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1. Introduction

Fixed point theory in the framework of metric spaces is one of the most powerful and useful tools in nonlinear functional

analysis. The intrinsic subject of this theory is concerned with the conditions for the existence, uniqueness and exact

methods of evaluation of fixed point of a mapping. The application of fixed point theorems is remarkable in a wide scale

of mathematical, engineering, economic, physical, computer science and other fields of science. The Banach contraction

principle [1] is a simplest and limelight result in this direction. Fixed point theorems for contractive, non-expansive,

contractive type and non-expansive type mappings provide techniques for solving a variety of applied problems in

mathematical and engineering sciences. It is one of the reason that many authors have studied various classes of contractive

type or non-expansive type mappings.

In this paper, X always denotes a metric space. H denotes the Housdorff (resp. generalized Housdorff) metric on

CB(X)(resp. CL(X)) induced by the metric d, where CB(X)(resp. CL(X) ) is the collection of all nonempty closed

and bounded (resp. closed), subsets of X. For these definitions one may refer [7, 15, 18]. For y ∈ X and A ⊂ X, d(y,A) will

denote the ordinary distance between y and A. If T is such that for all x, y in X

d(Tx, Ty) ≤ λd(x, y) (1)
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where 0 < λ < 1, then T is said to be a contraction mapping. If T satisfies (1) with λ = 1, then T is called a non-expansive

mapping. If T satisfies any conditions of type

d(Tx, Ty) ≤ a1d(x, y) + a2d(x, Tx) + a3d(y, Ty) + a4d(x, Ty) + a5d(y, Tx) (2)

where ai (i = 1, 2, 3, 4, 5) are nonnegative real numbers such that a1 + a2 + a3 + a4 + a5 < 1, then T is said to be a

contractive type mapping. If T satisfies (2) with a1 + a2 + a3 + a4 + a5 = 1, then T is said to be a non-expansive type

mapping. Similar terminology is used for multi-valued mappings.

Bogin [3] proved the following result:

Theorem 1.1. Let X be a nonempty complete metric space and T : X → X a mapping satisfying

d(Tx, Ty) ≤ ad(x, y) + b[d(x, Tx) + d(y, Ty)] + c[d(x, Ty) + d(y, Tx)] (3)

where a ≥ 0, b > 0, c > 0 and

a+ 2b+ 2c = 1 (4)

Then T has a unique fixed point.

This result was generalized by Rhoades [17] and Ciric [6, 8]. Iseki [10] studied a family of commuting mappings T1, T2, . . . Tn

which satisfy (3) with a ≥ 0, b ≥ 0, c ≥ 0 and a + 2b + 2c = 1. For Banach spaces the famous is Gregus’s Fixed Point

Theorem [9] for non-expansive type single-valued mappings, which satisfy (3) with c = 0, a < 1. Ciric [8] introduced and

investigated a new class of self-mappings T on X which satisfy an inequality of type (3) with b ≥ 0 and still have a fixed

point. Also proved that by an example if the mapping T satisfies (3) with b = 0 and if a and c are such that (4) holds,

then T need not have a fixed point. Therefore, a contractive condition for T , which shall guarantee a fixed point of T in

the case b = 0 and a+ 2c = 1, must be stricter then (3).

In [12] Jungck introduced the concept of commuting maps. In [13] Jungck introduced the concept of compatible mappings

which generalize the concept of commuting maps.

Definition 1.2 ([13]). Two self maps T and f of a metric space X are said to be compatible if lim
n→+∞

d(Tfxn, fTxn) = 0,

whenever {xn} is a sequence such that lim
n→+∞

Txn = lim
n→+∞

fxn = t ∈ X.

Definition 1.3 ([7]). An orbit of the multi-valued map T at a point x0 in X is a sequence {xn : xn ∈ Txn−1}. A space X

is T− orbitally complete if every Cauchy sequence of the form {xni : xni ∈ Txni−1} converges in X.

Definition 1.4 ([18]). If for a point x0 in X, there exists a sequence xn ∈ X such that fxn+1 ∈ Txn, n = 0, 1, 2, . . . then

Of (x0) = {fxn : n = 1, 2, . . .} is an orbit of (T, f) at x0. A space X is called (T, f)−orbitally complete if every Cauchy

sequence of the form {xni : xni ∈ Txni−1} converges in X.

