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Abstract: Given a topological space (X, τ) and an ideal = in X, a finer topology τ∗ in X can be associated with τ and =. Given two
topological spaces (X, τ1), (Y, τ2) and ideals =, ϑ in X, Y respectively, an ideal =× ϑ in X × Y , called the product ideal

of = and ϑ, in X × Y . We investigate inclusion relations between τ∗1 × τ∗2 and (τ1 × τ2)∗ and the conditions under which

τ∗1 × τ∗2 = (τ1 × τ2)∗ and we extend the theorem for finite case.
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1. Introduction

In 1945, R.Vaidyanathaswamy [10] introduced the concept of ideal topological spaces. Havashi [1] defined the local function

and studied some topological properties using local function in ideal topological spaces in 1964. Since then many mathe-

maticians studied various topological concepts in ideal topological spaces. The first unified and extensive study on these

τ∗-topologies was done by Jankovic and Hamlett in [2] and proofs for the facts stated above may be found in [2]. The initial

important articles on topological spaces are [5] and [3], a thesis [4] and a book that includes ideal is [9]. For given ideals

on coordinate topological spaces of a finite product space, an ideal is introduced on the product space and the relations

between two ∗-topologies are studied and we extend the theorem for finite case.

2. Preliminaries

Given a nonempty set X, a collection = of subsets of X is called an ideal if

(i). A ∈ = and B ⊆ A implies B ∈ = (heredity)

(ii). A ∈ = and B ∈ = implies A ∪B ∈ = (finite additivity).

If X /∈ =, then = is called a proper ideal. An ideal = is called a σ-ideal if the following holds:

If {An : n = 1, 2, . . . } is a countable sub collection of =, then ∪{An : n = 1, 2, . . . } ∈ =. The notation (X, τ,=) denotes a

nonempty set X, a topology τ on X and an ideal = on X. Given a point x ∈ X, ℵ(x) denotes the neighborhood system of x.

i.e. ℵ(x) = {U ∈ τ : x ∈ U}. Given a space (X, τ,=) and a subset A of X , we define

A∗(=, τ) = {x ∈ X : U ∩A /∈ =, for every U ∈ ℵ(x)}.
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We simply write A∗ for A∗ (=, τ), where there are only one ideal = and only one topology τ under consideration. A

Kuratowski closure operator cl∗ for a topology τ∗(=) finer than τ is defined as follows: cl∗(A) = A ∪ A∗, for all A ∈ ℘(X).

A basis β(=, τ) for τ∗(=) can be described as follows: β(=, τ) = {U − I : U ∈ τ, I ∈ =} and we will write β for β(=, τ) and

τ∗ for τ∗(=), when τ and = are fixed.

We shall use cl(A), int(A) to denotes closure and interior of a subset A respectively in a topological space (X, τ) and cl∗(A),

int∗(A) will denotes closure and interior of A respectively with respect to τ∗. The symbol ℘(X) will denote collection of all

subsets of X. Let (X, τ) be a topological space with ideal = on X and let A and B be subsets of X, then

(i). A ⊂ B ⇒ A∗ ⊂ B∗.

(ii). (A ∪B)∗ = A∗ ∪B∗.

(iii). A∗ = cl(A∗) ⊆ cl(A).

(iv). τ = τ∗ if and only if = contains the collection of all closed sets of (X, τ).

3. Definition and Basic Results on Product Ideal

Let us start with a natural definition for ideal on product space.

Definition 3.1. Let (X, τ1) and (Y, τ2) be two topological spaces. Let = and ϑ be ideals on X and Y respectively. Define

= × ϑ = {A ⊂ X × Y : p1(A) ∈ = and p2(A) ∈ ϑ}, where p1 : X × Y → X and p2 : X × Y → Y are projections. Then

=× ϑ is called the product ideal of = and ϑ in X × Y .

