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1. Introduction

The concept of 2-metric space is a natural generalization of the classical one of metric space. It has been investigated,

initially, by Gähler and has been developed extensively by Gähler and many other mathematicians [2–4]. The topology

induced by 2-metric space is called 2-metric topology, which is generated by the set of all open spheres with two centers.

Many authors used the topology in many applications; for example, El Naschie used this sort of the topology in physical

applications [1]. Iseki [5] studied the fixed point theorems in 2-metric spaces. A number of fixed point theorems has been

proved for 2-metric spaces.

Liu and Zhang [7] proved a few necessary and sufficient conditions for the existence of a common fixed point of a pair of

mappings in 2-metric spaces. These results have generalized and improved by a number of mathematicians. Singh, Adiga

and Giniswami [9] proved a fixed point theorem in 2-metric spaces for nonexpansive type mappings.

In this paper, we prove some common fixed point theorems for weakly compatible mappings under nonexpansive type

conditions in the setting of 2-metric spaces. Our result extend and generalizes corresponding results of Singh, Adiga and

Giniswami [9] and Liu and Zhang [7].

2. Preliminaries

Now we shall recall some basic definitions and lemmas which are frequently used to prove our main result.

∗ E-mail: sahuritu00@gmail.com
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Definition 2.1. A 2-metric space on a set X with at least three points in a non-negative real valued mapping d : X×X×X →

R satisfying the following properties:

(a). To each pair of points a, b with a 6= b in X there is a point c ∈ X such that d(a, b, c) 6= 0.

(b). d(a, b, c) = 0 if at least two of the points are equal.

(c). d(a, b, c) = d(b, c, a) = d(a, c, b, )

(d). d(a, b, c) ≤ d(a, b, u) + d(a, u, c) + d(u, b, c) for all a, b, c, u ∈ X.

The pair (X,d) is called a 2-metric space

Definition 2.2. The sequence xn is convergent to x ∈ X and x is the limit of this sequence of lim
n→∞

d(xn, x, u) = 0 for each

a ∈ X. A sequence xn is called Cauchy sequence if lim
n,m→∞

d(xn, xm, u) = 0 for all u ∈ X

Definition 2.3. A 2-metric space (X, d) is said to be complete if every Cauchy sequence in X is convergent.

Note that in a 2-metric space (X, d) is convergent. sequence need not be Cauchy sequence but every convergent sequence

is a Cauchy sequence when the 2-metric d is continuous on X.

Definition 2.4. Let f and g be two self maps of a 2-metric space (X, d).Then f and g are said to be compatible if

lim
n→∞

d(fgxn, gfxn, u) = 0 for each x ∈ X , whenever xn is a sequence such that lim
n→∞

fxn = lim
n→∞

gxn = t ∈ X.

Definition 2.5. Let f and g are said to be compatible of type (A) if lim
n→∞

d(fgxn, ggxn, u) = lim
n→∞

d(gfxn, ffxn, u) = 0 for

all u ∈ X whenever xn ⊂ X such that lim
n→∞

fxn = lim
n→∞

gxn = t for some t ∈ X.

Definition 2.6. A mapping f from a 2-metric space (X, d) into itself is said to be continuous at x ∈ X if for every sequence

xn such that lim
n→∞

d(xn, x, u) = 0 for all u ∈ X, lim
n→∞

d(fxn, fx, u) = 0, f is called continuous on X if it is so at all points

of X.

Lemma 2.7. Let f and g are compatible mappings from a 2-metric space (X, d) into itself, if ft = gt for some t ∈ X, then

fgt = ggt = gft = fft.

Lemma 2.8. Let f and g are compatible mappings. if f is continuous at t ∈ X and if lim
n→∞

fxn = lim
n→∞

gxn = t, then

lim
n→∞

gfxn = ft

Singh, Adiga and Giniswami [9] proved the following theorem in 2-metric spaces for nonexpansive type mappings.

