International Journal of Mathematics And its Applications
Volume 4, Issue 1-C (2016), 75-84.
ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Some Common Fixed Point Theorems For Nonexpansive
Type Mappings In 2-Metric Spaces

Research Article

Ritu Sahu'*, P.L.Sanodia? and Arvind Gupta3

1 Department of Mathematics, People’s College of Research & Technology, Bhopal, India.
2 Department of Mathematics, Institute for Excellence in Higher Education, Bhopal, India.

3 Department of Mathematics, Government Motilal Vigyan Mahavidhyalaya, Bhopal, India.

Abstract: The aim of this paper is to prove some common fixed point theorems for weakly compatible mappings under nonexpansive
type conditions in the setting of 2-metric spaces. Our result extend and generalizes corresponding results of Singh, Adiga
and Giniswami [9] and Liu and Zhang [7].

MSC: 47H10, 54H25.

Keywords: 2-metric spaces, nonexpansive mapping,compatible mappings compatible mapping of type (A).
© JS Publication.

1. Introduction

The concept of 2-metric space is a natural generalization of the classical one of metric space. It has been investigated,
initially, by Géhler and has been developed extensively by Gahler and many other mathematicians [2-4]. The topology
induced by 2-metric space is called 2-metric topology, which is generated by the set of all open spheres with two centers.
Many authors used the topology in many applications; for example, El Naschie used this sort of the topology in physical
applications [1]. Iseki [5] studied the fixed point theorems in 2-metric spaces. A number of fixed point theorems has been
proved for 2-metric spaces.

Liu and Zhang [7] proved a few necessary and sufficient conditions for the existence of a common fixed point of a pair of
mappings in 2-metric spaces. These results have generalized and improved by a number of mathematicians. Singh, Adiga
and Giniswami [9] proved a fixed point theorem in 2-metric spaces for nonexpansive type mappings.

In this paper, we prove some common fixed point theorems for weakly compatible mappings under nonexpansive type
conditions in the setting of 2-metric spaces. Our result extend and generalizes corresponding results of Singh, Adiga and

Giniswami [9] and Liu and Zhang [7].

2. Preliminaries

Now we shall recall some basic definitions and lemmas which are frequently used to prove our main result.

* E-mail: sahuritu00@gmail.com
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Definition 2.1. A 2-metric space on a set X with at least three points in a non-negative real valued mappingd : X x X x X —

R satisfying the following properties:

(a). To each pair of points a,b with a # b in X there is a point ¢ € X such that d(a,b,c) # 0.
(b). d(a,b,c) =0 if at least two of the points are equal.

(¢). d(a,b,c) = d(b,c,a) =d(a,c,b,)

(d). d(a,b,c) <d(a,b,u) + d(a,u,c) + d(u,b,c) for all a,b,c,u € X.

The pair (X,d) is called a 2-metric space

Definition 2.2. The sequence xr is convergent to x € X and x is the limit of this sequence of lim d(zn,z,u) =0 for each
n—o0

a € X. A sequence xr is called Cauchy sequence if lim d(zn,Zm,u) =0 for allu € X
n,m— oo

Definition 2.3. A 2-metric space (X, d) is said to be complete if every Cauchy sequence in X is convergent.

Note that in a 2-metric space (X, d) is convergent. sequence need not be Cauchy sequence but every convergent sequence

is a Cauchy sequence when the 2-metric d is continuous on X.

Definition 2.4. Let f and g be two self maps of a 2-metric space (X, d).Then f and g are said to be compatible if

lim d(fgxn,gfen,u) =0 for each x € X | whenever x, is a sequence such that lim fz, = lim gz, =t € X.
n— oo n— oo n—oo

Definition 2.5. Let f and g are said to be compatible of type (A) if lim d(fgzn,ggzn,u) = lim d(gfzn, ffzn,u) =0 for
n— oo n— oo

all w € X whenever x,, C X such that lim fx, = lim gz, =t for somet € X.
n—roo n—r oo

Definition 2.6. A mapping f from a 2-metric space (X, d) into itself is said to be continuous at x € X if for every sequence

Zn such that lim d(xn,z,u) =0 for allu € X, lim d(fxn, fx,u) =0, f is called continuous on X if it is so at all points
n—o0 n—r o0

of X.

Lemma 2.7. Let f and g are compatible mappings from a 2-metric space (X, d) into itself, if ft = gt for some t € X, then

fgt =ggt =gft = [fft.

