International Journal of Mathematics And its Applications

The Edge Zagreb indices of Circumcoronene Series of Benzenoid

Research Article

Mohammad Reza Farahani ${ }^{1 *}$, M.R.Rajesh Kanna ${ }^{2}$, R.Pradeep Kumar ${ }^{3}$ and Sunilkumar Hosamani ${ }^{4}$
1 Department of Applied Mathematics of Iran University of Science and Technology (IUST), Narmak, Tehran, Iran.
2 Department of Mathematics, Maharani's Science College for Women, Mysore, India.
3 Department of Mathematics, The National Institute of Engineering, Mysuru, India.
4 Department of Mathematics, Rani Channamma University Belagavi, Karnataka State, India.

Abstract

In chemical graph theory, we have many invariant polynomials and topological indices for a molecular graph. One of the best known and widely used is the Zagreb topological index of a graph $G M_{1}(G)$ introduced in 1972 by I. Gutman and N. Trinajstic and is defined as the sum of the squares of the degrees of all vertices of $G, M_{1}(G)=\sum_{v \in V(G)} d_{v}{ }^{2}$ (or $=\sum_{e=u v \in E(G)} d_{u}+d_{v}$, where d_{u} denotes the degree (number of first neighbors) of vertex u in G. Also, the Second Zagreb index $M_{2}(G)$ is equal to $M_{2}(G)=\sum_{e=u v \in E(G)} d_{u} \times d_{v}$. In this paper, we focus on the structure of molecular graph Circumcoronene Series of Benzenoid $H_{k}(k>1)$ and its line graph $L\left(H_{k}\right)$ and counting First Zagreb index and Second Zagreb index of $L\left(H_{k}\right)$. MSC: $\quad 05 \mathrm{C} 05,92 \mathrm{E} 10$.

Keywords: Circumcoronene Series of Benzenoid, Line graph, Degree (of a vertex), Zagreb Topological Index.
(C) JS Publication.

1. Introduction

Let G is an arbitrary simple, connected, graph, with the vertex set $V(G)$ and edge set $E(G)$. A general reference for the notation in graph theory is [1-3]. In chemical graphs, the vertices of the graph correspond to the atoms of molecules while the edges represent chemical bonds [4, 5]. Numbers encoding certain structural features of organic molecules and derived from the corresponding molecular graph, are called graph invariants or more commonly topological indices.

A pair of molecular descriptors, known as the First Zagreb index $M_{1}(G)$ and the Second Zagreb index $M_{2}(G)$ [1], first appeared in the topological formula for the total-energy of conjugated molecules that has been derived in 1972 [6]. Soon after these indices have been used as branching indices $[7]$.

The Zagreb indices are also used by various researchers in their QSPR and QSAR studies [1,8-10]. The development and use of the Zagreb indices were summarized in [11]. Mathematical properties of the first Zagreb index for general graphs can

[^0]be found in [11-14].

For a simple graph G with the vertex set $V(G)$ and the edge set $E(G)$, the Zagreb indices are given by:

$$
\begin{align*}
& M_{1}(G)=\sum_{v \in V(G)} d_{v}^{2} \tag{1}\\
& M_{2}(G)=\sum_{e=u v \in E(G)} d_{u} \times d_{v} \tag{2}
\end{align*}
$$

where d_{u} denotes the degree (number of first neighbors) of vertex u in G. A. Milicevic, S. Nikolic and N. Trinajstic [29] in 2004 reformulated the Zagreb indices in terms of edge-degrees instead of vertex-degrees:

$$
\begin{align*}
& E M_{1}(G)=\sum_{e \in E(G)} d_{e}^{2} \tag{3}\\
& E M_{2}(G)=\sum_{e \sim f \in E(G)} d_{e} \times d_{f} \tag{4}
\end{align*}
$$

where d_{e} denotes the degree of the edge $e \in E(G)$, which is defined by $d_{e}=d_{u}+d_{v}-2$ with $e=u v$, and $\forall e, f \in E(G)$ $e \sim f$ means that the edges e and f are adjacent, i.e., they share a common end-vertex in G.

For a graph G with at least one edge, its line graph L_{G} is the graph in which $V\left(L_{G}\right)=E(G)$, where two vertices of L_{G} are adjacent if and only if they are adjacent as edges of G. Then

$$
\begin{aligned}
& E M_{1}(G)=M_{1}\left(L_{G}\right) \\
& E M_{2}(G)=M_{2}\left(L_{G}\right)
\end{aligned}
$$

2. Main Result and Discussion

The circumcoronene homologous series of benzenoid is family of molecular graph, which consist several copy of benzene C_{6} on circumference. The first terms of this series are $H 1=$ benzene, $H_{2}=$ coronene, $H_{3}=$ circumcoronene, $H_{4}=$ circumcircumcoronene, see Figure 1, where they are shown. These molecular graphs are presented in many papers, (see the paper series [30-39]. The goal of this section is to counting First Zagreb index and Second Zagreb index for the line graph of Circumcoronene Series of Benzenoid $L\left(H_{k}\right)$ (For every positive integer number $k>1$). The general representation of Circumcoronene Series of Benzenoid H_{k} and its line graph $L\left(H_{k}\right)$ are shown in Figures 2 and 3.

