International Journal of Mathematics And its Applications

Lucky Edge Labeling of K_{n} and Special Types of Graphs

R.Sridevi ${ }^{1 *}$ and S.Ragavi ${ }^{2}$
1 Department of Mathematics, Sri S.R.N.M.College, Sattur, Taminadu, India.
2 Research Scholar, Department of Mathematics, Sri S.R.N.M.College, Sattur, Tamilnadu, India.

Abstract

Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$ respectively. Vertex set $V(G)$ is labeled arbitrary by positive integers and $\mathrm{E}(\mathrm{e})$ denote the edge label such that it is the sum of labels of vertices incident with edge e. The labeling is said to be lucky edge labeling if the edge $\mathrm{E}(\mathrm{G})$ is a proper coloring of G , that is, if we have $E\left(e_{1}\right) \neq E\left(e_{2}\right)$ whenever e_{1} and e_{2} are adjacent edges. The least integer k for which a graph G has a lucky edge labeling from the set $\{1,2, \ldots, k\}$ is the lucky number of G denoted by $\eta(G)$. A graph which admits lucky edge labeling is the lucky edge labeled graph. In this paper, we proved that complete graph K_{n}, tadpole graph $T_{m, n}$ and rectangular book B_{p}^{4} are lucky edge labeled graphs.

MSC: 05C78.

Keywords: Lucky edge labeled graph, Lucky edge labeling, Lucky number.
(c) JS Publication.

1. Introduction

In 1967, Rosa [4] introduced the concept of labeling the edges and Golomb [2] gave the name graceful for such labelings. Gallian [1] has given a dynamic survey of graph labeling. Many graphs are constructed from standard graphs by using various operations. Nellai Murugan [3] introduced the concept of lucky edge labeling. In this paper, lucky edge labeling of $K_{n}, K_{m, n}, T_{m, n}$ and B_{p}^{4} are discussed.

2. Preliminaries

Definition 2.1. Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$ respectively. Vertex set $V(G)$ is labeled arbitrary by positive integers and $E(e)$ denote the edge label such that it is the sum of labels of vertices incident with edge e. The labeling is said to be lucky edge labeling if the edge $E(G)$ is a proper coloring of G, that is, if we have $E\left(e_{1}\right) \neq E\left(e_{2}\right)$ whenever e_{1} and e_{2} are adjacent edges. The least integer k for which a graph G has a lucky edge labeling from the set $\{1,2, \ldots, k\}$ is the lucky number of G denoted by $\eta(G)$. A graph which admits lucky edge labeling is the lucky edge labeled graph.

Definition 2.2. A graph G in which any two distinct vertices are adjacent is called complete graph K_{n}. A complete graph with n vertices is denoted by ${ }_{n} C_{2}$.

[^0]Definition 2.3. A graph G is called a complete bipartite graph $K_{m, n}$ with bipartition $V(G)=V_{1} \cup V_{2}$ where $V_{1}=$ $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and $V_{2}=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ and all vertices in V_{1} are adjacent to all vertices in V_{2} but no vertices in V_{1} and V_{2}.

Definition 2.4. The tadpole graph $T_{m, n}$ are also called dragon graph is the graph obtained by joining a cycle C_{m} to a path P_{n} with a bridge.

Definition 2.5. One edge union of cycles of same length is called a book. The common edge is called base of the book. If we consider t copies of cycles of length $n \geq 3$, the book is denoted by B_{n}^{t}. If $n=4$, then the book B is called book with rectangular (or quadrilateral).

3. Main Results

Theorem 3.1. Lucky number of complete graph K_{n} is $\eta\left(K_{n}\right)=2 n-1$.
Proof. Let $V_{1}, V_{2}, \ldots, V_{n}$ be the vertices of K_{n}. Then $\left|V\left(K_{n}\right)\right|=n$ and $\left|E\left(K_{n}\right)\right|=\binom{n}{2}$. The vertex and edge labeling are defined as follows:

$$
\begin{aligned}
f\left(v_{i}\right) & =i, \quad 1 \leq i \leq n . \\
f *\left(v_{i} v_{j}\right) & =i+j, \quad 1 \leq i, j \leq n .
\end{aligned}
$$

Therefore, lucky number of K_{n} is $\eta\left(K_{n}\right)=2 n-1$.

Illustration 3.2. Lucky edge labeling of K_{5} is shown in the Figure 1 and $\eta\left(K_{5}\right)=9$.

Figure 1.

Remark 3.3. Lucky number of complete bipartite graph $K_{m, n}$ is $\eta\left(K_{m, n}\right)=m+n$.

