

International Journal of Mathematics And its Applications

Some Common Fixed Point Theorems For Nonexpansive Type Mappings In 2-Metric Spaces

Research Article

Ritu Sahu^{1*}, P.L.Sanodia² and Arvind Gupta³

1 Department of Mathematics, People's College of Research & Technology, Bhopal, India.

2 Department of Mathematics, Institute for Excellence in Higher Education, Bhopal, India.

3 Department of Mathematics, Government Motilal Vigyan Mahavidhyalaya, Bhopal, India.

Abstract: The aim of this paper is to prove some common fixed point theorems for weakly compatible mappings under nonexpansive type conditions in the setting of 2-metric spaces. Our result extend and generalizes corresponding results of Singh, Adiga and Giniswami [9] and Liu and Zhang [7].

MSC: 47H10, 54H25.

Keywords: 2-metric spaces, nonexpansive mapping, compatible mappings compatible mapping of type (A). © JS Publication.

1. Introduction

The concept of 2-metric space is a natural generalization of the classical one of metric space. It has been investigated, initially, by Gähler and has been developed extensively by Gähler and many other mathematicians [2–4]. The topology induced by 2-metric space is called 2-metric topology, which is generated by the set of all open spheres with two centers. Many authors used the topology in many applications; for example, El Naschie used this sort of the topology in physical applications [1]. Iseki [5] studied the fixed point theorems in 2-metric spaces. A number of fixed point theorems has been proved for 2-metric spaces.

Liu and Zhang [7] proved a few necessary and sufficient conditions for the existence of a common fixed point of a pair of mappings in 2-metric spaces. These results have generalized and improved by a number of mathematicians. Singh, Adiga and Giniswami [9] proved a fixed point theorem in 2-metric spaces for nonexpansive type mappings.

In this paper, we prove some common fixed point theorems for weakly compatible mappings under nonexpansive type conditions in the setting of 2-metric spaces. Our result extend and generalizes corresponding results of Singh, Adiga and Giniswami [9] and Liu and Zhang [7].

2. Preliminaries

Now we shall recall some basic definitions and lemmas which are frequently used to prove our main result.

^{*} E-mail: sahuritu00@gmail.com

Definition 2.1. A 2-metric space on a set X with at least three points in a non-negative real valued mapping $d: X \times X \times X \rightarrow R$ satisfying the following properties:

- (a). To each pair of points a, b with $a \neq b$ in X there is a point $c \in X$ such that $d(a, b, c) \neq 0$.
- (b). d(a, b, c) = 0 if at least two of the points are equal.
- (c). d(a, b, c) = d(b, c, a) = d(a, c, b,)
- (d). $d(a, b, c) \leq d(a, b, u) + d(a, u, c) + d(u, b, c)$ for all $a, b, c, u \in X$.
- The pair (X,d) is called a 2-metric space

Definition 2.2. The sequence x_n is convergent to $x \in X$ and x is the limit of this sequence of $\lim_{n \to \infty} d(x_n, x, u) = 0$ for each $a \in X$. A sequence x_n is called Cauchy sequence if $\lim_{n,m\to\infty} d(x_n, x_m, u) = 0$ for all $u \in X$

Definition 2.3. A 2-metric space (X,d) is said to be complete if every Cauchy sequence in X is convergent.

Note that in a 2-metric space (X, d) is convergent. sequence need not be Cauchy sequence but every convergent sequence is a Cauchy sequence when the 2-metric d is continuous on X.

Definition 2.4. Let f and g be two self maps of a 2-metric space (X, d). Then f and g are said to be compatible if $\lim_{n \to \infty} d(fgx_n, gfx_n, u) = 0$ for each $x \in X$, whenever x_n is a sequence such that $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = t \in X$.

Definition 2.5. Let f and g are said to be compatible of type (A) if $\lim_{n \to \infty} d(fgx_n, ggx_n, u) = \lim_{n \to \infty} d(gfx_n, ffx_n, u) = 0$ for all $u \in X$ whenever $x_n \subset X$ such that $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = t$ for some $t \in X$.

Definition 2.6. A mapping f from a 2-metric space (X, d) into itself is said to be continuous at $x \in X$ if for every sequence x_n such that $\lim_{n \to \infty} d(x_n, x, u) = 0$ for all $u \in X$, $\lim_{n \to \infty} d(fx_n, fx, u) = 0$, f is called continuous on X if it is so at all points of X.

Lemma 2.7. Let f and g are compatible mappings from a 2-metric space (X, d) into itself, if ft = gt for some $t \in X$, then fgt = ggt = gft = fft.

Lemma 2.8. Let f and g are compatible mappings. if f is continuous at $t \in X$ and if $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = t$, then $\lim_{n \to \infty} gfx_n = ft$

Singh, Adiga and Giniswami [9] proved the following theorem in 2-metric spaces for nonexpansive type mappings.