Figure 1. The first member $H_{1}\left(C_{6}\right), H_{2}, H_{3}$ and H_{4} from Circumcoronene Series of Benzenoid H_{k}

Figure 2. The general representation of Circumcoronene Series of Benzenoid $H_{k}(k \geq 1)$ [36-39].

Figure 3. The line graph of Circumcoronene Series of Benzenoid $L\left(H_{k}\right)(k \geq 1)$ [36-39].

Theorem 2.1 ([37]). Let G be the Circumcoronene series of Benzenoid $H_{k}, \forall k>1$. Then:
(1). The First Zagreb index of H_{k} is equal to $M_{1}\left(H_{k}\right)=54 k^{2}-30 k$
(2). The Second Zagreb index of H_{k} is equal to $M_{2}\left(H_{k}\right)=81 k^{2}-63 k+6$

Theorem 2.2. Let G be the Circumcoronene series of Benzenoid $H_{k} \forall k \geq 1$, then the First and Second edge Zagreb indices
of H_{k} are equal to:

$$
\begin{align*}
& E M_{1}\left(H_{k}\right)=12\left(12 k^{2}-11 k+1\right) \tag{5}\\
& E M_{2}\left(H_{k}\right)=18\left(16 k^{2}-18 k+3\right) \tag{6}
\end{align*}
$$

Proof. Consider the Circumcoronene series of Benzenoid H_{k}, for all positive integer number k, with $6 k^{2}$ vertices and $9 k^{2}-3 k$ edges. Now, by attention to Figure 2, we see that there are two vertex partitions $V_{2}=\left\{v \in V\left(H_{k}\right) \mid d_{v}=2\right\}$ and $V_{3}=\left\{v \in V\left(H_{k}\right) \mid d_{v}=3\right\}$. Obviously, $\left|V_{2}\right|=6 k$ and $\left|V_{3}\right|=6 k(k-1)$. And alternatively, there are three edge partitions/sets E_{4}, E_{5} and E_{6} with their size as follow [37-39]:

$$
\begin{aligned}
& E_{4}=\left\{e=u v \in E\left(H_{k}\right) \mid d_{u}=2 \& d_{v}=2\right\} \Rightarrow\left|E_{4}\right|=6 \\
& E_{5}=\left\{e=u v \in E\left(H_{k}\right) \mid d_{u}=3 \& d_{v}=2\right\} \Rightarrow\left|E_{5}\right|=12(k-1) \\
& E_{6}=\left\{e=u v \in E\left(H_{k}\right) \mid d_{u}=3 \& d_{v}=3\right\} \Rightarrow\left|E_{6}\right|=9 k^{2}-15 k+6
\end{aligned}
$$

Also, from the general representation of line graph of Circumcoronene series of benzenoid in Figure 3, one can see that there are three vertex partitions of $L\left(H_{k}\right)$ with their size as [37-39]:

$$
\begin{aligned}
& V L_{2}=\left\{e \in E\left(H_{k}\right) \mid d_{e}=2\right\} \Rightarrow\left|V L_{2}\right|=\left|E_{4}\right|=6 \\
& V L_{3}=\left\{e \in E\left(H_{k}\right) \mid d_{e}=3\right\} \Rightarrow\left|V L_{3}\right|=\left|E_{5}\right|=12(k-1) \\
& V L_{4}=\left\{e \in V\left(L\left(H_{k}\right)\right) \text { or } e \in E\left(H_{k}\right) \mid d_{e}=4\right\} \Rightarrow\left|V L_{4}\right|=\left|E_{6}\right|=9 k^{2}-15 k+6
\end{aligned}
$$

and Four edge partitions/sets $E L_{5}, E L_{6}, E L_{7}$ and $E L_{8}$ as follow:

$$
\begin{aligned}
& E L_{5}=\left\{e \sim f \in E(G) \text { or ef } \in E\left(L\left(H_{k}\right)\right) \mid d_{e}=2, d_{f}=3\right\} \Rightarrow\left|E L_{5}\right|=2\left|V L_{2}\right|=12 \\
& E L_{6}=\left\{e \sim f \in E(G) \text { or ef } \in E\left(L\left(H_{k}\right)\right) \mid d_{e}=d_{f}=3\right\} \Rightarrow\left|E L_{6}\right|=\left|V L_{3}\right|-\left|V L_{2}\right|=6(2 k-3) \\
& E L_{7}=\left\{e \sim f \in E(G) \text { or ef } \in E\left(L\left(H_{k}\right)\right) \mid d_{e}=3, d_{f}=3\right\} \Rightarrow\left|E L_{7}\right|=\left|V L_{3}\right|-\left|V L_{2}\right|=12(k-1) \\
& E L_{8}=\left\{e \sim f \in E(G) \text { or ef } \in E\left(L\left(H_{k}\right)\right) \mid d_{e}=d_{f}=4\right\} \Rightarrow\left|E L_{8}\right|=\left|E\left(L\left(H_{k}\right)\right)\right|-\left|E L_{7}\right|-\left|E L_{6}\right|-\left|E L_{5}\right| \\
& =18 k^{2}-36 k+18=18(k-1)^{2} .
\end{aligned}
$$

Therefore by these above mentions, the first edge Zagreb index for Circumcoronene series of Benzenoid H_{k} or the first Zagreb index of line graph $L\left(H_{k}\right)$ is equal to

$$
\begin{align*}
E M_{1}\left(H_{k}\right) & =\sum_{e \in E\left(H_{k}\right)} d_{e}{ }^{2} \\
& =\sum_{e \in V\left(L\left(H_{k}\right)\right)} d_{e}^{2} \\
& =\sum_{e_{i} \in V L_{i-2}, i=2,3,4} d_{e_{i}}{ }^{2} \\
& =\sum_{e_{4} \in V L_{2}} d_{e_{4}}{ }^{2}+\sum_{e_{5} \in V L_{3}} d_{e_{5}}{ }^{2}+\sum_{e_{6} \in V L_{4}} d_{e_{6}}{ }^{2} \\
& =\sum_{e_{4} \in V L_{2}} 2^{2}+\sum_{e_{5} \in V L_{3}} 3^{2}+\sum_{e_{6} \in V L_{4}} 4^{2} \\
& =6 \times 4+12(k-1) \times 9+\left(9 k^{2}-15 k+6\right) \times 16 \\
& =144 k^{2}-132 k+12 \\
& =12\left(12 k^{2}-11 k+1\right) \tag{7}
\end{align*}
$$

And it is easy to see that the second edge Zagreb index of H_{k} or the second Zagreb index of $L\left(H_{k}\right)$ is equal to

$$
\begin{align*}
E M_{2}\left(H_{k}\right) & =\sum_{e \sim f \in E\left(H_{k}\right)} d_{e} \times d_{f} \\
& =\sum_{e f \in E\left(L\left(H_{k}\right)\right)} d_{e} \times d_{f} \\
& =\sum_{e f \in E L_{i}, i=5,6,7,8} d_{e} \times d_{f} \\
& =\sum_{e f \in E L_{5}} 2 \times 3+\sum_{e f \in E L_{6}} 3 \times 3+\sum_{e f \in E L_{7}} 3 \times 4+\sum_{e f \in E L_{8}} 4 \times 4 \\
& =(12 \times 6)+(6(2 k-3) \times 9)+(12(k-1) \times 12)+\left(18(k-1)^{2} \times 16\right) \\
& =288 k^{2}-324 k+54 \\
& =18\left(16 k^{2}-18 k+3\right) \tag{8}
\end{align*}
$$

And these complete the proof of Theorem 2.

