

International Journal of Mathematics And its Applications

Asymptotic Stability in Impulsive Functional Differential Equations

Research Article

Sanjay K.Srivastava¹, Neha Wadhwa^{2*} and Neeti Bhandari³

1 Department of Applied Sciences, Beant College of Engineering and Technology, Gurdaspur, Punjab, India.

2 Department of Applied Sciences, Amritsar College of Engineering and Technology, Amritsar, Punjab, India.

3 Punjab Technical University, Jalandhar, Punjab, India.

Abstract: In this paper conditions on Lyapunov functionals $V(t, \emptyset)$ are improved which ensure asymptotic stability and uniform asymptotic stability.

Keywords: Stability, Asymptotic Stability, Impulsive Functional Differential Equation, Lyapunov functional. © JS Publication.

1. Introduction

Consider the impulsive functional differential equation

$$\begin{cases} x'(t) = f(t, x_t), & t \neq t_k \ t \ge t_0 \\ \Delta x = I_k(t, (x_t^-)), & t = t_k, \ k \in Z^+. \end{cases}$$
(1)

Where $f: J \times PC \to R^n$, $\Delta x = x(t) - x(t^-)$, $t_0 < t_1 < \dots t_k < t_{k+1} < \dots$, With $t_k \to \infty$ as $k \to \infty$ and $I_k: J \times S(\rho) \to R^n$, where $J = [t_0, \infty)$, $S(\rho) = \{x \in R: |x| < \rho\}$. $PC = PC([-\tau, 0], R^n)$ denotes the space of piecewise right continuous functions $\varphi: [-\tau, 0] \to R^n$ with sup-norm $\|\varphi\|_{\infty} = \sup_{-\tau \le s \le 0} |\varphi(s)|$ and the norm $\|\varphi\|_2 = (\int_{-\tau}^0 |\varphi(s)|^2 ds)^{1/2}$, where τ is a positive constant, $\|.\|$ is a norm in R^n . $x_t \in PC$ is defined by $x_t(s) = x(t+s)$ for $-\tau \le s \le 0.x'(t)$ denotes the right-hand derivative of x(t). Z^+ is the set of all positive integers,

 $\text{Let } f\left(t,0\right)=0 \text{ and } J\left(0\right)=0, \text{ then } x\left(t\right)=0 \text{ is the zero solution of (1). Set } PC\left(\rho\right)=\left\{\varphi\in PC:\left\|\varphi\right\|_{\infty}<\rho\right\}, \ \forall \rho>0.$

Definition 1.1. Let σ be the initial time, $\forall \sigma \in R$, the zero solution of (1) is said to be

- (a). stable if , for each $\sigma \ge t_0$ and $\varepsilon > 0$, there is a $\delta = \delta(\sigma, \varepsilon) > 0$ such that, for $\varphi \in PC(\delta)$, a solution $x(t, \sigma, \varphi)$ satisfies $|x(t, \sigma, \varphi)| < \varepsilon$ for $t \ge t_0$.
- (b). uniformly stable if it is stable and δ in the definition of stability is independent of σ .
- (c). asymptotically stable if it is stable and, for each $t_0 \in R_+$, there is an $\eta = \eta(t_0) > 0$ such that, for $\varphi \in PC(\eta)$, $x(t, \sigma, \varphi) \to 0$ as $t \to \infty$.

E-mail: nehawadhwa08@yahoo.com

(d). uniformly asymptotically stable if it is uniformly stable and there is an $\eta > 0$ and , for each $\varepsilon > 0$, a $T = T(\varepsilon) > 0$ such that, for $\varphi \in PC(\eta)$, $|x(t, \sigma, \varphi)| < \varepsilon$ for $t \ge t_0 + T$

Definition 1.2. A functional $V(t, \varphi) : J \times PC(\rho) \to R_+$ belong to class $v_o(.)$ (a set of Liapunov like functional if

- (a). V is continuous on $[t_{k-1}, t_k) \times PC(\rho)$ for each $k \in Z_+$, and for all $\varphi \in PC(\rho)$ and $k \in Z_+$, the limit $\lim_{(t,\varphi)\to(t_k^-,\varphi)} V(t,\varphi) = V(t_k^-,\varphi) \text{ exists.}$
- (b). V is locally Lipchitzian in φ in each set in $PC(\rho)$ and V(t,0) = 0. The set \Re is defined by $\Re = \{W \in C(R_+, R_+) : strictly increasing and <math>W(0) = 0$.