Theorem 2.9. Let (X, d) be a 2-metric space and $T : X \to X$ be a self mapping satisfying the following nonexpansive type condition:

$$(Tx, Ty, u) \le a \max\left\{ d(x, y, u), d(x, Tx, u), d(y, Ty, u), \frac{1}{2} [d(x, Ty, u) + d(y, Tx, u)] \right\} + bmax \left\{ d(x, Tx, u), d(y, Ty, u) \right\} + c[d(x, Ty, u) + d(y, Tx, u)]$$

for all $x, y, u \in X$, where a, b, c are real numbers such that a + b + 2c = 1 and $a \ge 0, b > 0, c > 0$. Then T has a unique fixed point and T is continuous at this point.

Liu and Zhang [7] proved the following theorems:

Theorem 2.10. Let (X, d) be a complete 2-metric space with d continuous on X and let h and t be two mappings of X into itself. Then the following conditions are equivalent:

- (1). h and t have a common fixed point;
- (2). there exists $r \in (0,1)$, $f: X \to t(X)$, $g: X \to h(X)$ such that
 - (a_1) the pairs f, h and g, t are compatible,
 - (a_2) one of f, g, h and t is continuous,
 - $(a_3) \ d(fx, gy, u) \le r \max\left\{ d(hx, ty, u), d(hx, fx, u), d(ty, gy, u), \frac{1}{2} [d(hx, gy, u) + d(ty, fx, u)] \right\} \ for \ all \ x, y, u \in X,$
- (3). there exist $w \in W$, $f: X \to t(X)$, $g: X \to h(X)$ satisfying (a_1) , (a_2) and
 - (a_4)

$$\begin{aligned} d(fx, gy, u) &\leq \max\left\{ d(hx, ty, u), d(hx, fx, u), d(ty, gy, u), \frac{1}{2} \left[d(hx, gy, u) + d(ty, fx, u) \right] \right\} \\ &- w \left[\max\left\{ d(hx, ty, u), d(hx, fx, u), d(ty, gy, u), \frac{1}{2} \left[d(hx, gy, u) + d(ty, fx, u) \right] \right\} \right] \end{aligned}$$

for all $x, y, u \in X$, where $W = \{w : w : R^+ \to R^+ \text{ is continuous and satisfy } 0 < w(r) < r \text{ for } r > 0\}$

Theorem 2.11. Let (X, d) be a complete 2-metric space with d continuous on X and let h and t be two mappings of X into itself. Then condition (1) of Theorem 2.9 is equivalent to each of the following condition:

- (4) There exists $r \in (0,1)$, $f: X \to t(X) \cap h(X)$ such that
 - (a_5) the pairs f, h and f, t are compatible,
 - (a_6) one of f, h and t is continuous,

$$(a_7) \ d(fx, fy, u) \le r \max\left\{ d(hx, ty, u), d(hx, fx, u), d(ty, fy, u), \frac{1}{2} \left[d(hx, fy, u) + d(ty, fx, u) \right] \right\} \ for \ all \ x, y, u \in X,$$

(5) there exist $w \in W$, $f: X \to t(X) \cap h(X)$ satisfying (a₅), (a₆) and

 (a_8)

$$\begin{aligned} d(fx, fy, u) &\leq \max\left\{ d(hx, ty, u), d(hx, fx, u), d(ty, fy, u), \frac{1}{2}[d(hx, fy, u) + d(ty, fx, u)] \right\} \\ &- w[\max\left\{ d(hx, ty, u), d(hx, fx, u), d(ty, fy, u), \frac{1}{2}[d(hx, fy, u) + d(ty, fx, u)] \right\}] \end{aligned}$$

 $\textit{for all } x,y,u \in X, \textit{ where } W = \big\{w: w: R^+ \rightarrow R^+ \textit{ is continuous and satisfy } 0 < w(r) < r \textit{ for } r > 0\big\}.$

3. Main Result

Throughout this section, N and N_0 denote the set of positive and non-negative integers, respectively. Let $R^+ = [0, \infty)$.

Theorem 3.1. Let (X, d) be a complete 2-metric space with d continuous on X and let f and g be two mapping of X into itself, there exists $w \in W$, $f : X \to t(X)$ and $g : X \to h(X)$ satisfying:

- (a) The pair (f, h) and (g, t) are compatible.
- (b) One of f, g, h and t is continuous

(c)

$$\begin{aligned} d(fx, gy, u) &\leq a \max \left\{ d(hx, ty, u), d(ty, gy, u) \right\} + b \max \left\{ d(hx, fx, u), d(ty, gy, u), d(ty, fx, u) \right\} \\ &+ c[d(hx, gy, u) + d(ty, fx, u)] - w[a \max \left\{ d(hx, ty, u), d(ty, gy, u) \right\} \\ &+ b \max \left\{ d(hx, fx, u), d(ty, gy, u), d(ty, fx, u) \right\} + c[d(hx, gy, u) + d(ty, fx, u)]] \end{aligned}$$
(1)

where $a \ge 0$, b > 0, c > 0 such that a + b + 2c = 1 for all $x, y, u \in X$, then f, g, h and t have a common fixed point.

Proof. Let x_0 be an arbitrary point in X. Since $f(X) \subset t(X)$ and $g(X) \subset h(X)$, then there exist sequence $x_{nn \in N}$ and $y_{n_n \in N}$ in X satisfying,

$$y_{2n} = tx_{2n+1} = fx_{2n}$$

 $y_{2n+1} = hx_{2n+2} = gx_{2n+1}$ for $n \in N_0$.