Let T, f : X → X be two self mappings on X. For each x, y ∈ X, denote

M(x, y) = max{d(fx, Ty), d(fy, Tx)}

m(x, y) = min{d(fx, Ty), d(fy, Tx)}

54



Umesh Dongre, R.D.Daheriya and Manoj Ughade

In this paper, we shall investigate a new class of self-mappings T, f on X which satisfy the following non-expansive type

condition:

d(Tx, Ty) ≤ a(x, y) max d(fx, fy), d(fx, Tx), d(fy, Ty),
1

2
[M(x, y) +m(x, y)] + c(x, y)[M(x, y) + hm(x, y)] (5)

for all x, y ∈ X, where 0 < h < 1, a(x, y) ≥ 0,

β = inf{c(x, y) : x, y ∈ X} > 0 (6)

and

sup
x,y∈X

(a(x, y) + 2c(x, y)) = 1. (7)

2. Main Results

Now, we give our main results.

Theorem 2.1. Let (X, d) be a metric space, T, f are self maps of X satisfying condition (5), where a and c satisfying (6)

and (7) with T (X) ⊆ f(X) and either (a) X is complete and f is surjective; or (b) X is complete, f is continuous and T, f

are compatible; or (c) f(X) is complete ; or (d) T (X) is complete. Then f and T have a coincidence point inX. Further,

the coincidence value is unique, i.e. fp = fq whenever fp = Tp and fq = Tq, (p, q ∈ X).

Proof. First, we shall prove that f and T have at most one coincidence point. On the contrary, suppose that f and T

have two coincidence points p and q. Then from (5) with a and c evaluated at (p, q), we have

d(Tp, Tq) ≤ amax

{
d(fp, fq), d(fp, Tp), d(fq, T q),

1

2
[M(p, q) +m(p, q)

}
+ c[M(p, q) + hm(p, q)]

= [a+ c(1 + h)]d(Tp, Tq).

Hence by (7), (Tp, Tq) ≤ [1− c(1− h)]d(Tp, Tq) implying Tp = Tq by (6) and hence fp = fq.

Pick x0 ∈ X. We construct two sequences {xn} and {yn} as follows: SinceT (X) ⊆ f(X), choose x1 so that y1 = fx1 = Tx0.

In general, choose xn+1 so that yn+1 = fxn+1 = Txn. Applying (5), we have

d(Txn, Txn+1) ≤ amax

{
d(fxn, fxn+1), d(fxn, Txn), d(fxn+1, Txn+1),

1

2
[M(xn, xn+1) +m(xn, xn+1)

}
+ c[M(xn, xn+1) + hm(xn, xn+1)]

= amax

{
d(fxn, Txn), d(fxn, Txn), d(fxn+1, Txn+1),

1

2
[M(xn, xn+1) +m(xn, xn+1)

}
+ c[M(xn, xn+1) + hm(xn, xn+1)] (8)

where a and c are evaluated at (xn, xn+1). Since m(xn, xn+1) = 0 and M(xn, xn+1) = d(fxn, Txn+1). If we suppose

that for some n, d(fxn+1, Txn+1) > d(fxn, Txn). Then M(xn, xn+1) ≤ 2d(fxn+1, Txn+1) and the inequality (8) gives

d(fxn+1, Txn+1) ≤ (a+ 2c)d(fxn+1, Txn+1) a contradiction. Therefore, for all n we have

d(fxn+1, Txn+1) ≤ d(fxn, Txn). (9)
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Again from (5), we have

d(yn−1, Txn) = d(Txn−2, Txn)

≤ amax

{
d(fxn−2, fxn), d(fxn−2, Txn−2), d(fxn, Txn),

1

2
[M(xn−2, xn) +m(xn−2, xn)

}
+ c[M(xn−2, xn) + hm(xn−2, xn)]

= amax

{
d(fxn−2, fxn), d(fxn−2, Txn−2), d(fxn, Txn),

1

2
[M(xn−2, xn) +m(xn−2, xn)

}
+ c[M(xn−2, xn) + hm(xn−2, xn)] (10)

where a and c are evaluated at (xn−2, xn). Since

d(fxn−2, fxn) ≤ d(fxn−2, fxn−1) + d(fxn−1, fxn)

= d(fxn−2, Txn−2) + d(fxn−1, Txn−1)

≤ 2d(fxn−2, Txn−2)

d(fxn−2, Txn) ≤ d(fxn−2, fxn−1) + d(fxn−1, Txn)

≤ d(fxn−2, fxn−1) + d(fxn−1, fxn) + d(fxn, Txn)