Theorem 2.9. Let (X, d) be a 2-metric space and T : X → X be a self mapping satisfying the following nonexpansive type

condition:

(Tx, Ty, u) ≤ amax

{
d(x, y, u), d(x, Tx, u), d(y, Ty, u),

1

2
[d(x, Ty, u) + d(y, Tx, u)]

}
+ bmax {d(x, Tx, u), d(y, Ty, u)}+ c[d(x, Ty, u) + d(y, Tx, u)]

for all x, y, u ∈ X, where a, b, c are real numbers such that a + b + 2c = 1 and a ≥ 0, b > 0, c > 0. Then T has a unique

fixed point and T is continuous at this point.

Liu and Zhang [7] proved the following theorems:
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Theorem 2.10. Let (X, d) be a complete 2-metric space with d continuous on X and let h and t be two mappings of X into

itself. Then the following conditions are equivalent:

(1). h and t have a common fixed point;

(2). there exists r ∈ (0, 1), f : X → t(X), g : X → h(X) such that

(a1) the pairs f, h and g, t are compatible,

(a2) one of f, g, h and t is continuous,

(a3) d(fx, gy, u) ≤ r max
{
d(hx, ty, u), d(hx, fx, u), d(ty, gy, u), 1

2
[d(hx, gy, u) + d(ty, fx, u)]

}
for all x, y, u ∈ X,

(3). there exist w ∈W , f : X → t(X), g : X → h(X) satisfying (a1), (a2) and

(a4)

d(fx, gy, u) ≤ max

{
d(hx, ty, u), d(hx, fx, u), d(ty, gy, u),

1

2
[d(hx, gy, u) + d(ty, fx, u)]

}
− w

[
max

{
d(hx, ty, u), d(hx, fx, u), d(ty, gy, u),

1

2
[d(hx, gy, u) + d(ty, fx, u)]

}]

for all x, y, u ∈ X, where W =
{
w : w : R+ → R+ is continuous and satisfy 0 < w(r) < r for r > 0

}
Theorem 2.11. Let (X, d) be a complete 2-metric space with d continuous on X and let h and t be two mappings of X into

itself. Then condition (1) of Theorem 2.9 is equivalent to each of the following condition:

(4) There exists r ∈ (0, 1), f : X → t(X) ∩ h(X) such that

(a5) the pairs f, h and f, t are compatible,

(a6) one of f, h and t is continuous,

(a7) d(fx, fy, u) ≤ r max
{
d(hx, ty, u), d(hx, fx, u), d(ty, fy, u), 1

2
[d(hx, fy, u) + d(ty, fx, u)]

}
for all x, y, u ∈ X,

(5) there exist w ∈W , f : X → t(X) ∩ h(X) satisfying (a5 ), (a6) and

(a8)

d(fx, fy, u) ≤ max

{
d(hx, ty, u), d(hx, fx, u), d(ty, fy, u),

1

2
[d(hx, fy, u) + d(ty, fx, u)]

}
− w[max

{
d(hx, ty, u), d(hx, fx, u), d(ty, fy, u),

1

2
[d(hx, fy, u) + d(ty, fx, u)]

}
]

for all x, y, u ∈ X, where W =
{
w : w : R+ → R+ is continuous and satisfy 0 < w(r) < r for r > 0

}
.

3. Main Result

Throughout this section, N and N0 denote the set of positive and non-negative integers, respectively. Let R+ = [0,∞).

Theorem 3.1. Let (X, d) be a complete 2-metric space with d continuous on X and let f and g be two mapping of X into

itself, there exists w ∈W , f : X → t(X) and g : X → h(X) satisfying:

(a) The pair (f, h) and (g, t) are compatible.

(b) One of f, g, h and t is continuous

77



Some Common Fixed Point Theorems For Nonexpansive Type Mappings In 2-Metric Spaces

(c)

d(fx, gy, u) ≤ amax {d(hx, ty, u), d(ty, gy, u)}+ bmax {d(hx, fx, u), d(ty, gy, u), d(ty, fx, u)}

+ c[d(hx, gy, u) + d(ty, fx, u)]− w[amax {d(hx, ty, u), d(ty, gy, u)}

+ bmax {d(hx, fx, u), d(ty, gy, u), d(ty, fx, u)}+ c[d(hx, gy, u) + d(ty, fx, u)]] (1)

where a ≥ 0, b > 0, c > 0 such that a + b + 2c = 1 for all x, y, u ∈ X,then f, g, h and t have a common fixed point.