Define $d_n(a) = d(y_n, y_{n+1}, a)$ for $a \in X$ and $n \in N_0$. We claim that for any $i, j, k \in N_0$, $d(y_i, y_j, y_k) = 0$. Suppose that $d_{2n}(y_{2n+1}) > 0$ then using (1), we have

$$\begin{split} d_{2n}(y_{2n+2}) &= d(y_{2n}, y_{2n+1}, y_{2n+2}) \\ &= d(fx_{2n+2}, gx_{2n+1}, y_{2n}) \\ &\leq a \max \left\{ d(hx_{2n+2}, tx_{2n+1}, y_{2n}), d(tx_{2n+1}, gx_{2n+2}, y_{2n}) \right\} \\ &+ b \max \left\{ d(hx_{2n+2}, fx_{2n+2}, y_{2n}), d(tx_{2n+1}, gx_{2n+2}, y_{2n}), d(tx_{2n+1}, fx_{2n+2}, y_{2n}) \right\} \\ &+ c [d(hx_{2n+2}, fx_{2n+2}, y_{2n}) + d(tx_{2n+1}, fx_{2n+2}, y_{2n})] - w[a \max \left\{ d(hx_{2n+2}, tx_{2n+1}, y_{2n}), d(tx_{2n+1}, gx_{2n+1}, y_{2n}) \right\} \\ &+ b \max \left\{ d(hx_{2n+2}, fx_{2n+2}, y_{2n}), d(tx_{2n+1}, gx_{2n+1}, y_{2n}), d(tx_{2n+1}, fx_{2n+2}, y_{2n}) \right\} \\ &+ b \max \left\{ d(hx_{2n+2}, gx_{2n+1}, y_{2n}) + d(tx_{2n+1}, fx_{2n+2}, y_{2n}) \right] \right] \\ &\leq a \max \left\{ d(y_{2n+1}, y_{2n}, y_{2n}), d(y_{2n}, y_{2n+1}, y_{2n}), d(y_{2n}, y_{2n+2}, y_{2n}) \right\} \\ &+ b \max \left\{ d(y_{2n+1}, y_{2n+2}, y_{2n}), d(y_{2n}, y_{2n+1}, y_{2n}), d(y_{2n}, y_{2n+2}, y_{2n}) \right\} \\ &+ b \max \left\{ d(y_{2n+1}, y_{2n+2}, y_{2n}), d(y_{2n}, y_{2n+1}, y_{2n}), d(y_{2n}, y_{2n+2}, y_{2n}) \right\} \\ &+ b \max \left\{ d(y_{2n+1}, y_{2n+2}, y_{2n}), d(y_{2n}, y_{2n+1}, y_{2n}), d(y_{2n}, y_{2n+2}, y_{2n}) \right\} \\ &+ b \max \left\{ d(y_{2n+1}, y_{2n+2}, y_{2n}), d(y_{2n}, y_{2n+1}, y_{2n}), d(y_{2n}, y_{2n+2}, y_{2n}) \right\} \\ &+ b \max \left\{ d(y_{2n+1}, y_{2n+2}, y_{2n}), d(y_{2n}, y_{2n+1}, y_{2n}), d(y_{2n}, y_{2n+2}, y_{2n}) \right\} \\ &+ b \max \left\{ d(y_{2n+1}, y_{2n+2}, y_{2n}), d(y_{2n}, y_{2n+2}, y_{2n}) \right\} \\ &+ b d(y_{2n+1}, y_{2n+2}, y_{2n}) - wbd(y_{2n+1}, y_{2n+2}, y_{2n}) \right\} \\ &\leq b d_{2n}(y_{2n+2}) - wbd_{2n}(y_{2n+2}) \\ &\leq b d_{2n}(y_{2n+2}) \end{bmatrix}$$

 $< d_{2n}(y_{2n+2})$

a contradiction. Hence $d_{2n}(y_{2n+2}) = 0$. Similarly, we have $d_{2n+1}(y_{2n+3}) = 0$. Consequently, for all $n \in N_0$,

$$d_n(y_{n+2}) = 0 \tag{2}$$

Using (2) we have

$$d(y_n, y_{n+2}, u) \le d(y_n, y_{n+1}, y_{n+2}) + d(y_n, y_{n+1}, u) + d(y_{n+1}, y_{n+2}, u)$$

$$\le d_n(y_{n+2}) + d_n(u) + d_{n+1}(u)$$

$$= d_n(u) + d_{n+1}(u)$$
(3)