= d(fxn−2, Txn−2) + d(fxn−1, Txn−1) + d(fxn, Txn)

≤ 3d(fxn−2, Txn−2)

and

d(fxn, Txn−2) = d(Txn−1, fxn−1) ≤ d(fxn−2, Txn−2)

Hence

m(xn−2, xn) = min{d(fxn−2, Txn), d(fxn, Txn−2)}

≤ min{3d(fxn−2, Txn−2), d(fxn−2, Txn−2)}

= d(fxn−2, Txn−2)

and

M(xn−2, xn) = max{d(fxn−2, Txn), d(fxn, Txn−2)}

≤ max{3d(fxn−2, Txn−2), d(fxn−2, Txn−2)}

= 3d(fxn−2, Txn−2)

Using (9), the inequality (10) gives

d(Txn−2, Txn) ≤ 2ad(fxn−2, Txn−2) + c[3d(fxn−2, Txn−2) + hd(fxn−2, Txn−2)]

= [2a+ c(3 + h)]d(fxn−2, Txn−2)

= [2− c(1− h)]d(fxn−2, Txn−2) (11)
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Again from (5), we have

d(yn, yn+1) = d(Txn−1, Txn)

≤ amax

{
d(fxn−1, fxn), d(fxn−1, Txn−1), d(fxn, Txn),

1

2
[M(xn−1, xn) +m(xn−1, xn)]

}
+ c[M(xn−1, xn) + hm(xn−1, xn)]

= amax

{
d(fxn−1, Txn−1), d(fxn−1, Txn−1), d(fxn, Txn),

1

2
[M(xn−1, xn) +m(xn−1, xn)]

}
+ c[M(xn−1, xn) + hm(xn−1, xn)] (12)

where a and c are evaluated at (xn−1, xn). Since m(xn−1, xn) = 0 and M(xn−1, xn) = d(Txn−2, Txn). Using (9) and (11),

the inequality (12) gives

d(yn, yn+1) ≤ ad(fxn−2, Txn−2) + cd(Txn−2, Txn)

≤ ad(fxn−2, Txn−2) + c[2− b(1− h)]d(fxn−2, Txn−2)

= [1− c2(1− h)]d(fxn−2, Txn−2)

Hence d(yn, yn+1) ≤ [1− β2(1− h)]d(yn−2, yn−1). Proceeding in this manner we obtain

d(Txn−1, Txn) ≤ (1− β2(1− h))[
n
2
]d(y0, y1) (13)

where [n
2

] stands for the greatest integer not exceeding n
2

. Since β = inf{c(x, y) : x, y ∈ X} > 0 and h ∈ (0, 1), {yn} is

Cauchy, hence converges to a point p in X and then fxn → p and Txn → p as n→ +∞.

Case (a): Suppose that f is surjective. Then there exists a point z in X such that p = fz. From (5), we have

d(fz, Tz) ≤ d(fz, yn+1) + d(yn+1, T z)

= d(fz, yn+1) + d(Txn, T z)

≤ d(fz, yn+1) + amax

{
d(fxn, fz), d(fxn, Txn), d(fz, Tz),

1

2
[M(xn, z) +m(xn, z)]

}
+ c[M(xn, z) + hm(xn, z)] (14)

Since M(xn, z) → d(fz, Tz) and m(xn, z) → 0 as n → +∞. Taking limit n → +∞ in the above inequality, we have

d(fz, Tz) ≤ sup
x,y∈X

(a+ c)d(fz, Tz) implies that fz = Tz = p.

Case (b): Suppose f is continuous and f and T are compatible. Then since lim
n→+∞

yn = p, we have lim
n→+∞

fyn = fp. Now

using triangle inequality, we have

d(fp, Tp) ≤ d(fp, fyn+1) + d(fyn+1, T z)

≤ d(fp, fyn+1) + d(fTxn, T fxn) + d(Tfxn, Tp)

Note that since lim
n→+∞

fxn = lim
n→+∞

Txn = p and f, T are compatible, lim
n→+∞

d(Tfxn, fTxn) = 0. On letting n → +∞, in

the above inequality, we have

d(fp, Tp) ≤ lim
n→+∞

d(Tfxn, Tp) (15)
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From (5), we have

d(Tfxn, Tp) ≤ amax

{
d(ffxn, fp), d(ffxn, T fxn), d(fp, Tp),

1

2
[M(fxn, p) +m(fxn, p)]

}
+ c[M(fxn, p) + hm(fxn, p)] (16)

Note that

d(ffxn, T fxn) ≤ d(ffxn, fTxn) + d(fTxn, T fxn)

= d(ffxn, ffxn+1) + d(fTxn, T fxn).

