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1. Introduction

In 1945, R.Vaidyanathaswamy [10] introduced the concept of ideal topological spaces. Havashi [1] defined the local function
and studied some topological properties using local function in ideal topological spaces in 1964. Since then many mathe-
maticians studied various topological concepts in ideal topological spaces. The first unified and extensive study on these
T*-topologies was done by Jankovic and Hamlett in [2] and proofs for the facts stated above may be found in [2]. The initial
important articles on topological spaces are [5] and [3], a thesis [4] and a book that includes ideal is [9]. For given ideals
on coordinate topological spaces of a finite product space, an ideal is introduced on the product space and the relations

between two *-topologies are studied and we extend the theorem for finite case.

2. Preliminaries

Given a nonempty set X, a collection & of subsets of X is called an ideal if
(i). A € S and B C A implies B € S (heredity)
(ii). A € S and B € S implies AU B € S (finite additivity).

If X ¢ S, then S is called a proper ideal. An ideal S is called a o-ideal if the following holds:
If {A, : n=1,2,...} is a countable sub collection of I, then U{A, : n =1,2,...} € & The notation (X, 7,S) denotes a
nonempty set X, a topology 7 on X and an ideal & on X. Given a point € X, X(z) denotes the neighborhood system of x.

ie. N(z) ={U € 7: 2 € U}. Given a space (X, 7,3) and a subset A of X , we define

A"(S,7)={2z€X:UNAES, forevery UE€EX(z)}
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We simply write A* for A* (3, 7), where there are only one ideal & and only one topology 7 under consideration. A
Kuratowski closure operator cl* for a topology 7" (<) finer than 7 is defined as follows: cl*(A) = AU A", for all A € p(X).
A basis 5(S, 1) for 7 () can be described as follows: 3(S,7) ={U —1:U € 7,1 € S} and we will write 8 for 5(S, 7) and
7* for 77(3), when 7 and S are fixed.

We shall use cl(A), int(A) to denotes closure and interior of a subset A respectively in a topological space (X, 7) and cl*(A4),
int*(A) will denotes closure and interior of A respectively with respect to 7*. The symbol p(X) will denote collection of all

subsets of X. Let (X, 7) be a topological space with ideal & on X and let A and B be subsets of X, then
(i). ACB= A" C B".
(ii). (AUB)"* = A"UB".

(iii). A* =cl(A™) C cl(A).

(iv). 7 = 7" if and only if & contains the collection of all closed sets of (X, 7).

3. Definition and Basic Results on Product Ideal

Let us start with a natural definition for ideal on product space.

Definition 3.1. Let (X, 71) and (Y, 72) be two topological spaces. Let S and 9 be ideals on X and Y respectively. Define
SxI={ACX XY :pi(A) € and p2(A) € 9}, where p1 : X XY = X and p2 : X XY = Y are projections. Then

S x ¥ is called the product ideal of & and ¥ in X xX Y.

This collection S X ¢ is an ideal on X X Y. For, consider a set A € I x ¢ and a set B C A. Then B C A = p1(B) C p1(A4)
and pi1(A) € S = p1(B) € S. Similarly, p2(B) € ¥, sothat BC A€ x99 = BeIxv. If A,B € I x 3 then p1(A),
p1(B) € & and p2(A), p2(B) € ¥ and hence p1(AU B) = p1(A) Up1(B) € S and p2(A U B) = p2(A) U p2(B) € ¥; and this
shows that AU B € S x ¢. Thus S X ¢ is an ideal on X X Y. Let the topology (71 X 72)* (S x ) on X x Y, obtained from
the product topology 71 X 72 on X X Y and the ideal & x ¢, be denoted by (11 X 72)*. The topology (11 X 72)* on X XY
is finer than 71 X 72. There is another product topology 71" X 75 on X X Y, obtained from 71 and 75. Can we expect that
1 X 15 = (11 X 12)" 7. We get one inclusion relation (71 X 72)* C 77 X 75 in the next theorem. We shall show that this

inclusion relation may be strict.