Now applying (1) again and using (3), we have

$$\begin{split} d_{2n+1}(u) &= d(y_{2n+1}, y_{2n+2}, u) \\ &= d(fx_{2n+2}, gx_{2n+1}, u) \\ &\leq a \max \left\{ d(hx_{2n+2}, tx_{2n+1}, u), d(gx_{2n+1}, tx_{2n+1}, u) \right\} \\ &+ b \max \left\{ d(fx_{2n+2}, hx_{2n+2}, u), d(gx_{2n+1}, tx_{2n+1}, u), d(tx_{2n+1}, fx_{2n+2}, u) \right\} \\ &+ c[d(hx_{2n+2}, gx_{2n+1}, u) + d(tx_{2n+1}, fx_{2n+2}, u)] - w[a \max \left\{ d(hx_{2n+2}, tx_{2n+1}, u), d(gx_{2n+1}, tx_{2n+1}, u) \right\} \\ &+ b \max \left\{ d(fx_{2n+2}, hx_{2n+2}, u), d(gx_{2n+1}, tx_{2n+1}, u), d(tx_{2n+1}, fx_{2n+2}, u) \right\} \\ &+ c[d(hx_{2n+2}, gx_{2n+1}, u) + d(tx_{2n+1}, fx_{2n+2}, u)]] \\ &\leq a \max \left\{ d(y_{2n+1}, y_{2n}, u), d(y_{2n+1}, y_{2n}, u) \right\} + b \max \left\{ d(y_{2n+2}, y_{2n+1}, u), d(y_{2n+1}, y_{2n}, u), d(y_{2n}, y_{2n}, u) \right\} \\ &+ c[d(y_{2n+1}, y_{2n+1}, u) + d(y_{2n}, y_{2n+2}, u)] - w[a \max \left\{ d(y_{2n+1}, y_{2n}, u), d(y_{2n+1}, y_{2n}, u), d(y_{2n+1}, y_{2n}, u) \right\} \\ &+ b \max \left\{ d(y_{2n+2}, y_{2n+1}, u), d(y_{2n+1}, y_{2n}, u), d(y_{2n}, y_{2n+2}, u) \right\} + c[d(y_{2n+1}, y_{2n+1}, u) + d(y_{2n}, y_{2n+2}, u)] \\ &\leq a \max \left\{ d_{2n}(u), d_{2n}(u) \right\} + b \max d_{2n+1}(u), d_{2n}(u) + cd(y_{2n}, y_{2n+2}, u) - w[a \max \left\{ d_{2n}(u), d_{2n}(u) \right\} \\ &+ b \max \left\{ d_{2n+1}(u), d_{2n}(u) \right\} + b \max \left\{ d_{2n+1}(u), d_{2n}(u) + c[d_{2n}(u) + d_{2n+1}(u)] \right] \\ &- w[a \max \left\{ d_{2n}(u), d_{2n}(u) \right\} + b \max \left\{ d_{2n+1}(u), d_{2n}(u) \right\} + c[d_{2n}(u) + d_{2n+1}(u)]] \end{split}$$

Suppose that $d_{2n}(u) < d_{2n+1}(u)$, then

$$\begin{aligned} d_{2n+1}(u) &< [ad_{2n+1}(u) + bd_{2n+1}(u) + 2cd_{2n+1}(u)] - w[ad_{2n+1}(u) + bd_{2n+1}(u) + 2cd_{2n+1}(u)] \\ &= (a+b+2c)d_{2n+1}(u) - w[(a+b+2c)d_{2n+1}(u)] \\ &= d_{2n+1}(u) - wd_{2n+1}(u) \end{aligned}$$

a contradiction. Hence

$$d_{2n+1}(u) \le d_{2n}(u)$$

 $d_{2n+1}(u) \le d_{2n}(u) - w d_{2n}(u)$
 $\le d_{2n}(u)$

Similarly, we have $d_{2n}(u) \leq d_{2n-1}(u)$. That is, for all $n \in N$,

$$d_{n+1}(u) \le d_n(u) \tag{4}$$

Let n, m be in N_0 if $n \ge m$, then

$$d_n(y_m) \le d_m(y_m) = 0 \tag{5}$$

If n < m then

$$d_n(y_m) = d_n(y_n, y_{n+1}, y_m)$$

$$\leq d(y_n, y_{n+1}, y_{m-1}) + d(y_n, y_{m-1}, y_m) + d(y_{m-1}, y_{n+1}, y_m)$$

$$= d_n(y_{m-1}) + d_{m-1}(y_n) + d_{m-1}(y_{n+1})$$

$$= d_n(y_{m-1})$$

$$\leq d_n(y_{m-2}) \leq d_n(y_{m-3}) \dots < d_n(y_{n+1}) = 0$$

Thus for any $n, m \in N_0$,

$$d_n(y_m) = 0 \tag{6}$$

For all $i, j, k \in N_0$, we may without loss of generality. Assume that i < j it follows from (6)

$$\begin{aligned} d(y_i, y_j, y_k) &\leq d_i(y_i) + d_j(y_k) + d(y_{i+1}, y_j, y_k) \\ &= d(y_{i+1}, y_j, y_k) \\ &\leq d(y_{i+2}, y_j, y_k) \end{aligned}$$