Using the continuity of f and compatibility of f and T , it follows that lim
n→+∞

d(ffxn, T fxn) = 0.

Since lim
n→+∞

ffxn = fp, it follows that lim
n→+∞

Tfxn = fp and

lim
n→+∞

M(fxn, p) = lim
n→+∞

max{d(ffxn, Tp), d(fp, Tfxn)} = d(fp, Tp)

and

lim
n→+∞

m(fxn, p) = lim
n→+∞

min{d(ffxn, Tp), d(fp, Tfxn)} = 0

Taking limit n→ +∞ in the inequality (15), we have d(fp, Tp) ≤ sup
x,y∈X

(a+ c)d(fp, Tp) implies that fp = Tp.

Case (c): In this case p ∈ f(X). Let z ∈ f−1(p). Then p = fz and the proof is complete by case (a).

Case (d): In this case p ∈ T (X) ⊆ f(X) and the proof is complete by case (c).

Corollary 2.2. Let (X, d) be a complete metric space and T is self mapping of X satisfying (5) with f = I, the identity map

on X, where h = 1, a and c satisfying (6) and (7). Then T has a unique fixed point and at this fixed point T is continuous.

Proof. The existence and uniqueness of the fixed point comes from Theorem 2.1 by setting f = I. To prove continuity,

let {yn} ⊂ X with lim
n→+∞

yn = p, p the unique fixed point of T . Using (5), we have

d(Tyn, Tp) ≤ amax

{
d(yn, p), d(yn, T yn), d(p, Tp),

1

2
[M(yn, p) +m(yn, p)]

}
+ c[M(yn, p) +m(yn, p)]

≤ a(d(yn, p) + d(p, Tyn)) + c[d(p, Tyn) + d(yn, p)]

= (a+ c)d(yn, p) + (a+ c)d(p, Tyn)

= (1− c)d(yn, p) + (1− c)d(p, Tyn)

Hence

d(Tyn, Tp) ≤ (1− β)d(yn, p) + (1− β)d(p, Tyn)

Since β = inf{c(x, y) : x, y ∈ X} > 0. Hence we get

d(Tyn, Tp) ≤
(

1

β
− 1

)
d(yn, p)

Taking the limit as n→ +∞ yields lim
n→+∞

Tyn = Tp. Therefore T is continuous at p.

58



Umesh Dongre, R.D.Daheriya and Manoj Ughade

Next we establish some results when T is a multi-valued map from a metric space X to the collection of nonempty subset

of X, and f is a self map of X.

In this theorem, we use the following non-expansive type condition: let T : X → C(X) be a multi-valued map and f : X → X

be a single valued map, which satisfy the following condition:

H(Tx, Ty) ≤ a(x, y) max

{
d(fx, fy), d(fx, Tx), d(fy, Ty),

1

2
[M(x, y) +m(x, y)]

}
+ c(x, y)[M(x, y) + hm(x, y)] (17)

for all x, y ∈ X, where 0 < h < 1, with a and c satisfy (6) and (7).

Theorem 2.3. Let (X, d) be a metric space, T a multi-valued map from X to C(X) and f be a self map of X satisfying

(17), where a and c satisfying (6) and (7), with T (X) ⊆ f(X). Then f and T have a coincidence point in X either (a)

X is (T, f)−orbitally complete and f is surjective or (b) f(X) is (T, f)−orbitally complete or (c) T (X) is (T, f)−orbitally

complete.

Proof. Pick x0 ∈ X. We construct two sequences {xn} and {yn} as follows: Since T (X) ⊆ f(X), choose x1 so that

y1 = fx1 ∈ Tx0. If Tx0 = Tx1, choose y2 = fx2 6= Tx1 such that y1 = y2. If Tx0 6= Tx1, choose y2 = fx2 ∈ Tx1

such that d(y1, y2) ≤ H(Tx0, Tx1). Such a choice is possible since Tx is compact for each x in X. In general, choose

yn+2 = fxn+2 ∈ Txn+1 such that yn+1 = yn+2 if Txn+1 = Txn+2 and d(yn+1, yn+2) ≤ H(Txn, Txn+1) otherwise.