This collection =× ϑ is an ideal on X × Y . For, consider a set A ∈ =× ϑ and a set B ⊆ A. Then B ⊆ A⇒ p1(B) ⊂ p1(A)

and p1(A) ∈ = ⇒ p1(B) ∈ =. Similarly, p2(B) ∈ ϑ, so that B ⊆ A ∈ = × ϑ ⇒ B ∈ = × ϑ. If A,B ∈ = × ϑ then p1(A),

p1(B) ∈ = and p2(A), p2(B) ∈ ϑ and hence p1(A ∪ B) = p1(A) ∪ p1(B) ∈ = and p2(A ∪ B) = p2(A) ∪ p2(B) ∈ ϑ; and this

shows that A ∪B ∈ =× ϑ. Thus =× ϑ is an ideal on X × Y . Let the topology (τ1 × τ2)∗(=× ϑ) on X × Y , obtained from

the product topology τ1 × τ2 on X × Y and the ideal = × ϑ, be denoted by (τ1 × τ2)∗. The topology (τ1 × τ2)∗ on X × Y

is finer than τ1 × τ2. There is another product topology τ∗1 × τ∗2 on X × Y , obtained from τ∗1 and τ∗2 . Can we expect that

τ∗1 × τ∗2 = (τ1 × τ2)∗ ?. We get one inclusion relation (τ1 × τ2)∗ ⊆ τ∗1 × τ∗2 in the next theorem. We shall show that this

inclusion relation may be strict.

Theorem 3.2. Let (X, τ1) and (Y, τ2) be two topological spaces with ideals = and ϑ on X and Y respectively. Then we have

(τ1 × τ2)∗ ⊆ τ∗1 × τ∗2 .

Proof. Let A ⊂ X × Y . Assume that A∗ ⊆ A so that A is closed in (τ1 × τ2)∗. Let (x, y) /∈ A, so (x, y) /∈ A∗. Let

B = {(x1, y1) ∈ A : x1 6= x}.

C = {(x1, y1) ∈ A : y1 6= y}.

Then A = B ∪ C and A∗ = (B ∪ C)∗ = B∗ ∪ C∗. Now (x, y) /∈ A∗ implies that there exist neighborhood U of x in X

and neighborhood V of y in Y such that (U × V ) ∩ A ∈ = × ϑ, so p1[(U × V ) ∩ A] ∈ = and p2[(U × V ) ∩ A] ∈ ϑ. Write

B1 = p1[(U × V ) ∩A] and C2 = p2[(U × V ) ∩A].
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Now U is neighborhood of x such that U ∩B1 ∈ = and hence x /∈ B∗1 . Also V is a neighborhood of y such that V ∩ C2 ∈ ϑ

and hence y /∈ C∗2 . Write

U1 = U − (B∗1 ∪B1).

V1 = V − (C∗2 ∪ C2).

Since U is open in τ1, it is open in τ∗1 (as τ1⊂τ∗1 ). Since B∗1 ∪ B1 is closed in τ∗1 , the set U1 is open in τ∗1 . Similarly, V1

is open in τ∗2 . We claim that (U1 × V1) ∩ A = ϕ. Now (x1, y1) ∈ U1 × V1 implies x1 /∈ B1, so there exist no y0 such that

(x1, y0) ∈ B, and so (x1, y1) /∈ B.

Similarly, (x1, y1) /∈ C. Therefore (x1, y1) /∈ B ∪ C = A so (U1 × V1) ∩ A = ϕ. Therefore (x, y) /∈ A, the closure of A with

respect τ∗1 ×τ∗2 . Thus A ⊂ A which shows that A is also closed with respect τ∗1 ×τ∗2 . This proves that (τ1×τ2)∗ ⊆ τ∗1 ×τ∗2 .

The following example shows that strict inclusion is possible.

Example 3.3. Let X be the set of all natural numbers. Let τ1 be the topology with a basis {{1, 2}, {3, 4}, . . .{2n−1, 2n}, . . .}.