Proof. Let x0 be an arbitrary point in X. Since f(X) ⊂ t(X) andg(X) ⊂ h(X), then there exist sequence xnn∈N and

ynn∈N in X satisfying,

y2n = tx2n+1 = fx2n

y2n+1 = hx2n+2 = gx2n+1 for n ∈ N0.

Define dn(a) = d(yn, yn+1, a) for a ∈ X and n ∈ N0. We claim that for any i, j, k ∈ N0, d(yi, yj , yk) = 0. Suppose that

d2n(y2n+1) > 0 then using (1), we have

d2n(y2n+2) = d(y2n, y2n+1, y2n+2)

= d(fx2n+2, gx2n+1, y2n)

≤ amax {d(hx2n+2, tx2n+1, y2n), d(tx2n+1, gx2n+1, y2n)}

+ bmax {d(hx2n+2, fx2n+2, y2n), d(tx2n+1, gx2n+2, y2n), d(tx2n+1, fx2n+2, y2n)}

+ c[d(hx2n+2, gx2n+1, y2n) + d(tx2n+1, fx2n+2, y2n)]− w[amax {d(hx2n+2, tx2n+1, y2n), d(tx2n+1, gx2n+1, y2n)}

+ bmax {d(hx2n+2, fx2n+2, y2n), d(tx2n+1, gx2n+1, y2n), d(tx2n+1, fx2n+2, y2n)}

+ c[d(hx2n+2, gx2n+1, y2n) + d(tx2n+1, fx2n+2, y2n)]]

≤ amax {d(y2n+1, y2n, y2n), d(y2n, y2n+1, y2n)}

+ bmax {d(y2n+1, y2n+2, y2n), d(y2n, y2n+1, y2n), d(y2n, y2n+2, y2n)}

+ c[d(y2n+1, y2n+1, y2n) + d(y2n, y2n+2, y2n)]− w[amax {d(y2n+1, y2n, y2n), d(y2n, y2n+1, y2n)}

+ bmax {d(y2n+1, y2n+2, y2n), d(y2n, y2n+1, y2n), d(y2n, y2n+2, y2n)}+ c[d(y2n+1, y2n+1, y2n) + d(y2n, y2n+2, y2n)]]

≤ bd(y2n+1, y2n+2, y2n)− wbd(y2n+1, y2n+2, y2n)

≤ bd2n(y2n+2)− wbd2n(y2n+2)

< bd2n(y2n+2)

< d2n(y2n+2)

a contradiction. Hence d2n(y2n+2) = 0. Similarly, we have d2n+1(y2n+3) = 0. Consequently, for all n ∈ N0,

dn(yn+2) = 0 (2)

Using (2) we have

d(yn, yn+2, u) ≤ d(yn, yn+1, yn+2) + d(yn, yn+1, u) + d(yn+1, yn+2, u)

≤ dn(yn+2) + dn(u) + dn+1(u)

= dn(u) + dn+1(u) (3)
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Now applying (1) again and using (3), we have

d2n+1(u) = d(y2n+1, y2n+2, u)

= d(fx2n+2, gx2n+1, u)

≤ amax {d(hx2n+2, tx2n+1, u), d(gx2n+1, tx2n+1, u)}

+ bmax {d(fx2n+2, hx2n+2, u), d(gx2n+1, tx2n+1, u), d(tx2n+1, fx2n+2, u)}

+ c[d(hx2n+2, gx2n+1, u) + d(tx2n+1, fx2n+2, u)]− w[amax {d(hx2n+2, tx2n+1, u), d(gx2n+1, tx2n+1, u)}

+ bmax {d(fx2n+2, hx2n+2, u), d(gx2n+1, tx2n+1, u), d(tx2n+1, fx2n+2, u)}

+ c[d(hx2n+2, gx2n+1, u) + d(tx2n+1, fx2n+2, u)]]