From (17), we have

d(yn+1, yn+2) ≤ H(Txn, Txn+1)

≤ amax

{
d(fxn, fxn+1), d(fxn, Txn), d(fxn+1, Txn+1),

1

2
[M(xn, xn+1) +m(xn, xn+1)]

}
+ c[M(xn, xn+1) + hm(xn, xn+1)]

= amax

{
d(fxn, Txn), d(fxn, Txn), d(fxn+1, Txn+1),

1

2
[M(xn, xn+1) +m(xn, xn+1)]

}
+ c[M(xn, xn+1) + hm(xn, xn+1)] (18)

where a and c are evaluated at (xn, xn+1). Since m(xn, xn+1) = 0 and M(xn, xn+1) = d(fxn, Txn+1). If we suppose that

for some n, d(fxn+1, Txn+1) > d(fxn, Txn). Then M(xn, xn+1) ≤ 2d(fxn+1, Txn+1) and the inequality (18) gives

d(fxn+1, Txn+1) ≤ (a+ 2c)d(fxn+1, Txn+1)

a contradiction. Therefore, for all n we have

d(fxn+1, Txn+1) ≤ d(fxn, Txn). (19)

Again from (17), we have

d(yn−1, yn+1) ≤ H(Txn−2, Txn)

≤ amax

{
d(fxn−2, fxn), d(fxn−2, Txn−2), d(fxn, Txn),

1

2
[M(xn−2, xn) +m(xn−2, xn)]

}
+ c[M(xn−2, xn) + hm(xn−2, xn)]

= amax

{
d(fxn−2, fxn), d(fxn−2, Txn−2), d(fxn, Txn),

1

2
[M(xn−2, xn) +m(xn−2, xn)]

}
+ c[M(xn−2, xn) + hm(xn−2, xn)] (20)
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where a and c are evaluated at (xn−2, xn). Since

d(fxn−2, fxn) ≤ d(fxn−2, fxn−1) + d(fxn−1, fxn)

= d(fxn−2, Txn−2) + d(fxn−1, Txn−1)

≤ 2d(fxn−2, Txn−2)

d(fxn−2, Txn) ≤ d(fxn−2, fxn−1) + d(fxn−1, Txn)

≤ d(fxn−2, fxn−1) + d(fxn−1, fxn) + d(fxn, Txn)

= d(fxn−2, Txn−2) + d(fxn−1, Txn−1) + d(fxn, Txn)

≤ 3d(fxn−2, Txn−2)

and

d(fxn, Txn−2) = d(Txn−1, fxn−1) ≤ d(fxn−2, Txn−2).

Hence

m(xn−2, xn) = min{d(fxn−2, Txn), d(fxn, Txn−2)}

≤ min{3d(fxn−2, Txn−2), d(fxn−2, Txn−2)}

= d(fxn−2, Txn−2)

and

M(xn−2, xn) = max{d(fxn−2, Txn), d(fxn, Txn−2)}

≤ max{3d(fxn−2, Txn−2), d(fxn−2, Txn−2)}

= 3d(fxn−2, Txn−2)

Using (18), the inequality (19) gives

d(Txn−2, Txn) ≤ 2ad(fxn−2, Txn−2) + c[3d(fxn−2, Txn−2) + hd(fxn−2, Txn−2)]

= [2a+ c(3 + h)]d(fxn−2, Txn−2)

= [2− c(1− h)]d(fxn−2, Txn−2) (21)

Again from (17), we have

d(yn, yn+1) ≤ Hd(Txn−1, Txn)

≤ amax

{
d(fxn−1, fxn), d(fxn−1, Txn−1), d(fxn, Txn),

1

2
[M(xn−1, xn) +m(xn−1, xn)]

}
+ c[M(xn−1, xn) + hm(xn−1, xn)]

= amax

{
d(fxn−1, Txn−1), d(fxn−1, Txn−1), d(fxn, Txn),

1

2
[M(xn−1, xn) +m(xn−1, xn)]

}
+ c[M(xn−1, xn) + hm(xn−1, xn)] (22)
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where a and c are evaluated at (xn−1, xn). Since m(xn−1, xn) = 0 and M(xn−2, xn) = d(Txn−2, Txn). Using (19) and (21),

the inequality (22) gives

d(yn, yn+1) ≤ ad(fxn−2, Txn−2) + cd(Txn−2, Txn)

≤ ad(fxn−2, Txn−2) + c[2− c(1− h)]d(fxn−2, Txn−2)

= [1− c2(1− h)]d(fxn−2, Txn−2)

Hence

d(yn, yn+1) ≤ [1− β2(1− h)]d(yn−2, yn−1)

Proceeding in this manner we obtain

d(Txn−1, Txn) ≤ (1− β2(1− h))[
n
2
]d(y0, y1) (23)

where [n
2

] stands for the greatest integer not exceeding n
2

. Since β = inf{c(x, y) : x, y ∈ X} > 0 and h ∈ (0, 1), {yn} is

Cauchy, hence converges to a point p in X in cases (a)-(c).