And inductively, we have

$$d(y_i, y_j, y_k) \le d(y_{j-1}, y_j, y_k) = d_{j-1}(y_k) = 0$$

Therefore

$$d(y_i, y_j, y_k) = 0 \tag{7}$$

Applying (1) Again and using (4), (5), (6), we have

$$\begin{aligned} d_{2n}(u) &= d(y_{2n}, y_{2n+1}, u) \\ &= d(fx_{2n}, gx_{2n+1}, u) \\ &\leq a \max \left\{ d(hx_{2n}, tx_{2n+1}, u), d(tx_{2n+1}, gx_{2n+1}, u) \right\} + b \max \left\{ d(hx_{2n}, fx_{2n}, u), d(tx_{2n+1}, gx_{2n+1}, u), d(tx_{2n+1}, fx_{2n}, u) \right\} \\ &+ c[d(hx_{2n}, gx_{2n+1}, u) + d(tx_{2n+1}, fx_{2n}, u)] - w[a \max \left\{ d(hx_{2n}, tx_{2n+1}, u), d(tx_{2n+1}, gx_{2n+1}, u) \right\} \\ &+ b \max \left\{ d(hx_{2n}, fx_{2n}, u), d(tx_{2n+1}, gx_{2n+1}, u), d(tx_{2n+1}, fx_{2n}, u) \right\} + c[d(hx_{2n}, gx_{2n+1}, u) + d(tx_{2n+1}, fx_{2n}, u)]] \\ &\leq a \max \left\{ d(y_{2n-1}, y_{2n}, u), d(y_{2n}, y_{2n+1}, u) \right\} + b \max \left\{ d(y_{2n-1}, y_{2n}, u), d(y_{2n}, y_{2n+1}, u) + d(tx_{2n+1}, fx_{2n}, u) \right\} \\ &+ c[d(y_{2n-1}, y_{2n}, u), d(y_{2n}, y_{2n+1}, u)] + b \max \left\{ d(y_{2n-1}, y_{2n}, u), d(y_{2n}, y_{2n+1}, u) \right\} \\ &+ b \max \left\{ d(y_{2n-1}, y_{2n}, u), d(y_{2n}, y_{2n+1}, u) \right\} + c[d(y_{2n-1}, y_{2n+1}, u) + d(y_{2n}, y_{2n}, u)] \right] \\ &\leq a \max \left\{ d_{2n-1}(u), d_{2n}(u) \right\} + b d_{2n}(u) + cd(y_{2n-1}, y_{2n+1}, u) \\ &- w[a \max \left\{ d_{2n-1}(u), d_{2n}(u) \right\} + b d_{2n}(u) + cd(y_{2n-1}, y_{2n+1}, u)] \\ &\leq a \max \left\{ d_{2n-1}(u), d_{2n}(u) \right\} + b d_{2n}(u) + c[d_{2n-1}(u) + d_{2n+1}(y_{2n-1})] \\ &- w[a \max \left\{ d_{2n-1}(u), d_{2n}(u) \right\} + b d_{2n}(u) + c[d_{2n-1}(u) + d_{2n+1}(y_{2n-1})] \\ &\leq a \max \left\{ d_{2n-1}(u), d_{2n}(u) \right\} + b d_{2n}(u) + c[d_{2n-1}(u) + d_{2n-1}(u)] \\ &- w[a \max \left\{ d_{2n-1}(u), d_{2n-1}(u) \right\} + b d_{2n-1}(u) + c[d_{2n-1}(u) + d_{2n-1}(u)] \\ &- w[a \max \left\{ d_{2n-1}(u), d_{2n-1}(u) \right\} + b d_{2n-1}(u) + c[d_{2n-1}(u) + d_{2n-1}(u)] \\ &= d_{2n-1}(u) - w(a + b + 2c) d_{2n-1}(u) \\ &= d_{2n-1}(u) - w d_{2n-1}(u) \end{aligned}$$

Similarly we have

```
d_{2n+1}(u) \le d_{2n}(u) - wd_{2n}(u)
```

It follows that

$$\sum_{i=0}^{n} w(d_{i}(u)) \leq \sum_{i=0}^{n} [d_{i}(u) - d_{i+j}(u)]$$
$$\sum_{i=0}^{n} w(d_{i}(u)) \leq d_{0}(u) - d_{n+1}(u)$$
$$\vdots \qquad \vdots$$
$$\leq d_{0}(u)$$

So the series of non negative, terms $\sum_{n=0}^{\infty} w(d_n(u))$ is convergent. This means that

$$\lim_{n \to \infty} w(d_n(u)) = 0. \tag{8}$$

Using (4), we have $d_n(u)_{n \in N_0}$ converges to some $r \ge 0$. By continuity of w and (8), we have

$$w(r) = \lim_{n \to \infty} w(d_n(u)) = 0$$

Which implies that r = 0. Hence

$$\lim_{n \to \infty} d_n(u) = 0. \tag{9}$$

In order to show that y_n is a Cauchy sequence it is sufficient to show that $y_{2n_n \in N_0}$ is a Cauchy sequence. Suppose not; then there exist $\varepsilon > 0$ and $u \in X$ such that for each positive integer k, there are positive integers 2m(k) and 2n(k) with 2m(k) > 2n(k) > 2k and $d(y_{2m(k)}, y_{2n(k)}, u) \ge \varepsilon$. For each positive integer k, let 2m(k) be the least even integer exceeding 2n(k) satisfying the above inequality, so that

$$d(y_{2m(k)-2}, y_{2n(k)}, u) \le \varepsilon \ d(y_{2m(k)}, y_{2n(k)}, u) > \varepsilon.$$
(10)