Lemma 2.8. Let f and g are compatible mappings. if f is continuous at t € X and if lim fz, = lim gz, = t, then
n— oo n— oo

lim gfz, = ft

n— oo

Singh, Adiga and Giniswami [9] proved the following theorem in 2-metric spaces for nonexpansive type mappings.

Theorem 2.9. Let (X,d) be a 2-metric space and T : X — X be a self mapping satisfying the following nonexpansive type

condition:

(T2, Ty, u) < amax {d(x, yw), d(z, Te, u), dy, Ty, u), > [d(z, Ty, u) + d(y,Tx,un}

N | =

+ bmazx {d(z, Tz, u),d(y, Ty,u)} + cld(z, Ty, u) + d(y, Tz, u)]

for all x,y,u € X, where a,b,c are real numbers such that a +b+2c=1and a >0,b >0, ¢ > 0. Then T has a unique

fized point and T is continuous at this point.

Liu and Zhang [7] proved the following theorems:
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Theorem 2.10. Let (X, d) be a complete 2-metric space with d continuous on X and let h and t be two mappings of X into

itself. Then the following conditions are equivalent:
(1). h and t have a common fized point;
(2). there exists r € (0,1), f: X = #(X), g: X — h(X) such that

(a1) the pairs f,h and g,t are compatible,

(az) one of f,g,h and t is continuous,
(a3) d(fz,gy,u) < rmax {d(hx,ty,u),d(hz, fz,u),d(ty, gy,u), 5[d(hz, gy,u) + d(ty, fz,u)]} for all z,y,u € X,
(3). there existw € W, f: X = t(X), g: X — h(X) satisfying (a1), (az) and

(as)

d(fz,gy,u) < max {d(hw, ty,w), d(he, fz,u), d(ty, gy, ), % [d(hx, gy, u) + d(ty, fz, u)]}

0 e {ah, ), e ). ey, ), g0 + dey, 0]}

for all z,y,u € X, where W = {w cw: RY — RY s continuous and satisfy 0 < w(r) <r for r > 0}

Theorem 2.11. Let (X, d) be a complete 2-metric space with d continuous on X and let h and t be two mappings of X into

itself. Then condition (1) of Theorem 2.9 is equivalent to each of the following condition:
(4) There exists r € (0,1), f: X — t(X) Nh(X) such that

(as) the pairs f,h and f,t are compatible,

(as) one of f,h and t is continuous,
(az) d(fz, fy,u) < rmax {d(hz,ty,u), d(hz, fz,u), d(ty, fy,u), 5 [d(he, fy,u) + d(ty, fz,u)]} for al z,y,u € X,
(5) there existw € W, f: X — t(X) Nh(X) satisfying (as ), (as) and

(as)

d(fz, fy,u) < max {d(im bty ), d(h, fo,u), dty, fy, ),

D] —

(d(ha, fy, ) +d(ty7f:r7u)}}

~ whmax {d(ha, ty, ), d(ha, £, d(ey, f.0), 3k Fy ) + dley, f,00] |
for all z,y,u € X, where W = {w cw: RY — RY is continuous and satisfy 0 < w(r) <r for r > 0}.

3. Main Result

Throughout this section, N and Ny denote the set of positive and non-negative integers, respectively. Let R = [0, c0).

Theorem 3.1. Let (X, d) be a complete 2-metric space with d continuous on X and let f and g be two mapping of X into
itself, there exists w € W, f: X — t(X) and g : X — h(X) satisfying:

(a) The pair (f,h) and (g,t) are compatible.

(b) One of f,g,h and t is continuous
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(c)

d(fx, gy,u) < amax {d(hx,ty,u), d(ty, gy,u)} + bmax {d(hz, fz,u), d(ty, gy, u), d(ty, fz,u)}
+ cld(hz, gy, u) + d(ty, fz,u)] — wlamax {d(hz, ty, u),d(ty, gy, v)}

+ bmax {d(hx, fz,u),d(ty, gy, u), d(ty, fx,u)} + c[d(hz, gy, u) + d(ty, fz,u)]] (1)

where a >0, b >0, ¢ > 0 such that a + b+ 2c =1 for all z,y,u € X ,then f,g,h and t have a common fized point.

Proof. Let zo be an arbitrary point in X. Since f(X) C #(X) andg(X) C h(X), then there exist sequence Z, ey and

Ynnen i X satisfying,

Yon = tTont+1 = fxan

Yont1 = RTani2 = gTany1 for n € No.