≤ amax {d(y2n+1, y2n, u), d(y2n+1, y2n, u)}+ bmax {d(y2n+2, y2n+1, u), d(y2n+1, y2n, u), d(y2n, y2n, u)}

+ c[d(y2n+1, y2n+1, u) + d(y2n, y2n+2, u)]− w[amax {d(y2n+1, y2n, u), d(y2n+1, y2n, u)}

+ bmax {d(y2n+2, y2n+1, u), d(y2n+1, y2n, u), d(y2n, y2n, u)}+ c[d(y2n+1, y2n+1, u) + d(y2n, y2n+2, u)]

≤ amax {d2n(u), d2n(u)}+ bmax d2n+1(u), d2n(u) + cd(y2n, y2n+2, u)− w[amax {d2n(u), d2n(u)}

+ bmax {d2n+1(u), d2n(u)}+ cd(y2n, y2n+1, u)

≤ amax {d2n(u), d2n(u)}+ bmax d2n+1(u), d2n(u) + c[d2n(u) + d2n+1(u)]

− w[amax {d2n(u), d2n(u)}+ bmax {d2n+1(u), d2n(u)}+ c[d2n(u) + d2n+1(u)]]

Suppose that d2n(u) < d2n+1(u), then

d2n+1(u) < [ad2n+1(u) + bd2n+1(u) + 2cd2n+1(u)]− w[ad2n+1(u) + bd2n+1(u) + 2cd2n+1(u)]

= (a + b + 2c)d2n+1(u)− w[(a + b + 2c)d2n+1(u)]

= d2n+1(u)− wd2n+1(u)

a contradiction. Hence

d2n+1(u) ≤ d2n(u)

d2n+1(u) ≤ d2n(u)− wd2n(u)

≤ d2n(u)

Similarly, we have d2n(u) ≤ d2n−1(u). That is, for all n ∈ N ,

dn+1(u) ≤ dn(u) (4)

Letn,m be in N0 if n ≥ m, then

dn(ym) ≤ dm(ym) = 0 (5)

If n < m then

dn(ym) = dn(yn, yn+1, ym)

≤ d(yn, yn+1, ym−1) + d(yn, ym−1, ym) + d(ym−1, yn+1, ym)

= dn(ym−1) + dm−1(yn) + dm−1(yn+1)

= dn(ym−1)

≤ dn(ym−2) ≤ dn(ym−3) . . . < dn(yn+1) = 0
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Thus for any n,m ∈ N0,

dn(ym) = 0 (6)

For all i, j, k ∈ N0, we may without loss of generality. Assume that i < j it follows from (6)

d(yi, yj , yk) ≤ di(yi) + dj(yk) + d(yi+1, yj , yk)

= d(yi+1, yj , yk)

≤ d(yi+2, yj , yk)

And inductively, we have

d(yi, yj , yk) ≤ d(yj−1, yj , yk) = dj−1(yk) = 0

Therefore

d(yi, yj , yk) = 0 (7)

Applying (1) Again and using (4), (5), (6), we have

d2n(u) = d(y2n, y2n+1, u)

= d(fx2n, gx2n+1, u)

≤ amax {d(hx2n, tx2n+1, u), d(tx2n+1, gx2n+1, u)}+ bmax {d(hx2n, fx2n, u), d(tx2n+1, gx2n+1, u), d(tx2n+1, fx2n, u)}

+ c[d(hx2n, gx2n+1, u) + d(tx2n+1, fx2n, u)]− w[amax {d(hx2n, tx2n+1, u), d(tx2n+1, gx2n+1, u)}

+ bmax {d(hx2n, fx2n, u), d(tx2n+1, gx2n+1, u), d(tx2n+1, fx2n, u)}+ c[d(hx2n, gx2n+1, u) + d(tx2n+1, fx2n, u)]]

≤ amax {d(y2n−1, y2n, u), d(y2n, y2n+1, u)}+ bmax {d(y2n−1, y2n, u), d(y2n, y2n+1, u), d(y2n, y2n, u)}