References

[1] R.Todeschini and V.Consonnim, Handbook of Molecular Descriptors, Wiley, Weinheim. (2000).
[2] N.Trinajstic, Chemical Graph Theory, CRC Press, Bo ca Raton, FL., (1992).
[3] D.B. West, An Introduction to Graph Theory, Prentice-Hall, (1996).
[4] M.Randic, On characterization of molecular branching, J. Amer. Chem. Soc., 97(1975), 6609-6615.
[5] H.Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc., 69(1947), 7-20.
[6] I.Gutman and N.Trinajstic, Graph theory and molecular orbitals. III. Total -electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17(1972), 535-538.
[7] I.Gutman, B.Rucic, N.Trinajstic and C.F.Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Phys. Chem., 62(1975), 3399-3405.
[8] A.T.Balaban, Chemical Topology to Three-dimensional Geometry, Plenum, New York, (1997).
[9] J.Devillers and A.T.Balaban, Topological Indices and Related Descriptors in $Q S A R$ and $Q S P R$, Gordon and Breach, Amsterdam, (1999).
[10] M.Karelson, Molecular Descriptors in $Q S A R / Q S P R$, Wiley-Interscience, New York, (2000).
[11] S.Nikolic, G.Kovacevic, A.Milicevic and N.Trinajstic, The Zagreb indices 30 years after, Croat. Chem. Acta, 76(2003), 113-124.
[12] B.Bollobs and P.Erds, Graphs of extremal weights, Ars Combin., 50(1998), 225-233.
[13] D.DeCaen, An upper bound on the sum of degrees in a graph, Discr. Math., 185(1988), 245-248.
[14] K.C.Das, Sharp bounds for the sum of the squares of the degrees of a graph, Kragujevac J. Math., 25(2003), 31-49.
[15] K.C.Das and I.Gutman, Some properties of of the second Zagreb index, MATCH Commun. Math. Comput. Chem., 52(2004), 103-112.
[16] D.Janeic, A.Milicevic, S.Nikolic, N.Trinajstic and D.Vukicevic, Zagreb indices: extension to weighted graphs representing molecules containing heteroatoms, Croat. Chem. Acta, 80(2007), 541-545.
[17] I.Gutman and K.C.Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., 50(2004), 83-92.
[18] U.N.Peled, R.Petreschi and A.Sterbini, (n,e)-graphs with maximum sum of quares of degrees, J. Graph Theory, 31(1999), 283-295.
[19] L.A.Szekely, L.H.Clark and R.C.Entringer, An inequality for degree sequences, Discr. Math., 103(1992), 293-300.
[20] D.Vukicevic and N.Trinajstic, On the discriminatory power of the Zagreb indices for molecular graphs, MATCH Commun. Math. Comput. Chem., 53(2005), 111-138.
[21] D.Vukicevic, S.M.Rajtmajer and N.Trinajstic, Trees with maximal second Zagreb index and prescribed number of vertices of the given degree, MATCH Commun. Math. Comput. Chem., 60(2008), 65-70.
[22] D.Vukicevic, S.Nikolic and N.Trinajstic, On the path-Zagrebmatrix, J. Math. Chem., 45(2009), 538-543.
[23] B.Zhou, Zagreb indices. MATCH Commun. Math. Comput. Chem., 52(2004), 113-118.
[24] B.Zhou and I.Gutman, Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem., 54(2005), 233-239.
[25] B.Zhou and D.Stevanovic, A note on Zagreb indices, MATCH Commun. Math. Comput. Chem., 56(2006), 571-578.
[26] B.Zhou, Upper bounds for the Zagreb indices and the spectral radius of series-parallel graphs, Int. J. Quantum Chem., 107(2007), 875-878.
[27] B.Zhou, Remarks on Zagreb indices, MATCH Commun. Math. Comput. Chem., 57(2007), 591-596.
[28] B.Zhou and N.Trinajstic, Some properties of the reformulated Zagreb indices, J. Math. Chem., 48(2010), 714-719.
[29] A.Milicevic, S.Nikolic and N.Trinajstic, On reformulated Zagreb indices, Mol. Divers., 8(2004), 393-399.
[30] V.Chepoi and S.Klavzar, Distances in benzenoid systems: Further developments, Discrete Math., 192(1998), 27-39.
[31] M.V.Diudea, Studia Univ. Babes-Bolyai, 4(2003), 3-21.
[32] S.Klavzar, I.Gutman and B.Mohar, Labeling of Benzenoid Systems which Reflects the Vertex-Distance Relations, J. Chem. Int Comput. Sci., 35(1995), 590-593.
[33] S.Klavzar, A Bird's Eye View of The Cut Method And A Survey of Its Applications In Chemical Graph Theory, MATCH Commun. Math. Comput. Chem., 60(2008), 255-274.
[34] A.Soncini, E.Steiner, P.W.Fowler, R.W.A.Havenith and L.W.Jenneskens, Perimeter Effects on Ring Currents in Polycyclic Aromatic Hydrocarbons: Circumcoronene and Two Hexabenzocoronenes, Chem. Eur. J., 9(2003), 2974-2981.
[35] P.Zigert, S.Klavzar and I.Gutman, Calculating the hyper-Wiener index of benzenoid hydrocarbons, ACH Models Chem., 137(2000), 83-94.
[36] M.R.Farahani, Computing Randic, Geometric-Arithmetic and Atom-Bond Connectivity indices of Circumcoronene Series of Benzenoid, Int. J. Chem. Model., 5(4)(2013), 485-493.
[37] M.R.Farahani, Zagreb index, Zagreb Polynomial of Circumcoronene Series of Benzenoid, Advances in Materials and Corrosion, 2(2013), 16-19.
[38] M.R.Farahani, The Edge Version of atom-bond connectivity Index of Connected Graphs, Acta Universitatis Apulensis, 36(2013), 277-284.
[39] M.R.Farahani, The Edge Version of Geometric-Arithmetic Index of Benzenoid Graph, Romanian Academy Seri B, $\mathrm{V}(15)(2013), 95-98$.

[^0]: * E-mail: mrfarahani88@gmail.com