Theorem 3.2. Let (X,71) and (Y, 72) be two topological spaces with ideals S and ¥ on X and Y respectively. Then we have

(11 X 12)" C7f XT75.

Proof. Let AC X xY. Assume that A* C A so that A is closed in (11 X 72)*. Let (z,y) ¢ A, so (z,y) ¢ A*. Let

B={(z1,11) € A:z1 # z}.

C={(z1,11) € A:y1 #y}.

Then A = BUC and A" = (BUC)* = B*UC". Now (z,y) ¢ A" implies that there exist neighborhood U of x in X
and neighborhood V of y in Y such that (U x V)N A € S x 9, so pi[(Ux V)N A] €S and p2[(U x V)N A] € 9. Write
B, :pl[(U X V) N A] and Cs :pg[(U X V) ﬂA]
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Now U is neighborhood of x such that U N By € & and hence = ¢ Bf. Also V is a neighborhood of y such that VN C> € ¢
and hence y ¢ C5. Write

Uy =U — (B} UBy).

Vi=V—(C5UCQCy).

Since U is open in 7, it is open in 77 (as 71 C7y). Since Bi U Bj is closed in 77, the set Uy is open in 7. Similarly, Vi
is open in 75. We claim that (U1 x Vi) N A = ¢. Now (z1,y1) € Ur x Vi implies z1 ¢ B, so there exist no yo such that
(z1,y0) € B, and so (z1,y1) ¢ B.

Similarly, (z1,y1) ¢ C. Therefore (x1,y1) ¢ BUC = A so (U1 x V1) N A = ¢. Therefore (z,y) ¢ A, the closure of A with

respect 77 X 75. Thus A C A which shows that A is also closed with respect 71 x 75. This proves that (11 x72)* C 71 x75. O

The following example shows that strict inclusion is possible.
Example 3.3. Let X be the set of all natural numbers. Let 1 be the topology with a basis {{1,2},{3,4},.. {2n—1,2n},...}.

If & is the class of all finite subsets of X, then 77" is the discrete topology on X. Let Y be the real line with the usual topology
and ¥ = {p}. Then 72 = 73, the usual topology. Let A = {2,3} which is closed in 7i. To prove p;*(A) is not closed in
(71 X 12)*. Consider the point (4, 2). Let U x V be the neighborhood of (4, 2) with respect to 71 X 72, then U contains {3,4}
and V contains an interval (2 — 6,2+ §), for some § > 0. Then (U x V) Npy ' (A) D {3} x (2—6,2+0) ¢ S x ¥, as ¥ = {p},
and so (4,2) € (p;*(A))*. Hence p; ' (A) is closed in 71 x 75, but not closed in (71 x 72)*. Thus (71 X 72)* C 74 x 75. Now

we obtain conditions under which (71 X 72)" =71 X 75.

Theorem 3.4. Let (X, 71) and (Y, 72) be two topological spaces with ideals S and 9 on X and Y respectively. Consider the

ideal I XY on X X Y. Then (11 X 12)" =71 X 75 if and only if
(a). 1 =711 (or) for every y € Y, there is an Vy, € T2 such that y € V, € ¥ and
(b). 7o =715 (or) for every x € X, there is an Uy € 11 such that x € U, € .

Proof.  Assume that (11 X 72)* =71 x 75.

Suppose that 71 # 1. Let A be closed set in 7, but not in 71, so there exist x € A but « ¢ A. As A x Y is closed in
71 X 75, it is closed in (71 X 72)*. Let y € Y, then (x,y) ¢ A X Y, so there exist 71 X T2-neighborhood V, x V, of (z,y) such
that (Va x V) N(AXY) € (S x1). Hence (VzNA) x (Vy;NY) € (I x13),soV, €. This derives (a).

Suppose T2 # 7. Then, as in the previous case, we can prove that for every x € X, there is an U, € 71 such that x € U, € S.
This derives (b).

Now let us prove the converse part.

Case (i) : Suppose 71 = 77 and 72 = 75. Then (11 X 72)" C 74 X 75 =71 X 72 C (11 X 72)" 80 (11 X 72)" =71 X 75.