+ c[d(y2n−1, y2n+1, u) + d(y2n, y2n, u)]− w[amax {d(y2n−1, y2n, u), d(y2n, y2n+1, u)}

+ bmax {d(y2n−1, y2n, u), d(y2n, y2n+1, u), d(y2n, y2n, u)}+ c[d(y2n−1, y2n+1, u) + d(y2n, y2n, u)]]

≤ amax {d2n−1(u), d2n(u)}+ bd2n(u) + cd(y2n−1, y2n+1, u)

− w[amax {d2n−1(u), d2n(u)}+ bd2n(u) + cd(y2n−1, y2n+1, u)]

≤ amax {d2n−1(u), d2n(u)}+ bd2n(u) + c[d2n−1(u) + d2n(u) + d2n+1(y2n−1)]

− w[amax {d2n−1(u), d2n(u)}+ bd2n(u) + c[d2n−1(u) + d2n(u) + d2n+1(y2n−1)]

≤ amax {d2n−1(u), d2n−1(u)}+ bd2n−1(u) + c[d2n−1(u) + d2n−1(u)]

− w[amax {d2n−1(u), d2n−1(u)}+ bd2n−1(u) + c[d2n−1(u) + d2n−1(u)]

≤ (a + b + 2c)d2n−1(u)− w(a + b + 2c)d2n−1(u)

= d2n−1(u)− wd2n−1(u)

Similarly we have

d2n+1(u) ≤ d2n(u)− wd2n(u)

80



Ritu Sahu, P.L.Sanodia and Arvind Gupta

It follows that

n∑
i=0

w(di(u)) ≤
n∑

i=0

[di(u)−di+j(u)]

n∑
i=0

w(di(u)) ≤ d0(u)− dn+1(u)

...
...

≤ d0(u)

So the series of non negative, terms
∞∑

n=0

w(dn(u)) is convergent. This means that

lim
n→∞

w(dn(u)) = 0. (8)

Using (4), we have dn(u)n∈N0
converges to some r ≥ 0. By continuity of w and (8), we have

w(r) = lim
n→∞

w(dn(u)) = 0

Which implies that r = 0. Hence

lim
n→∞

dn(u) = 0. (9)

In order to show that yn is a Cauchy sequence it is sufficient to show that y2nn∈N0
is a Cauchy sequence. Suppose not;

then there exist ε > 0 and u ∈ X such that for each positive integer k,there are positive integers 2m(k) and 2n(k) with

2m(k) > 2n(k) > 2k and d(y2m(k), y2n(k), u) ≥ ε. For each positive integer k, let 2m(k) be the least even integer exceeding

2n(k) satisfying the above inequality, so that

d(y2m(k)−2, y2n(k), u) ≤ ε d(y2m(k), y2n(k), u) > ε. (10)

For each positive integer k, from (7) and (10), we have

ε < d(y2m(k), y2n(k), u)

≤ d(y2m(k)−2, y2n(k), u) + d(y2m(k), y2m(k)−2, u) + d(y2m(k), y2n(k), y2m(k)−2)

≤ ε + d(y2m(k)−2, y2m(k), y2m(k)−1) + d(y2m(k)−2, y2m(k)−1, u) + d(y2m(k)−1, y2m(k), u)

= ε + d(y2m(k)−2(u), y2m(k)−1(u))

Which implies

lim
k→∞

d(y2m(k), y2n(k), u) = ε (11)

It follows from (10)

0 < d(y2n(k), y2m(k), u)− d(y2n(k), y2m(k)−2, u))

≤ d(y2m(k)−2, y2m(k), u)

≤ d2m(k)−2(u) + d2m(k)−1(u)
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Then by (9) and (11), we have

lim
n→∞

d(y2n(k), y2m(k)−2, u) = ε (12)