2. Main Results

Theorem 2.1. Suppose that $V \in v_o(.)$, $W_1 \in \mathfrak{R}$ and

- (a). There is an $0 < H_1 < H$ and for each $0 \le \gamma < H_1$, there is a $\mu = \mu(\gamma) \ge 0$ with $\mu(\gamma) > 0$ for $\gamma > 0$ such that if $|x(t)| \ge \gamma$ and $||x_t|| < H_1$
- (b). $V'(t, x_t) \leq -\mu |f(t, x_t)| \lambda(t) W_1(\inf\{|x(s)|: t-h \leq s \leq t\})$ Where $\lambda: R_+ \to R_+$ is continuous with $\int_0^\infty \lambda(s) ds = \infty$
- (c). $V(t_k, x + I_k(t_k, x)) V(t_k^-, x) \leq 0$. Then the zero solution of (1) is asymptotically stable.

Proof. For given $0 < \varepsilon < H_1$ and $t_0 \in R_+$, choose a $0 < \delta < \varepsilon/2$ such that $\varphi \in PC(\delta)$ implies $V(t_0, \varphi) < \mu\left(\frac{\varepsilon}{2}\right)\varepsilon/2$. Fix $\varphi \in PC(\delta)$ and let $x(t) = x(t, t_0, \varphi)$ be a solution of (1) on $[t_0, t_0 + \beta]$. Suppose, for contradiction, that there is a $t_0 < t_1 < t_0 + \beta$ with $|x(t_1)| = \varepsilon$ and $|x(t)| < \varepsilon$ on $[t_0, t_1)$.

Then there is a $t_0 < t_2 < t_1$ such that $|x(t_2)| = \varepsilon/2$ and $\varepsilon/2 < |x(t)| < \varepsilon$ on (t_2, t_1) , so that

$$\int_{t_2}^{t_1} |f(s, x_s)| ds = |x(t_1) - x(t_2)| = \varepsilon/2$$

Condition (c) yields $V'(t, x_t) \leq 0$, $t_0 \leq t_{k-1} \leq t < t_k$, $k \in Z^+$. And so V(t) is decreasing on the interval of the form $[t_{k-1}, t_k)$, then from condition (c), we have

$$V(t_{k}) - V(t_{k}^{-}) = V(t_{k}, x(t_{k}^{-}) + I_{k}(t_{k}, x(t_{k}^{-}))) - V(t_{k}^{-}, x(t_{k}^{-})) \leq 0$$

Thus V(t) is non increasing on $[t_0, \infty)$. Thus we have,

$$0 \leq V(t_1, x_{t_1}) \leq V(t_2, x_{t_2}) - \mu\left(\frac{\varepsilon}{2}\right) \int_{t_2}^{t_1} |f(s, x_s)| \, ds + \sum_{t_2 < t < t_1} \left[V(t_k) - V(t_k^-)\right]$$
$$\leq V(t_0, \varphi) - \mu\left(\frac{\varepsilon}{2}\right) \varepsilon/2 < 0$$

A contradiction. Therefore, $|x(t)| < \varepsilon$ on $[t_0, t_0 + \beta]$, which implies $\beta = \infty$. This proves the stability.

For a given $t_0 \in R_+$, set $\eta = \eta(t_0) = \delta\left(\frac{H_1}{2}, t_0\right) > 0$, where δ is that in the definition of stability. For a given $\varphi \in PC(\eta)$, let $x(t) = x(t, t_0, \varphi)$ be a solution.