Case (ii): Suppose 71 = 71 and 72 # 75, that is 71 = 71" and to each x € X, there exist Ti-open set U of x such that U € 3.
Let A x B be a closed set in 71 x 75. So both A and B are closed in 71" and 75 respectively. Let (x,y) ¢ A x B, then either
x¢gAoryg¢ B. Ifc ¢ A, as A= AU A" (closed with respect to 77 (equal to 71)) and = ¢ A", there exist a neighborhood
U of x with respect to 71 such that U N A = . Then, If we let A be any neighborhood of y in Y with respect to 72, then
(U x V)N (A x B) =y, and therefore (z,y) ¢ (A x B)* which proves that A x B is closed with respect to (11 X 72)*. Let
x € Abut y ¢ B, soy ¢ B* (with respect to 72), so there exist a neighborhood V of y such that VN B € 9. As z € A, by
assumption, there exist a neighborhood U of x such that U € . Therefore U x V is a neighborhood of 71 X 72 such that

(UxV)N(Ax B) €3 x9. Hence A X B is closed in (11 X 72)*. This, of course, proves that 71 X 75 C (11 X 72)".
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Case (iii) : Suppose 72 = 75 but 71 # 7{. Then proof is similar to case (ii).

Case (iv): Suppose, to each z € X, there exist open neighborhood U, of x in 71 such that U, € S and each y € Y, there exist
neighborhood Vj, of y in 73 such that V,, € 9. Let A x B is closed in 71 X 75 and (z,y) ¢ (A x B). Consider the neighborhood
s U, and V,, of x and y respectively such that U, € S and V,, € 9. Then U, x V, € S x ¢ and (Vo x V)N (A x B) € (S x V),

and so (z,y) ¢ (A x B)*. Hence A x B is closed with respect to (71 X 72)*, which also proves that 7 x 75 C (11 x 72)*. O
The Theorems 2.2 and 2.3 can be extended to any finite product space. Now we extend the theorem for finite case.

Theorem 3.5. If A is finite then ( ™ Ta)" C ™ T

Proof. Let S be the ideal for X, induced by {Sa}acna. Then {V — I : V is open with respect to 77, and I € S} is a
basis for (774)*. It is enough to show that I is w74- closed, for every I € §. Let I € S and © = (zo) ¢ I. Let, for each
a €N Ba={y€Il:ya#xa},then I = |J Ba. As Ba C I, Bo € § and hence pa(Ba) € Sa. Since 24 ¢ pa(Ba) in Xa
and pa(Ba) is closed with respect to 75, tl“oléeer/g exists T-open sets Vi, in X, such that zo € Vo and Vo Npa(Ba) = ¢.

Let W = ) pa'(Va). As A is finite, W is a 77%-open neighborhood of x. Note that WNT = ¢, it follows that I is 77%-closed

aeN
in mX,. Hence ( ™ 7o) C 7 74, A is finite. O
aEeN aEN

Remark 3.6. If A is not finite, then the Theorem 2.2 is not true, as seen from the following example.

Example 3.7. For every positive integer n, Let X,,= R, T, = the usual topology on R and ¥y be the ideal of all finite
subsets of R. Note that 7, = 7,5, for all n and hence n?rzol Tn = n%-:l .

Let Ap, = {en : e, =(0,0,0,...,0,1,0,...),n=1,2,...}. Then A € ¥, where S be the ideal in n(;r; Xn, induced by {Sn o1,
as pn(A) ={0,1} € Sy, for all n. Hence A is (77,)*-closed. Let xz = (0,0,...,0,...) i.e. x, =0, for all n. Any basic open
netghborhood G of  in nc;r:ol Tn = n%:l T 18 of the form p;ll(Ul) ﬁp;; (U2)N.. .p;;(Uk), where U; is open in X,; with respect

to Ty;. Clearly GN A # ¢ and hence A is not w75 -closed. Hence n%:l )" & T 7. This is also example for the space with

(a). Ta =74, for all a € A.

(b). Ta # (TTa)".

If A is not finite, under what conditions (7 71)" C 775 is true ?.
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