Using triangular inequality, we have

|d(y2n(k), y2m(k)−1, u)− d(y2n(k), y2m(k), u)| ≤ d2m(k)−1(u) + d2m(k)−1(y2n(k))

|d(y2n(k)+1, y2m(k), u)− d(y2n(k), y2m(k), u)| ≤ d2n(k)(u) + d2n(k)(y2m(k))

|d(y2n(k)+1, y2m(k)−1, u)− d(y2n(k), y2m(k)−1, u)| ≤ d2n(k)(u) + d2n(k)(y2m(k)−1)

It is easy to see that

lim
k→∞

d(y2n(k), y2m(k)−1, u) = lim
k→∞

d(y2n(k)+1, y2m(k), u)

lim
k→∞

d(y2n(k)+1, y2m(k)−1, u) = ε (13)

It follows from (5)

d(y2m(k), y2n(k)+1, u) = d(fx2m(k), gx2n(k)+1, u)

≤ amax
{
d(hx2m(k), tx2n(k)+1, u), d(tx2n(k)+1, gx2n(k)+1, u)

}
+ bmax

{
d(hx2m(k), fx2m(k), u), d(tx2n(k)+1, gx2n(k)+1, u), d(tx2n(k)+1, fx2m(k), u)

}
+ c[d(hx2m(k), gx2n(k)+1, u) + d(tx2n(k)+1, fx2m(k), u)]

− w[amax
{
d(hx2m(k), tx2n(k)+1, u), d(tx2n(k)+1, gx2n(k)+1, u)

}
+ bmax

{
d(hx2m(k), fx2m(k), u), d(tx2n(k)+1, gx2n(k)+1, u), d(tx2n(k)+1, fx2m(k), u)

}
+ c[d(hx2m(k), gx2n(k)+1, u) + d(tx2n(k)+1, fx2m(k), u)]]

≤ amax
{
d(y2m(k)−1, y2n(k), u), d(y2n(k), y2n(k)+1, u)

}
+ bmax

{
d(y2m(k)−1, y2m(k), u), d(y2n(k), y2n(k)+1, u), d(y2n(k), y2m(k), u)

}
+ c[d(y2m(k)−1, y2n(k)+1, u) + d(y2n(k), y2m(k), u)]− w[amax

{
d(y2m(k)−1, y2n(k), u), d(y2n(k), y2n(k)+1, u)

}
+ bmax

{
d(y2m(k)−1, y2m(k), u), d(y2n(k), y2n(k)+1, u), d(y2n(k), y2m(k), u)

}
+ c[d(y2m(k)−1, y2n(k)+1, u) + d(y2n(k), y2m(k), u)]]

≤ amax
{
d(y2m(k)−1, y2n(k), u), d2n(k)(u)

}
+ bmax

{
d2m(k)−1(u), d2n(k)(u), d(y2n(k), y2m(k), u)

}
+ c[d(y2m(k)−1, y2n(k)+1, u) + d(y2n(k), y2m(k), u)]− w[amax

{
d(y2m(k)−1, y2n(k), u), d2n(k)(u)

}
+ bmax

{
d2m(k)−1(u), d2n(k)(u), d(y2n(k), y2m(k), u)

}
+ c[d(y2m(k)−1, y2n(k)+1, u) + d(y2n(k), y2m(k), u)]]

Letting k →∞ and using (13), (11), (9), we have

ε ≤ [aε + bε + 2εc]− w[aε + bε + 2εc]

≤ [a + b + 2c]ε− w[a + b + 2c]ε

= ε− wε

A contradiction. Therefore y2nn∈N0
is a Cauchy sequence in X. It follows from completeness of (X, d) that y2nn∈N0

converge

to a point z ∈ X. Now suppose that tis continuous. Since f and t are compatible and gx2n+1n∈N0
and tx2n+1n∈N0

converge
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to the point z, by Lemma 2.8, we get gtx2n+1, tgx2n+1 → tz as h→∞. Applying in equality (1), we have

d(fx2n, gtx2n+1, u) ≤ amax {d(hx2n, ttx2n+1, u), d(ttx2n+1, gtx2n+1, u)}

+ bmax {d(hx2n, fx2n, u), d(ttx2n+1, gtx2n+1, u), d(ttx2n+1, fx2n, u)}

+ c[d(hx2n, gtx2n+1, u) + d(ttx2n+1, fx2n, u)]− w[amax {d(hx2n, ttx2n+1, u), d(ttx2n+1, gtx2n+1, u)}