Theorem 3.4. $T_{m, n}$ has $\{a, b, c\}$ lucky edge labeling graph, for any $a, b, c \in N$.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the path P_{n} and $v_{n+1}, v_{n+2}, \ldots, v_{n+m}=v_{p}$ be the vertices of cycle C_{m}. So that the length of tadpole graph $T_{m, n}$ is $p=m+n$.

Case(i): Both m and n are even or odd

Subcase $(\mathbf{i}):$ When $m \equiv 0(\bmod 4), n \equiv 0,2(\bmod 4)$ and $m \equiv 3(\bmod 4), n \equiv 1,3(\bmod 4)$. Let $f: V\left[T_{m, n}\right] \rightarrow\{1,2,3\}$ be defined by

$$
\begin{aligned}
f\left(v_{2 i}\right) & =\left\{\begin{array}{ll}
1 & i \equiv 1 \bmod 2 \\
2 & i \equiv 0 \bmod 2
\end{array} \quad 1 \leq i \leq\left(\frac{p}{2}\right)-1\right. \\
f\left(v_{2 i-1}\right) & =\left\{\begin{array}{ll}
1 & i \\
2 & \equiv 1 \bmod 2 \\
2 & \equiv 0 \bmod 2
\end{array} \quad 1 \leq i \leq\left(\frac{p}{2}\right)\right. \\
f\left(v_{i}\right) & =3, \quad i=p
\end{aligned}
$$

Then the induced edge labeling are

$$
f^{*}\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{l}
2 \quad i \equiv 1 \bmod 4 \\
3 \quad i \equiv 0,2 \bmod 4 \quad 1 \leq i \leq p-2 \\
4 \quad i \equiv 3 \bmod 4
\end{array}\right.
$$

$f^{*}\left(v_{p-1} v_{p}\right)=5$ and $f^{*}\left(v_{p} v_{n+1}\right)=4$, when $m, n \equiv 0 \bmod 4$ and $m \equiv 3 \bmod 4, n \equiv 1 \bmod 4 . \quad f^{*}\left(v_{p-1} v_{p}\right)=4$ and $f^{*}\left(v_{p} v_{n+1}\right)=5$, when $m \equiv 0 \bmod 4, n \equiv 2 \bmod 4$ and $m, n \equiv 3 \bmod 4$. It is clear that the lucky edge labeling of $T_{m, n}$ is $\{2,3,4,5\}$. Therefore, Lucky number is $\eta\left(T_{m, n}\right)=5$. For example, lucky edge labeling of $T_{8,2}$ is shown in the Figure 2 .

Figure 2.

Subcase(ii): When $m \equiv 2(\bmod 4)$ and $n \equiv 0,2(\bmod 4)$. Let $f: V\left[T_{m, n}\right] \rightarrow\{1,2,3\}$ be defined by

$$
\begin{aligned}
f\left(v_{2 i}\right) & = \begin{cases}1 & i \equiv 1 \bmod 2 \\
2 & i \equiv 0 \bmod 2\end{cases} \\
f\left(v_{2 i-1}\right) & = \begin{cases}1 & i \equiv 1 \leq \bmod 2 \\
2 & i \equiv 0 \bmod 2\end{cases} \\
f\left(v_{i}\right) & =3, \quad i=p-1, p
\end{aligned}
$$

Then the induced edge labeling are

$$
f^{*}\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{l}
2 \quad i \equiv 1 \bmod 4 \\
3 \quad i \equiv 0,2 \bmod 4 \quad 1 \leq i \leq p-3 \\
4 \quad i \equiv 3 \bmod 4
\end{array}\right.
$$

$f^{*}\left(v_{p-2} v_{p-1}\right)=5, f^{*}\left(v_{p-1} v_{p}\right)=6$, and $f^{*}\left(v_{p} v_{n+1}\right)=4$, when $n \equiv 0 \bmod 4 . \quad f^{*}\left(v_{p-2} v_{p-1}\right)=4, f^{*}\left(v_{p-1} v_{p}\right)=6$ and $f^{*}\left(v_{p} v_{n+1}\right)=5$, when $n \equiv 2 \bmod 4$. It is clear that the lucky edge labeling of $T_{m, n}$ is $\{2,3,4,5,6\}$. Therefore, Lucky number is $\eta\left(T_{m, n}\right)=6$. For example, lucky edge labeling of $T_{10,2}$ is shown in the Figure 3.

Figure 3.