To show asymptotic stability, suppose $x(t) \to 0$ as $t \to \infty$. Then, for some $\varepsilon_0 > 0$, there is a sequence $\{t_i\}$ such that $|x(t_i)| \ge \varepsilon_0$ and $t_i \to \infty$. If there is an $i \ge 1$ such that $|x(t)| \ge \varepsilon_0/2$ for $t \ge t_i$, then $\inf \{|x(s)| : t - h \le s \le t\} \ge \varepsilon_0/2$ for $t \ge t_i + h$, and we have

$$0 \le V\left(t, x_t\right) \le V\left(t_i + h, x_{t_i + h}\right) - W_1\left(\frac{\varepsilon_0}{2}\right) \int_{t_i + h}^t \lambda\left(s\right) ds + \sum_{t \ge t_i + 1} \left[V\left(t_k\right) - V\left(t_k^{-1}\right)\right] \to -\infty \text{ as } t \to \infty.$$

A contradiction. Thus we may conclude that there is a sequence $\{T_i\}$ with $t_i < T_i < t_{i+1}$, $|x(T_i)| = \varepsilon_0/2$ and $|x(t)| > \varepsilon_0/2$ on $[t_i, T_i)$ so that

$$V(t_{i+1}, x_{t_i+1}) \le V(T_i, x_{T_i}) \le V(t_i, x_{t_i}) - \mu\left(\frac{\varepsilon_0}{2}\right)\varepsilon_0/2$$

And we obtain

$$0 \leq V(t_n, x_{t_n}) = V(t_1, x_{t_1}) + \sum_{i=2}^n \left(V(t_i, x_{t_i}) - V(t_{i-1}, x_{t_{i-1}}) \right)$$

$$\leq V(t_0, x_{t_0}) - \frac{(n-1)\mu\left(\frac{\varepsilon_0}{2}\right)\varepsilon_0}{2} + \sum_{\substack{t_i < t_k < t_{i+1}}} \left[V(t_k) - V(t_k^{-}) \right] \to -\infty$$

As $n \to \infty$; a contradiction. Therefore, $x(t) \to 0$ as $t \to \infty$. This completes the proof of asymptotic stability.

Theorem 2.2. Suppose that $V \in v_0(.)$, $W_1, W_2 \in \mathfrak{R}$ and

- (a). $V(t,\varphi) \leq W_1(\|\varphi\|)$
- (b). there is an $0 < H_1 < H$ and for each $0 \le \gamma < H_1$, there is a $\mu = \mu(\gamma) \ge 0$ with $\mu(\gamma) > 0$ for $\gamma > 0$ such that if $|x(t)| \ge \gamma$ and $||x_t|| < H_1$
- (c). $V'(t, x_t) = -\mu |f(t, x_t)| \lambda(t) W_2(\inf \{|x(s)| : t h \le s \le t\})$ where $\lambda : R_+ \to R_+$ is continuous with $\lim_{s \to \infty} \int_t^{t+S} \lambda(s) ds = \infty$ uniformly with respect to $t \in R_+$
- (d). $V(t_k, x + I_k(t_k, x)) V(t_k^-, x) \leq 0$. Then the zero solution of (1) is uniformly asymptotically stable.

Proof. Uniform stability is obtained by the same argument for the stability in the proof of Theorem 1. For $0 < H_1 < H$, set $\eta = \delta(H_1) > 0$, where δ is that of uniform stability. For $t_0 \in R_+$ and $\varphi \in PC_\eta$, let $x(t) = x(t, t_0, \varphi)$ be a solution. For a given $0 < \varepsilon < H_1$, choose $\delta = \delta(\varepsilon) > 0$ of uniform stability. Find $S = S(\varepsilon) > 0$ with $\int_t^{t+S} \lambda(s) \, ds > W_1(\eta)/W_2(\delta/2)$ for $t \in R_+$, then there is an

$$s_i \in [t_0 + (i-1)(S+2h), t_0 + (i-1)(S+2h) + h + S]$$

With $|x(s_i)| < \delta/2$ for each $i \ge 1$. Otherwise there is an $i \ge 1$ such that $|x(s)| \ge \delta/2$ on