If f is surjective, there exists a point z such that p = fz. This is obviously true in cases (b) and (c) as well,

d(fz, Tz) ≤ d(fz, yn+1) + d(yn+1, T z)

≤ d(fz, yn+1) +H(Txn, T z)

≤ d(fz, yn+1) + amax

{
d(fxn, fz), d(fxn, Txn), d(fz, Tz),

1

2
[M(xn, z) +m(xn, z)]

}
+ c[M(xn, z) + hm(xn, z)]

Since M(xn, z)→ d(fz, Tz) and m(xn, z)→ 0 as n→ +∞. On letting n→ +∞ in the above inequality, we obtain

d(fz, Tz) ≤ sup
x,y∈X

(a+ c)d(fz, Tz)

which implies that fz ∈ Tz.

Theorem 2.4. Let X,T and f satisfy the hypotheses of Theorem 2.3 with C(X) replaced by CL(X) and δ =

supx,y∈X(a(x, y) + 2c(x, y)) < 1. Then T and f have a coincidence point in X.

Proof. Choose x0 ∈ X. We construct two sequences {xn} and {yn} as follows: Since T (X) ⊆ f(X), choose x1 so that

y1 = fx1 ∈ Tx0. If Tx0 = Tx1, choose y2 = fx2 ∈ Tx1 such that y1 = y2. If Tx0 6= Tx1, choose y2 = fx2 ∈ Tx1

such that d(y1, y2) ≤ λH(Tx0, Tx1), where λ > 1 and λδ < 1. In general, choose yn+2 = fxn+2 ∈ Txn+1 such that

d(yn+1, yn+2) ≤ λH(Txn, Txn+1). From (17) we have

d(yn+1, yn+2) ≤ λH(Txn, Txn+1)

≤ λamax

{
d(fxn, fxn+1), d(fxn, Txn), d(fxn+1, Txn+1),

1

2
[M(xn, xn+1) +m(xn, xn+1)]

}
+ λc[M(xn, xn+1) + hm(xn, xn+1)]

= λamax

{
d(fxn, Txn), d(fxn, Txn), d(fxn+1, Txn+1),

1

2
[M(xn, xn+1) +m(xn, xn+1)]

}
+ λc[M(xn, xn+1) + hm(xn, xn+1)] (24)
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where a and c are evaluated at (xn, xn+1). Since m(xn, xn+1) = 0 and M(xn, xn+1) = d(fxn, Txn+1). If we suppose that

for some n, d(fxn+1, Txn+1) > d(fxn, Txn). Then M(xn, xn+1) ≤ 2d(fxn+1, Txn+1) and the inequality (24) gives

d(fxn+1, Txn+1) ≤ λ(a+ 2c)d(fxn+1, Txn+1)

a contradiction. Therefore, for all n we have

d(fxn+1, Txn+1) ≤ d(fxn, Txn). (25)

and then from (24), we obtain

d(yn+1, yn+2) ≤ λ(a+ 2c)d(fxn, Txn)

= λ(a+ 2c)d(yn, yn+1)

≤ kd(yn, yn+1) ≤ knd(y0, y1)

where k = supx,y∈X λ(a+ 2c), Therefore {yn} is Cauchy, hence converges to some point p in X. Since f is surjective, there

exists a point z such that p = fz. Now

d(fz, Tz) ≤ d(fz, yn+1) + d(yn+1, T z)

≤ d(fz, yn+1) + λH(Txn, T z)

≤ d(fz, yn+1) + λamax

{
d(fxn, fz), d(fxn, Txn), d(fz, Tz),

1

2
[M(xn, z) +m(xn, z)]

}
+ λc[M(xn, z) + hm(xn, z)].

Since M(xn, z)→ d(fz, Tz) and m(xn, z)→ 0 as n→ +∞. On letting n→ +∞ in the above inequality, we obtain

d(fz, Tz) ≤ sup
x,y∈X

λ(a+ c)d(fz, Tz)

which implies that fz ∈ Tz.
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