For each positive integer k, from (7) and (10), we have

$$\begin{aligned} \varepsilon &< d(y_{2m(k)}, y_{2n(k)}, u) \\ &\leq d(y_{2m(k)-2}, y_{2n(k)}, u) + d(y_{2m(k)}, y_{2m(k)-2}, u) + d(y_{2m(k)}, y_{2n(k)}, y_{2m(k)-2}) \\ &\leq \varepsilon + d(y_{2m(k)-2}, y_{2m(k)}, y_{2m(k)-1}) + d(y_{2m(k)-2}, y_{2m(k)-1}, u) + d(y_{2m(k)-1}, y_{2m(k)}, u) \\ &= \varepsilon + d(y_{2m(k)-2}(u), y_{2m(k)-1}(u)) \end{aligned}$$

Which implies

$$\lim_{k \to \infty} d(y_{2m(k)}, y_{2n(k)}, u) = \varepsilon \tag{11}$$

It follows from (10)

 $0 < d(y_{2n(k)}, y_{2m(k)}, u) - d(y_{2n(k)}, y_{2m(k)-2}, u))$ $\leq d(y_{2m(k)-2}, y_{2m(k)}, u)$ $\leq d_{2m(k)-2}(u) + d_{2m(k)-1}(u)$ Then by (9) and (11), we have

$$\lim_{n \to \infty} d(y_{2n(k)}, y_{2m(k)-2}, u) = \varepsilon$$
(12)

Using triangular inequality, we have

$$\begin{aligned} |d(y_{2n(k)}, y_{2m(k)-1}, u) - d(y_{2n(k)}, y_{2m(k)}, u)| &\leq d_{2m(k)-1}(u) + d_{2m(k)-1}(y_{2n(k)}) \\ |d(y_{2n(k)+1}, y_{2m(k)}, u) - d(y_{2n(k)}, y_{2m(k)}, u)| &\leq d_{2n(k)}(u) + d_{2n(k)}(y_{2m(k)}) \\ d(y_{2n(k)+1}, y_{2m(k)-1}, u) - d(y_{2n(k)}, y_{2m(k)-1}, u)| &\leq d_{2n(k)}(u) + d_{2n(k)}(y_{2m(k)-1}) \end{aligned}$$

It is easy to see that

$$\lim_{k \to \infty} d(y_{2n(k)}, y_{2m(k)-1}, u) = \lim_{k \to \infty} d(y_{2n(k)+1}, y_{2m(k)}, u)$$
$$\lim_{k \to \infty} d(y_{2n(k)+1}, y_{2m(k)-1}, u) = \varepsilon$$
(13)

It follows from (5)

 $d(y_{2m(k)}, y_{2n(k)+1}, u) = d(fx_{2m(k)}, gx_{2n(k)+1}, u)$

$$\leq a \max \left\{ d(hx_{2m(k)}, tx_{2n(k)+1}, u), d(tx_{2n(k)+1}, gx_{2n(k)+1}, u) \right\}$$

$$+ b \max \left\{ d(hx_{2m(k)}, fx_{2m(k)}, u), d(tx_{2n(k)+1}, gx_{2n(k)+1}, u), d(tx_{2n(k)+1}, fx_{2m(k)}, u) \right\}$$

$$+ c[d(hx_{2m(k)}, gx_{2n(k)+1}, u) + d(tx_{2n(k)+1}, fx_{2m(k)}, u)]$$

$$- w[a \max \left\{ d(hx_{2m(k)}, tx_{2n(k)+1}, u), d(tx_{2n(k)+1}, gx_{2n(k)+1}, u) \right\}$$

$$+ b \max \left\{ d(hx_{2m(k)}, fx_{2m(k)}, u), d(tx_{2n(k)+1}, gx_{2n(k)+1}, u), d(tx_{2n(k)+1}, fx_{2m(k)}, u)) \right\}$$

$$+ c[d(hx_{2m(k)}, fx_{2m(k)}, u), d(tx_{2n(k)+1}, gx_{2n(k)+1}, u), d(tx_{2n(k)+1}, fx_{2m(k)}, u))]$$

$$\leq a \max \left\{ d(y_{2m(k)}, fx_{2m(k)}, u), d(y_{2n(k)+1}, gx_{2n(k)+1}, u), d(y_{2n(k)+1}, fx_{2m(k)}, u)) \right\}$$

$$+ c[d(hx_{2m(k)}, gx_{2n(k)+1}, u) + d(tx_{2n(k)+1}, fx_{2m(k)}, u)]]$$

$$\leq a \max \left\{ d(y_{2m(k)-1}, y_{2n(k)}, u), d(y_{2n(k)}, y_{2n(k)+1}, u), d(y_{2n(k)}, y_{2m(k)}, u), d(y_{2n(k)}, y_{2n(k)+1}, u)) \right\}$$