+ bmax {d(hx2n, fx2n, u), d(ttx2n+1, gtx2n+1, u), d(ttx2n+1, fx2n, u)}

+ c[d(hx2n, gtx2n+1, u) + d(ttx2n+1, fx2n, u)]]

Letting n→∞ we get

d(z, tz, u) ≤ amax {d(z, tz, u), d(tz, tz, u)}+ bmax {d(z, z, u), d(tz, tz, u), d(ttz, z, u)}

+ c[d(z, tz, u) + d(ttz, z, u)]− w[amax {d(z, tz, u), d(tz, tz, u)}

+ bmax {d(z, z, u), d(tz, tz, u), d(ttz, z, u)}+ c[d(z, tz, u) + d(ttz, z, u)]]

≤ ad(z, tz, u) + bd(tz, z, u) + c[d(z, tz, u) + d(tz, z, u)]− w[ad(z, tz, u) + bd(tz, z, u) + c[d(z, tz, u) + d(tz, z, u)]]

≤ (a + b + 2c)d(z, tz, u)− w[(a + b + 2c)d(z, tz, u)]

≤ d(z, tz, u)

Implies d(z, tz, u) = 0⇒ z = tz. Again from (1), we have

d(fx2n, gz, u) ≤ amax {d(hx2n, tz, u), d(tz, gz, u)}+ bmax {d(hx2n, fx2n, u), d(tz, gz, u), d(tz, fx2n, u)}

+ c[d(hx2n, gz, u) + d(tz, fx2n, u)]− w[amax {d(hx2n, tz, u), d(tz, gz, u)}

+ bmax {d(hx2n, fx2n, u), d(tz, gz, u), d(tz, fx2n, u)}+ c[d(hx2n, gz, u) + d(tz, fx2n, u)]]

Letting n→∞ we get

d(z, gz, u) ≤ amax {d(z, z, u), d(z, gz, u)}+ bmax {d(z, z, u), d(z, gz, u), d(z, z, u)}

+ c[d(z, gz, u) + d(z, z, u)]− w[amax {d(z, z, u), d(z, gz, u)}

+ bmax {d(z, z, u), d(z, gz, u), d(z, z, u)}+ c[d(z, gz, u) + d(z, z, u)]]

≤ (a + b + c)d(z, gz, u)− w[(a + b + c)d(z, gz, u)]

< d(z, gz, u)

Hence z = gz i.e. z is a fixed point of g. Similarly, we can show that z is a fixed point of f and h i.e. z is a common fixed

point of f, g, h and t. Similarly, we can complete the proof when f or g or h is continuous.

Theorem 3.2. Let (X, d) be a complete 2-metric space with d continuous on X and let h and t be two mapping of X into

itself, there exists w ∈ N0, f : X → t(X)→ h(X) satisfying:

(a) The pair (f, h) and (f, t) are compatible.

(b) One of f, h and t is continuous
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(c)

d(fx, fy, u) ≤ amax {d(hx, ty, u), d(ty, fy, u)}+ bmax {d(hx, fx, u), d(ty, fy, u), d(ty, fx, u)}

+ c[d(hx, fy, u) + d(ty, fx, u)]− w[amax {d(hx, ty, u), d(ty, fy, u)}

+ bmax {d(hx, fx, u), d(ty, fy, u), d(ty, fx, u)}+ c[d(hx, fy, u) + d(ty, fx, u)]] (14)

Where a ≥ 0, b > 0, c > 0 such that a + b + 2c = 1 for all x, y, u ∈ X then f, h and t have a common fixed point.

Proof. The proof of this theorem is identical to the proof of Theorem 3.1.

Remark 3.3. Theorem 3.1 and 3.2 are still true even though the condition of the compatibility is replaced by the compatibility

of type(A).
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