Subcase(iii): When $m \equiv 1(\bmod 4)$ and $n \equiv 1,3(\bmod 4)$. Let $f: V\left[T_{m, n}\right] \rightarrow\{1,2,3\}$ be defined by

$$
\left.\begin{array}{rl}
f\left(v_{2 i}\right) & =\left\{\begin{array}{ll}
1 & i \equiv 1 \bmod 2 \\
2 & i \equiv 0 \bmod 2
\end{array} \quad 1 \leq i \leq\left(\frac{p}{2}\right)-1\right.
\end{array}\right\} \begin{array}{ll}
f\left(v_{2 i-1}\right) & =\left\{\begin{array}{ll}
1 & i \equiv 0 \bmod 2 \\
2 & i \equiv 1 \bmod 2
\end{array} \quad 1 \leq i \leq\left(\frac{p}{2}\right)\right. \\
f\left(v_{i}\right) & =3, i=p .
\end{array}
$$

Then the induced edge labeling are

$$
f^{*}\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{ll}
2 & i \equiv 2 \bmod 4 \\
3 & i \equiv 1,3 \bmod 4 \\
4 & i \equiv 0 \bmod 4
\end{array} \quad 1 \leq i \leq p-3\right.
$$

$f^{*}\left(v_{p-2} v_{p-1}\right)=4, f^{*}\left(v_{p-1} v_{p}\right)=5$ and $f^{*}\left(v_{p} v_{n+1}\right)=4$, when $n \equiv 1 \bmod 4 . \quad f^{*}\left(v_{p-2} v_{p-1}\right)=2, f^{*}\left(v_{p-1} v_{p}\right)=4$ and $f^{*}\left(v_{p} v_{n+1}\right)=5$, when $n \equiv 3 \bmod 4$. It is clear that the lucky edge labeling of $T_{m, n}$ is $\{2,3,4,5\}$. Therefore, Lucky number is $\eta\left(T_{m, n}\right)=5$. For example, Lucky edge labeling of $T_{5,3}$ is shown in the Figure 4.

Figure 4.

Subcase (\mathbf{i}) : When $m \equiv 0(\bmod 4), n \equiv 1,3(\bmod 4)$ and $m \equiv 1(\bmod 4), n \equiv 0,2(\bmod 4)$. Let $f: V\left[T_{m, n}\right] \rightarrow\{1,2,3\}$ be defined by

$$
\begin{aligned}
f\left(v_{2 i}\right) & =\left\{\begin{array}{ll}
1 & i \equiv 1 \bmod 2 \\
2 & i \equiv 0 \bmod 2
\end{array} \quad 1 \leq i \leq\left(\frac{p-1}{2}\right)\right. \\
f\left(v_{2 i-1}\right) & =\left\{\begin{array}{ll}
1 & i \equiv 1 \bmod 2 \\
2 & i \equiv 0 \bmod 2
\end{array} \quad 1 \leq i \leq\left(\frac{p-1}{2}\right)\right. \\
f\left(v_{i}\right) & =3, i=p
\end{aligned}
$$

Then the induced edge labeling are

$$
f^{*}\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{ll}
2 & i \equiv 1 \bmod 4 \\
3 & i \equiv 0,2 \bmod 4 \\
4 & i \equiv 3 \bmod 4
\end{array} \quad 1 \leq i \leq p-3\right.
$$

$f^{*}\left(v_{p-2} v_{p-1}\right)=4, f^{*}\left(v_{p-1} v_{p}\right)=5$ and $f^{*}\left(v_{p} v_{n+1}\right)=4$, when $m \equiv 0 \bmod 4, n \equiv 1 \bmod 4$ and $m \equiv 1 \bmod 4, n \equiv 0 \bmod 4$. $f^{*}\left(v_{p-2} v_{p-1}\right)=2, f^{*}\left(v_{p-1} v_{p}\right)=4$ and $f^{*}\left(v_{p} v_{n+1}\right)=5$, when $m \equiv 1 \bmod 4, n \equiv 2 \bmod 4$ and $m \equiv 0 \bmod 4, n \equiv 3 \bmod 4$. It is clear that the lucky edge labeling of $\mathrm{T}_{m, n}$ is $\{2,3,4,5\}$. Therefore, Lucky number is $\eta\left(T_{m, n}\right)=5$. For example, lucky edge labeling of $T_{4,5}$ is shown in the Figure 5.

Figure 5.