$$+ b \max \left\{ d(y_{2m(k)-1}, y_{2n(k)}, u), d(y_{2n(k)}, y_{2n(k)+1}, u), d(y_{2n(k)}, y_{2m(k)}, u), d(y_{2n(k)}, y_{2n(k)+1}, u)) \right\}$$

$$+ b \max \left\{ d(y_{2m(k)-1}, y_{2n(k)}, u), d(y_{2n(k)}, y_{2n(k)+1}, u), d(y_{2n(k)}, y_{2m(k)}, u)) \right\}$$

$$+ c[d(y_{2m(k)-1}, y_{2n(k)+1}, u) + d(y_{2n(k)}, y_{2m(k)}, u)]]$$

$$\leq a \max \left\{ d(y_{2m(k)-1}, y_{2n(k)}, u), d_{2n(k)}(u) \right\} + b \max \left\{ d_{2m(k)-1}(u), d_{2n(k)}(u), d(y_{2n(k)}, y_{2m(k)}, u) \right\}$$

$$+ c[d(y_{2m(k)-1}, y_{2n(k)+1}, u) + d(y_{2n(k)}, y_{2m(k)}, u)]]$$

$$\leq a \max \left\{ d(y_{2m(k)-1}, y_{2n(k)+1}, u) + d(y_{2n(k)}, y_{2m(k)}, u) \right\}$$

$$+ c[d(y_{2m(k)-1}, y_{2n(k)+1}, u) + d(y_{2n(k)}, y_{2m(k)}, u)]$$

$$= m \max \left\{ d(y_{2m(k)-1}, y_{2n(k)+1}, u) + d(y_{2n(k)}, y_{2m(k)}, u) \right\}$$

$$+ c[d(y_{2m(k)-1}, y_{2n(k)+1}, u) + d(y_{2n(k)}, y_{2m(k)}, u)]$$

$$+ b \max \left\{ d_{2m(k)-1}(u), d_{2n(k)}(u), d(y_{2n(k)}, y_{2m(k)}, u) \right\}$$

$$+ c[d(y_{2m(k)-1}(u), d_{2n(k)}(u), d(y_{2n(k)}, y_{2m(k)}, u)]$$

$$+ b \max \left\{ d_{2m(k)-1}(u), d_{2n(k)}(u), d(y_{2n(k)}, y_{2m(k)}, u) \right\}$$

$$+ c[d(y_{2m(k)-1}(u), d_{2n(k)}(u), d(y_{2n(k)}, y_{2m(k)}, u)]$$

$$+ c[d(y_{2m(k)-1}(u), d_{2n(k)}(u), d(y_{2n(k)}, y_{2m(k)}, u)]$$

$$+ c[d(y_{2m(k)-$$

Letting $k \to \infty$ and using (13), (11), (9), we have

 $\varepsilon \leq [a\varepsilon + b\varepsilon + 2\varepsilon c] - w[a\varepsilon + b\varepsilon + 2\varepsilon c]$ $\leq [a + b + 2c]\varepsilon - w[a + b + 2c]\varepsilon$ $= \varepsilon - w\varepsilon$

A contradiction. Therefore $y_{2n_n \in N_0}$ is a Cauchy sequence in X. It follows from completeness of (X, d) that $y_{2n_n \in N_0}$ converge to a point $z \in X$. Now suppose that t is continuous. Since f and t are compatible and $gx_{2n+1_n \in N_0}$ and $tx_{2n+1_n \in N_0}$ converge

to the point z, by Lemma 2.8, we get $gtx_{2n+1}, tgx_{2n+1} \to tz$ as $h \to \infty$. Applying in equality (1), we have

 $\begin{aligned} d(fx_{2n}, gtx_{2n+1}, u) &\leq a \max \left\{ d(hx_{2n}, ttx_{2n+1}, u), d(ttx_{2n+1}, gtx_{2n+1}, u) \right\} \\ &+ b \max \left\{ d(hx_{2n}, fx_{2n}, u), d(ttx_{2n+1}, gtx_{2n+1}, u), d(ttx_{2n+1}, fx_{2n}, u) \right\} \\ &+ c[d(hx_{2n}, gtx_{2n+1}, u) + d(ttx_{2n+1}, fx_{2n}, u)] - w[a \max \left\{ d(hx_{2n}, ttx_{2n+1}, u), d(ttx_{2n+1}, gtx_{2n+1}, u) \right\} \\ &+ b \max \left\{ d(hx_{2n}, fx_{2n}, u), d(ttx_{2n+1}, gtx_{2n+1}, u), d(ttx_{2n+1}, fx_{2n}, u) \right\} \\ &+ c[d(hx_{2n}, gtx_{2n+1}, u) + d(ttx_{2n+1}, fx_{2n}, u)] \end{aligned}$