$$[t_0 + (i-1)(S+2h), t_0 + (i-1)(S+2h) + h + S],$$

that is, $\inf\{|x(\sigma)|: s-h \le \sigma \le s\} \ge \delta/2$ on

$$I_{i} \stackrel{\text{def}}{=} \left[t_{0} + (i-1) \left(S + 2h \right) + h, \ t_{0} + (i-1) \left(S + 2h \right) + h + S \right],$$

and this implies

$$0 \leq V(t_{0} + (i - 1) (S + 2h) + h + S, x_{t_{0} + (i - 1)(S + 2h) + h + S})$$

$$\leq V(t_{0} + (i - 1) (S + 2h) + h, x_{t_{0} + (i - 1)(S + 2h) + h}) - W_{2}(\delta/2) \int_{I_{i}} \lambda(s) ds + \sum_{t_{k} \in I_{i}} [V(t_{k}) - Vt_{k}^{-}]]$$

$$< 0;$$

a contradiction. Choose an integer $N = N(\varepsilon) \ge 1$ with $N\mu(\delta/2)\delta/2 > W_1(\eta)$. Suppose, for contradiction, that for each $1 \le i \le N$, $||x_{t_0+i(S+2h)}|| \ge \delta$ then there is a

$$T_i \in [t_0 + (i-1)(S+2h) + h + S, t_0 + i(S+2h)]$$

with $|x(T_i)| \ge \delta$, and thus there is a $t_i \in (s_i, T_i)$ such that $|x(t_i)| = \delta/2$ and $|x(t)| > \delta/2$ on $(t_i, T_i]$ for each $1 \le i \le N$. Hence

$$V\left(t_{0}+i\left(S+2h\right), x_{t_{0}+i\left(S+2h\right)}\right) \leq V\left(T_{i}, x_{T_{i}}\right) \leq V\left(t_{i}, x_{t_{i}}\right) - \int_{t_{i}}^{T_{i}} \mu(\delta/2) \left|f\left(t, x_{t}\right)\right| dt + \sum_{t_{i} \leq t_{k} \leq T_{i}} \left[V\left(t_{k}\right) - V\left(t_{k}^{-}\right)\right] \\ \leq V\left(t_{0}+\left(i-1\right)\left(S+2h\right), x_{t_{0}+\left(i-1\right)\left(S+2h\right)}\right) - \mu(\delta/2)\delta/2,$$

and we have

$$0 \leq V \left(t_0 + N \left(S + 2h \right), x_{t_0 + N(S + 2h)} \right)$$

= $V \left(t_0, x_{t_0} \right) + \sum_{i=1}^{N} \left(V \left(t_0 + i \left(S + 2h \right), x_{t_0 + i(S + 2h)} \right) - V \left(t_0 + (i - 1) \left(S + 2h \right), x_{t_0 + (i - 1)(S + 2h)} \right) \right)$
 $\leq W_1 \left(\eta \right) - N \mu(\delta/2) \delta/2 < 0,$

a contradiction. Thus, there is a $1 \le i \le N$ with $||x_{t_0+i(S+2h)}|| < \delta$, which implies $|x(t)| < \varepsilon$ for $t \ge t_0 + i(S+2h)$. Set $T = T(\varepsilon) = N(S+2h)$, and we obtain $|x(t)| < \varepsilon$ for $t \ge t_0 + T$. This completes the proof of uniform asymptotic stability.

References

- [1] K.Kobayashi, Asymptotic stability in functional differential equations, Nonlinear Analysis, 20(4)(1993), 359-364.
- [2] L.Hatvani, On the asymptotic stability for nonautonomous functional differential equations by Liapunov functionals, Trans. Amer. Math. Soc., 354(2002), 3555-3571.
- [3] T.Burton and L.Hatvani, Stability theorems for nonautonomous functional differential equations by Liapunov functionals, Tokoku math. J., 41(1989), 65-104.
- [4] N.N.Krasovski, Stability of Motion, Stanford University Press, California, (1963).
- [5] V.Lakshmikantham and S.Leela, Differential and Integral Inequalities, Vol I and II, Academic Press, New York, (1969).