Define d,(a) = d(yn,yn+1,a) for a € X and n € No. We claim that for any 4,5,k € No, d(y:,yj,yx) = 0. Suppose that

don(yY2n+1) > 0 then using (1), we have

dan(y2n+2) = d(Yan, Y2n+1, Yon+2)
=d(fx2n+2, 9Tan+1,Y2n)
< amax {d(hzan+2, tTan+1, Y2n), d(tTan+1, gTan+1, Y2n)
+ bmax {d(hzant2, fTant2,Y2n), d(tTant1, T2nt2, Y2n ), A(tT2nt1, fTant2, Yon)}
+ cld(hz2nt2, gZan+1, Yan) + d(tT2n1, fTont2, y2n)] — wlamax {d(hzani2, trant1, Y2n), d(tT2n+1, gT2n 41, Y2n)
+ bmax {d(hx2nt2, fT2n+2,Y2n), dtTant1, 9T2n+1,Yon ), d(tTan+1, fTant2, Y2n)}
+ cld(hzant2, 9T2n+1,Y2n) + d(tT2nt1, fT2n12, Y20 )]]
< amax {d(yY2n+1,Y2n, Y2n)s d(Y2n, Y2n+1, Y2n) }
+ bmax {d(yen+1, Y2n+2, Y2n), A(Y2n, Yon+1,Y2n), d(Y2n, Y2n+2, Yon) }
+ cld(yani1, Yani1, Yan) + d(Y2n, Yont2, y2n )] — wlamax {d(Yans1, Y2n, Y2n ) d(Yan, Yani1, Yon )}
+ bmax {d(y2nt1, Y2nt2, Y2n ), A(Y2n, Yont1, Y2n), A(Y2n, Y2nt2, Y2n )} + cld(Yont1, Y2nt1, Y2n) + d(Y2n, Yoni2, Y2n )]
< bd(Y2n+1, Yon+2, Yon) — Wbd(Y2n+1, Y2n+2, Yon)
< bdan (Y2nt2) — whdan (Y2n+2)
< bdzn (y2n-+2)

< d2n(y2n+2)
a contradiction. Hence dan (y2n+2) = 0. Similarly, we have dan+1(y2n+3) = 0. Consequently, for all n € N,

dn(yn+2) =0 (2)

Using (2) we have

d(ym Yn+2, u) < d(ym Yn+1, yn+2) + d(ym Yn+1, U) + d(yn+l7 Yn+2, u)
S dn(yn+2) + dn(u) + dn+1(u)

= dn(u) + dpy1(u) (3)
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Now applying (1) again and using (3), we have

dant1(u) = d(Y2n+1, Y2n+2, u)
= d(fz2n+2, gT2nt1,u)
< amax {d(hzon+2, tTant1,u), d(gTant1, tTant1, u)}
+ bmax {d(fzant2, hont2,u), d(gTont1, tTont1,u), d(tT2nt1, fTont2,u)}
+ cld(hwant2, gTant1, u) + d(txan 1, frante, u)] — wlamax {d(hezni2, tTont1, w), d(gTant1, tTont1,u)}
+ bmax {d(fzan+t2, hxont2, u), d(gT2n+1, to2n41, u), d(tT2n41, fT2nt2,u)}
+ cld(hzant2, gTant1,u) + d(tr2nt1, frant2, u)]]
< amax {d(y2n+1, Y2n, u), d(Y2n+1, Y2n, w) } + bmax {d(y2nt2, Y2n+1, 1), d(Y2n+1, Y2n, u), d(Y2n, Y2n, u) }
+ cld(yan+1, y2nt1,u) + d(yzn, yon+2, )] — wlamax {d(yan+1, Y2n, u), d(Y2n+1, y2n, u) }
+ bmax {d(y2nt2, Y2n+1, 1), d(Y2n+1, Y2n, W), d(Y2n, Yan, )} + c[d(yant1, Y2nt1, w) + d(Y2n, Y2nt2, u)]
< amax {dan(u),don(u)} + bmax dont1(u), don(u) + cd(y2n, Y2nt2, u) — wlamax {dan(u), d2n(u)}
+ bmax {don+1(u), don(u)} + cd(Y2n, Y2n+1,u)
< amax {dan (), d2n(u)} + bmax dan1(u), d2n(u) + cldan (v) + d2ni1 (u)]