Letting $n \to \infty$ we get

$$\begin{split} d(z,tz,u) &\leq a \max \left\{ d(z,tz,u), d(tz,tz,u) \right\} + b \max \left\{ d(z,z,u), d(tz,tz,u), d(ttz,z,u) \right\} \\ &+ c[d(z,tz,u) + d(ttz,z,u)] - w[a \max \left\{ d(z,tz,u), d(tz,tz,u) \right\} \\ &+ b \max \left\{ d(z,z,u), d(tz,tz,u), d(ttz,z,u) \right\} + c[d(z,tz,u) + d(ttz,z,u)]] \\ &\leq ad(z,tz,u) + bd(tz,z,u) + c[d(z,tz,u) + d(tz,z,u)] - w[ad(z,tz,u) + bd(tz,z,u) + c[d(z,tz,u) + d(tz,z,u)]] \\ &\leq (a+b+2c)d(z,tz,u) - w[(a+b+2c)d(z,tz,u)] \\ &\leq d(z,tz,u) \end{split}$$

Implies $d(z, tz, u) = 0 \Rightarrow z = tz$. Again from (1), we have

$$\begin{aligned} d(fx_{2n}, gz, u) &\leq a \max \left\{ d(hx_{2n}, tz, u), d(tz, gz, u) \right\} + b \max \left\{ d(hx_{2n}, fx_{2n}, u), d(tz, gz, u), d(tz, fx_{2n}, u) \right\} \\ &+ c[d(hx_{2n}, gz, u) + d(tz, fx_{2n}, u)] - w[a \max \left\{ d(hx_{2n}, tz, u), d(tz, gz, u) \right\} \\ &+ b \max \left\{ d(hx_{2n}, fx_{2n}, u), d(tz, gz, u), d(tz, fx_{2n}, u) \right\} + c[d(hx_{2n}, gz, u) + d(tz, fx_{2n}, u)]] \end{aligned}$$

Letting $n \to \infty$ we get

$$\begin{split} d(z,gz,u) &\leq a \max \left\{ d(z,z,u), d(z,gz,u) \right\} + b \max \left\{ d(z,z,u), d(z,gz,u), d(z,z,u) \right\} \\ &+ c[d(z,gz,u) + d(z,z,u)] - w[a \max \left\{ d(z,z,u), d(z,gz,u) \right\} \\ &+ b \max \left\{ d(z,z,u), d(z,gz,u), d(z,z,u) \right\} + c[d(z,gz,u) + d(z,z,u)]] \\ &\leq (a+b+c)d(z,gz,u) - w[(a+b+c)d(z,gz,u)] \\ &< d(z,gz,u) \end{split}$$

Hence z = gz i.e. z is a fixed point of g. Similarly, we can show that z is a fixed point of f and h i.e. z is a common fixed point of f, g, h and t. Similarly, we can complete the proof when f or g or h is continuous.

Theorem 3.2. Let (X, d) be a complete 2-metric space with d continuous on X and let h and t be two mapping of X into itself, there exists $w \in N_0$, $f: X \to t(X) \to h(X)$ satisfying:

- (a) The pair (f, h) and (f, t) are compatible.
- (b) One of f, h and t is continuous

(c)

$$d(fx, fy, u) \leq a \max \{ d(hx, ty, u), d(ty, fy, u) \} + b \max \{ d(hx, fx, u), d(ty, fy, u), d(ty, fx, u) \}$$
$$+ c[d(hx, fy, u) + d(ty, fx, u)] - w[a \max \{ d(hx, ty, u), d(ty, fy, u) \}$$
$$+ b \max \{ d(hx, fx, u), d(ty, fy, u), d(ty, fx, u) \} + c[d(hx, fy, u) + d(ty, fx, u)]]$$
(14)

Where $a \ge 0$, b > 0, c > 0 such that a + b + 2c = 1 for all $x, y, u \in X$ then f, h and t have a common fixed point.

Proof. The proof of this theorem is identical to the proof of Theorem 3.1.

Remark 3.3. Theorem 3.1 and 3.2 are still true even though the condition of the compatibility is replaced by the compatibility of type(A).

References

- MS.El Naschie, Wild topology hyperbolic geometry and fusion algebra of high energy particle physics, Chaos, Solitons & Fractals, 13(2002), 1935-1945.
- [2] S.Gähler, 2-metrische Rume und ihre topologische structure, Math Nacher, 26(1963), 115-148.
- [3] S.Gähler, Uber die uniformisierbakait 2-metrische Raume, Math Nacher, 28(1965), 235-244.
- [4] S.Gähler, Zur geometric 2-metrische Raume, Rev Raum Math Pures Et Appl., 11(1966), 655-664.
- [5] K.Iseki, Fixed point theorems in 2-metric spaces, Math Sem Notes, 3(1975), 133-136.
- [6] G.Jungck, Compatible mappings and common fixed points, Int J Math Sci., 9(1986), 771-779.
- [7] Z.Liu and F.Zhang, Characterizations of common fixed points in 2-metric spaces, Rostock. Math. Kolloq., 55(2001), 49-64.
- [8] P.P.Murthy, S.S.Chang, Y.J.Cho and B.K.Sharma, Compatible mappings of type (A) and common fixed point theorem, Kyungpook Math J, 32(1992), 203-216.
- [9] S.L.Singh, C.Adiga and Giniswami, A fixed point theorem in 2-metric space and an application, Journal of Natural & Physical Science, 15(1-2)(2001), 55-64.