$

Putting $H=F^{2} R$, the equation (57b) may be written as

$$
\begin{equation*}
H_{h}^{i}=F^{2} R\left(\delta_{h}^{i}-\imath^{i} \imath_{h}\right), \tag{59}
\end{equation*}
$$

where $R \neq 0$. Therefore the space is a Finsler space of scalar curvature. Thus, we have
Theorem 2.11. An $G K^{h}-B R-F_{n}$ for $n>2$ admitting equation (57) holds is a Finsler space of scalar curvature provided $R \neq 0$, the covariant tensor $a_{\ell m}$ is not independent of directional arguments and condition (35) holds .

References

[1] A.G.Walker, On Ruse's space of recurrent curvature, Proc. Land Math. Soc., 52(1950), 36-64.
[2] A.Moór, Untersuchungen über Finslerränme von rekurrenter krümmung, Tensor N.S, 13(1963), 1-18.
[3] H.S.Ruse, Three dimensional spaces of recurrent curvature, Proc. Lond. Math. Soc., 50(1949), 438-446.
[4] M.A.A.Ali, On K^{h}-birecurrent Finsler space, M.sc. Thesis, University of Aden, Yemen, (2014).
[5] N.S.H.Hussien, On K^{h}-recurrent Finsler space, M.sc. Thesis, University of Aden, Yemen, (2014).
[6] P.N.Pandey, Some problems in Finsler spaces, D.Sc. Thesis, University of Allahabad, India, (1993).
[7] P.N.Pandey, S.Saxena and A.Goswani, On a Generalized H-Recurrent space, Journal of International Academy of physical Science, 15(2011), 201-211.
[8] R.Verma, Some transformations in Finsler spaces, Ph.D. Thesis, University of Allahabad, India, (1991).
[9] Y.C.Worg, Linear connections with zero torsion and recurrent curvature, Trans. Amer. Math. Soc., 102(1962), 471-506.
[10] Y.C.Worg and K.Yano, Projectively flat spaces with recurrent curvature, Comment Math. Helv., 35(1961), 223-232.

[^0]: * E-mail: wf_hadi@yahoo.com