— wlamax {dan (u), d2n (u)} + bmax {dan+1(u), don(u)} + c[don (u) + don+1(u)]]
Suppose that dan(u) < don+1(u), then
don+1(u) < [adont1(uw) + bdan+1(u) + 2¢dans1(v)] — wladan+1(u) + bdans1(v) + 2¢dant1(u)]
= (a+ b+ 2¢)dan+1(u) — w[(a+ b+ 2¢)dant1(u)]
= dan+1(u) — wdant1(u)

a contradiction. Hence

dan+1(u) < d2n(u)
dant1(u) < dan(u) — wdzn(u)

< dan(u)
Similarly, we have dan(u) < don—1(u). That is, for all n € N,
dni1(w) < dn(u) (4)
Letn, m be in Ny if n > m, then

dn(Ym) < dm(Ym) =0 (5)

If n < m then

dn(Ym) = dn(Yn, Yn+1, Ym)
< d(Yns Ynt1, Ym—1) + d(Yn, Ym—1,Ym) + d(Ym-1, Ynt1, Ym)
= dn(Yym—-1) + dm-1(yn) + dm—1(yn+1)
= dn(Ym-1)

< dn(ym—2) < dn(ym—3) ... < dn(ynt1) =0
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Thus for any n,m € No,

For all i, j,k € No, we may without loss of generality. Assume that ¢ < j it follows from (6)

d(Yi, yj, i) < di(yi) + dj(yr) + d(Yit1, Y5, )
= d(yi+1a Yjs yk)

S d(yi+27 Yss yk)

And inductively, we have

Ay, y5,yk) < dyi—1, 95, y6) = dj—1(yx) =0

Therefore

d(yi,yj,yx) = 0 (7)

Applying (1) Again and using (4), (5), (6), we have

dan(u) = d(Y2n, Y2n+1,u)
= d(fzan, 9Tant1,u)
< amax {d(hzan, tTant1,u), d(tT2n+1, gTon+1, )} + bmax {d(hton, fTon, u), d[tT2n+1, 9T2n+1, u), d(tT2n+1, fTon,u)}
+ cld(hzan, grant1, u) + d(txont1, fTon, v)] — wla max {d(hxon, txont1, ), d(tT2n+1, GTant1,u)}
+ bmax {d(hxan, fron, ), d(tToent1, 9Tont1, w), d(tZ2nt1, fTon,u)} + c[d(hT2n, gTon+1,u) + d{tT2nt1, fT2n,u)]]
< amax {d(yzn—1,Y2n, u), d(Y2n, Y2nt1, ) } + bmax {d(y2n—1,y2n, u), d(Y2n, Yan+1, 1), d(y2n, Y2n, u)}
+ cld(Y2n—1, Y2n+1, ¥) + d(Y2n, Y2n, u)] — wja max {d(y2n—1, Y2n, u), d(Y2n, Y2n+1, )}
+ bmax {d(yzn—1,Y2n, ), d(Y2n, Y2nt1, ), d(Y2n, Y2n, )} + cld(Yan—1, Y2n+1, u) + d(y2n, Y2n, w)]]
< amax {dan—1(u), don(u)} + bdan (u) + cd(Y2n—1, Y2n+1, w)
— wlamax {dan—1(u), d2n (w)} + bdon(u) + cd(Y2n—1, Y2n+1, v)]
< amax {dan—1(u), don (1)} + bdan (u) + c[d2n—1(u) + don(u) + d2n+1(y20—-1)]
— wlamax {d2n—1(u), d2n(u)} + bdan(u) + c[d2n—1(u) + d2n(u) + d2nt1(y2n—1)]
< amax {don—-1(u),d2n—1(u)} + bdan—1(u) + c[don—1(u) + don—1(u)]
— wlamax {dan—1(u), d2n—1(u)} + bdan—1(u) + c[don—1(u) + dan—1(u)]
< (a+ b+ 2¢)dan—1(u) —w(a+ b+ 2¢)dan—1(u)

= dan—1(u) — wdan—1(u)

Similarly we have

dont1(u) < don(u) — wday (u)
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It follows that

3

> w(di(u)) < do(u) — dpy1(u)
< do(u)

o0
So the series of non negative, terms Y w(dy,(u)) is convergent. This means that
n=0

lim w(dn(u)) = 0. (8)

n—oo

Using (4), we have dn(u),,c v, converges to some r > 0. By continuity of w and (8), we have

w(r) = lim w(dy(u)) =0

n—00

Which implies that » = 0. Hence

lim d,(u) = 0. (9)

n—00

In order to show that yn is a Cauchy sequence it is sufficient to show that yan,cn, is a Cauchy sequence. Suppose not;
then there exist € > 0 and w € X such that for each positive integer k,there are positive integers 2m(k) and 2n(k) with
2m(k) > 2n(k) > 2k and d(Yom(k), Y2n(k), u) > €. For each positive integer k, let 2m(k) be the least even integer exceeding