Subcase(ii): When $m \equiv 2(\bmod 4)$ and $n \equiv 1,3(\bmod 4)$. Let $f: V\left[T_{m, n}\right] \rightarrow\{1,2,3\}$ be defined by

$$
\left.\begin{array}{rl}
f\left(v_{2 i}\right) & = \begin{cases}1 & i \equiv 1 \bmod 2 \\
2 & i \equiv 0 \bmod 2\end{cases} \\
f\left(v_{2 i-1}\right) & = \begin{cases}1 & i \equiv 1 \bmod 2 \\
2 & i \equiv 0 \bmod 2\end{cases} \\
f\left(v_{i}\right) & 1 \leq i \leq\left(\frac{p-1}{2}\right)-1
\end{array}\right\}
$$

Then the induced edge labeling are

$$
f^{*}\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{ll}
2 & i \equiv 1 \bmod 4 \\
3 & i \equiv 0,2 \bmod 4 \\
4 & i \equiv 3 \bmod 4
\end{array} \quad 1 \leq i \leq p-3\right.
$$

$f^{*}\left(v_{p-2} v_{p-1}\right)=4, f^{*}\left(v_{p-1} v_{p}\right)=6$ and $f^{*}\left(v_{p} v_{n+1}\right)=4$, when $n \equiv 1 \bmod 4, f^{*}\left(v_{p-2} v_{p-1}\right)=5, f^{*}\left(v_{p-1} v_{p}\right)=6$ and $f^{*}\left(v_{p} v_{n+1}\right)=5$, when $n \equiv 3 \bmod 4$. It is clear that the lucky edge labeling of $T_{m, n}$ is $\{2,3,4,5,6\}$. Therefore, Lucky number is $\eta\left(T_{m, n}\right)=6$. For example, lucky edge labeling of $T_{10,1}$ is shown in the Figure 6 .

Figure 6.

Subcase(iii): When $m \equiv 3(\bmod 4)$ and $n \equiv 0,2(\bmod 4)$. Let $f: V\left[T_{m, n}\right] \rightarrow\{1,2,3\}$ be defined by

$$
\begin{aligned}
& f\left(v_{2 i}\right)= \begin{cases}1 i \equiv 1 \bmod 2 \\
2 i \equiv 0 \bmod 2\end{cases} \\
& f\left(v_{2 i-1}\right)= \begin{cases}1 & i \equiv 0 \bmod 2 \\
2 & i \equiv 1 \bmod 2\end{cases} \\
& \hline f\left(v_{i}\right) 1 \leq i \leq\left(\frac{p-1}{2}\right) \\
& f, i=p
\end{aligned}
$$

Then the induced edge labeling are

$$
f^{*}\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{l}
2 \quad i \equiv 2 \bmod 4 \\
3 \quad i \equiv 1,3 \bmod 4 \quad 1 \leq i \leq p-2 \\
4 \quad i \equiv 0 \bmod 4
\end{array}\right.
$$

$f^{*}\left(v_{p-1} v_{p}\right)=4$ and $f^{*}\left(v_{p} v_{n+1}\right)=5$, when $n \equiv 0 \bmod 4 . f^{*}\left(v_{p-1} v_{p}\right)=5$ and $f^{*}\left(v_{p} v_{n+1}\right)=4$, when $n \equiv 2 \bmod 4$. It is clear that the lucky edge labeling of $T_{m, n}$ is $\{2,3,4,5\}$. Therefore, Lucky number is $\eta\left(T_{m, n}\right)=5$. For example, lucky edge labeling of $T_{3,8}$ is shown in the Figure 7.

Figure 7.

Theorem 3.5. Lucky number of rectangular book is $2 p+2$.

Proof. Let u and v be the vertices that connecting common edges of rectangular book and u_{i} and $v_{i}(1 \leq i \leq p)$ be the vertices of p pages. Then $\left|V\left(B_{4}^{p}\right)\right|=2 p+2$ and $\left|E\left(B_{4}^{p}\right)\right|=3 p+1$. Label the vertices u and v with 1 and u_{i} and v_{i} with $i+1(1 \leq i \leq p)$ respectively. This induces the lucky edge labeling of the graph. Therefore, Lucky number of rectangular book is $\eta\left(B_{4}^{p}\right)=2 p+2$.

Illustration 3.6. Lucky edge labeling of B_{4}^{3} is shown in the Figure 8 and $\eta\left(B_{4}^{3}\right)=8$.

Figure 8.

References

[1] J.A.Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 18(2011), \#DS6.
[2] S.W.Golomb, How to number a graph, Graph Theory and Computing (R C. Read.Ed.), Academic Press, New York.
[3] A.Nellai Murugan and R.Maria Irudhaya Aspin Chitra, Lucky Edge Labeling of P_{n}, C_{n}, Corona of P_{n}, C_{n}, IJSIMR, 2(8)(2014), 710-718.
[4] A.Rosa, On Certain Valuations of the vertices of a Graph, Theory of Graphs, (International Symposium, Rome, July 1966), Gordan and Breach, N. Y. and Dunod Paris.

[^0]: * E-mail: stragavi22@gmail.com