2n(k) satisfying the above inequality, so that

d(me(k)—27y2n(k)7 U) S € d(y2m(k)7y2n(k)7u) > €. (10)

For each positive integer k, from (7) and (10), we have

€ < d(Y2mk), Y2n(k), W)
< d(Yom(k)—2, Yon(k), ¥) + A(Y2m(k)» Yom(k)—2> U) + A(Y2m (k) Yan(k)» Yom (k) —2)
< e+ d(Yam(k)—25 Y2m (k) Y2mk)—1) + AY2m ) =2, Y2m (k) =1, %) + d(Y2m (k) =1, Y2m (k) ©)

= £ + d(Yam(r)—2 (1), Yam(k)—1(u))

Which implies

It follows from (10)

0 < d(Yan(k)> Y2m(k)s %) — A(Y2n(k)> Yam(k)—2,U))
< d(Yamk)—2+ Y2m (k) )

< dam(ky—2(u) + dom)—1 ()
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Then by (9) and (11), we have

nli)II;lo d(y2n(k)7y2m(k)—27u) =€ (12)

Using triangular inequality, we have

|[d(Yan (k) Y2m k) —1> 1) — A(Yan(k)> Yomk)s )] < domey—1 (1) + dam)—1 (Y2n(k))
|d(Y2n (k) +15 Y2m (k) &) — A(Y2n (k) Y2m k), )| < dane) (W) + dane) Y2m k)

\d(yzn(k)-u: Yom(k)—1> U) - d(y2n(k)7y2m(k)—17 U)\ < d2n(k)(u) + d2n(k)(y2m(k)—l)
It is easy to see that

lim d _ = lim d
Jm (Y2n(k)s Y2m(k)—1, ) Jim (Y2n(k)+1> Y2m (k) W)

klifgo d(an(k)+17y2m(k)—l7u) =€ (13)
It follows from (5)

A(Y2m (k) Y2n(k)+1, w) = d(fT2m(k)> 9T2n(k)+15 1)
< amax {d(h@am (), tT2nk)+1, 0), A(tT2n(k)+1, 9T2n(k)+1, W) }
+ bmax {d(thm(k), FTom)s 1), A(tTon(k)+1, 9%2n(k)+15 1), A(ET2n(k)+1, fa:zm(k),u)}
+ cld(h@am k), 9Tan(k)+1,w) + d(ET2n (k)4 15 fT2m(r)» 1))
— w[amax {d(hwgm(k),tl'gn(k)+1, ), d(tT2n (k) +15 9T2n(k)+15 U)}
+ bmax {d(h@am k), fT2mk) 1), A2 k)41, 9T2m(k)+1, ), A2 (k) 41, fT2m(r) ) }
+ c[d(h@2m k), 9T2n (k) +1, u) + A(ET2n 00011, fT2m (), w)]]
< amax {d(Yamr)—1, Y2n (k) W), A(Y2n(k)> Y2n(k)+1, 1) }
+ bmax {d(Yom(k)—1> Y2m(k)> W) AY2n (k) Y2nk)+1> W)y AY2n (k) Y2m k) w) }
+ cld(yam (k) -1, Yan(k) 11, w) + A(Y2n(k)s Y2m k), w)] — wlamax {d(Yam (k) -1, Y2n(k)> w), AYan(k)s Yan(k)+1, 1) }
+ bmax {d(Yom k) -1, Y2m(k)> ©)s AY2n(k) Y2n (k) +15 W)y A(Y2n (k) > Y2m (k) w) }
+ cld(Yam ) —15 Y2n k) +1, ©) + d(Y2n(k)s Y2m k) 1)]]
< amax {d(Yam(r)—1, Y2n(k)s W), d2n (k) (w) } + bmax {dom)—1(w), don i) (), d(Y2n (k) Y2m i), ) }
+ cld(Yamk) -1, Y2n(k)+15 1) + d(Yan(r)> Y2mr)> w)] — wlamax {d(Yam k)1, Yan(k)> 1), dan (k) (w) }

+ bmax {d2m(k)—1(u)v donk) (W), d(Y2n (k) Y2m (k) U)} + cld(Y2m k)15 Y2n (k) +1, &) + A(Y2n(k)» Yam (k) w)]]
Letting k — oo and using (13), (11), (9), we have

e < [ae + be + 2ec] — wlae + be + 2&(]
<[a+b+2ce —wla+ b+ 2cle

=& — we

A contradiction. Therefore yan,, ¢y, is a Cauchy sequence in X. It follows from completeness of (X, d) that yan,, ¢, converge

to a point 2 € X. Now suppose that ¢is continuous. Since f and ¢ are compatible and gzont1,¢n, and tT2nt1,¢n, cOnverge
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to the point z, by Lemma 2.8, we get gtTant1,tg%2n+1 — tz as h — co. Applying in equality (1), we have

d(fxon, gtronti,u) < amax {d(hzan, ttxont1, u), d(ttxont1, gtTont1,u)}
+ bmax {d(hzan, fTon, u), d(ttTont1, gtTont1, u), d(ttTont1, fTon,u)}
+ cld(hzan, gtronti, u) + d(ttxont1, fTon, u)] — wla max {d(hzan, ttxont1, u), d(ttTan+1, gtTont1,u)}
+ bmax {d(hzan, fron, u), d(ttzont1, gtTons1, u), d(ttTont1, fTon, u)}

+ cld(hxan, gtrant1,u) + d(tteent1, fron, u)]]

Letting n — oo we get

d(z,tz,u) < amax {d(z,tz,u),d(tz, tz,u)} + bmax {d(z, z,u),d(tz, tz,u), d(ttz, z,u) }
+ cld(z, tz,u) + d(ttz, z,u)] — wlamax{d(z,tz,u),d(tz, tz,u)}
+ bmax {d(z, z,u), d(tz, tz,u), d(ttz, z,u) } + c[d(z, tz,u) + d(ttz, z, u)]]
< ad(z,tz,u) + bd(tz, z,u) + c[d(z, tz,u) + d(tz, z,u)] — wlad(z, tz,u) + bd(tz, z,u) + c[d(z, tz,u) + d(tz, z,u)]]
< (a+b+20)d(z,tz,u) —wl[(a+ b+ 2c)d(z,tz,u)]

< d(ztz,u)

Implies d(z,tz,u) = 0 = z = tz. Again from (1), we have

d(fzan, 9z,u) < amax {d(hxan, tz,u),d(tz, gz,u)} + bmax {d(hzan, fTon,u), d(tz, gz,u), d(tz, fron,u)}
+ c[d(hzan, gz,u) + d(tz, fron, u)] — wlamax {d(hxon,tz,u),d(tz, gz,u)}

+ bmax {d(hzan, fTan,u), d(tz, gz,u), d(tz, fxon,u)} + c[d(hxan, gz, u) + d(tz, fron, u)]]

Letting n — oo we get

d(z, gz,u) < amax {d(z, z,u), d(z, gz, u)} + bmax {d(z, z, u), d(, gz, u), d(z, z,u) }
+ cld(z, gz, u) + d(z, z,u)] — wlamax {d(z, z,u), d(z, gz, u)}
+ bmax {d(z, 2, u), d(z, gz, u), d(z, z,u)} + c[d(z, gz, u) + d(z, z,u)]]
< (a+b+c)d(z, gz,u) — wl(a + b+ c)d(z, gz, u)]

< d(z,gz,u)
Hence z = gz i.e. z is a fixed point of g. Similarly, we can show that z is a fixed point of f and h i.e. z is a common fixed
point of f, g, h and t. Similarly, we can complete the proof when f or g or h is continuous. O

Theorem 3.2. Let (X,d) be a complete 2-metric space with d continuous on X and let h and t be two mapping of X into
itself, there exists w € No, f: X — t(X) — h(X) satisfying:

(a) The pair (f,h) and (f,t) are compatible.

(b) One of f, h and t is continuous
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(c)

d(fz, fy,v) < amax {d(hz,ty,u),d(ty, fy,u)} + bmax {d(hz, fz,u),d(ty, fy,u), d(ty, fr,u)}
+ c[d(hz, fy,u) + d(ty, fz,u)] — wlamax {d(hz, ty,u), d(ty, fy,u)}
+ bmax {d(hz, fz,u),d(ty, fy,u),d(ty, fx,u)} + c[d(hz, fy,u) + d(ty, fz,u)]] (14)
Where a > 0, b > 0, ¢ > 0 such that a + b+ 2c =1 for all x,y,u € X then f,h and t have a common fized point.
Proof. The proof of this theorem is identical to the proof of Theorem 3.1. O
Remark 3.3. Theorem 3.1 and 3.2 are still true even though the condition of the compatibility is replaced by the compatibility

of type(A).
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