If = is the class of all finite subsets of X, then τ∗1 is the discrete topology on X. Let Y be the real line with the usual topology

and ϑ = {ϕ}. Then τ2 = τ∗2 , the usual topology. Let A = {2, 3} which is closed in τ∗1 . To prove p−1
1 (A) is not closed in

(τ1× τ2)∗. Consider the point (4, 2). Let U ×V be the neighborhood of (4, 2) with respect to τ1× τ2, then U contains {3, 4}

and V contains an interval (2− δ, 2 + δ), for some δ > 0. Then (U × V )∩ p−1
1 (A) ⊃ {3}× (2− δ, 2 + δ) /∈ =× ϑ, as ϑ = {ϕ},

and so (4, 2) ∈ (p−1
1 (A))∗. Hence p−1

1 (A) is closed in τ∗1 × τ∗2 , but not closed in (τ1 × τ2)∗. Thus (τ1 × τ2)∗ ⊂ τ∗1 × τ∗2 . Now

we obtain conditions under which (τ1 × τ2)∗ = τ∗1 × τ∗2 .

Theorem 3.4. Let (X, τ1) and (Y, τ2) be two topological spaces with ideals = and ϑ on X and Y respectively. Consider the

ideal =× ϑ on X × Y . Then (τ1 × τ2)∗ = τ∗1 × τ∗2 if and only if

(a). τ1 = τ∗1 (or) for every y ∈ Y , there is an Vy ∈ τ2 such that y ∈ Vy ∈ ϑ and

(b). τ2 = τ∗2 (or) for every x ∈ X, there is an Ux ∈ τ1 such that x ∈ Ux ∈ =.

Proof. Assume that (τ1 × τ2)∗ = τ∗1 × τ∗2 .

Suppose that τ1 6= τ∗1 . Let A be closed set in τ∗1 , but not in τ1, so there exist x ∈ A but x /∈ A. As A × Y is closed in

τ∗1 × τ∗2 , it is closed in (τ1 × τ2)∗. Let y ∈ Y , then (x, y) /∈ A× Y , so there exist τ1 × τ2-neighborhood Vx × Vy of (x, y) such

that (Vx × Vy) ∩ (A× Y ) ∈ (=× ϑ). Hence (Vx ∩A)× (Vy ∩ Y ) ∈ (=× ϑ), so Vy ∈ ϑ. This derives (a).

Suppose τ2 6= τ∗2 . Then, as in the previous case, we can prove that for every x ∈ X, there is an Ux ∈ τ1 such that x ∈ Ux ∈ =.

This derives (b).

Now let us prove the converse part.

Case (i) : Suppose τ1 = τ∗1 and τ2 = τ∗2 . Then (τ1 × τ2)∗ ⊂ τ∗1 × τ∗2 = τ1 × τ2 ⊂ (τ1 × τ2)∗ so (τ1 × τ2)∗ = τ∗1 × τ∗2 .

Case (ii): Suppose τ1 = τ∗1 and τ2 6= τ∗2 , that is τ1 = τ∗1 and to each x ∈ X, there exist τ1-open set U of x such that U ∈ =.

Let A×B be a closed set in τ∗1 × τ∗2 . So both A and B are closed in τ∗1 and τ∗2 respectively. Let (x, y) /∈ A×B, then either

x /∈ A or y /∈ B. If x /∈ A, as A = A ∪ A∗ (closed with respect to τ∗1 (equal to τ1)) and x /∈ A∗, there exist a neighborhood

U of x with respect to τ1 such that U ∩ A = ϕ. Then, If we let A be any neighborhood of y in Y with respect to τ2, then

(U × V ) ∩ (A× B) = ϕ, and therefore (x, y) /∈ (A× B)∗ which proves that A× B is closed with respect to (τ1 × τ2)∗. Let

x ∈ A but y /∈ B, so y /∈ B∗ (with respect to τ2), so there exist a neighborhood V of y such that V ∩ B ∈ ϑ. As x ∈ A, by

assumption, there exist a neighborhood U of x such that U ∈ =. Therefore U × V is a neighborhood of τ1 × τ2 such that

(U × V ) ∩ (A×B) ∈ = × ϑ. Hence A×B is closed in (τ1 × τ2)∗. This, of course, proves that τ∗1 × τ∗2 ⊆ (τ1 × τ2)∗.
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Case (iii) : Suppose τ2 = τ∗2 but τ1 6= τ∗1 . Then proof is similar to case (ii).

Case (iv): Suppose, to each x ∈ X, there exist open neighborhood Ux of x in τ1 such that Ux ∈ = and each y ∈ Y , there exist

neighborhood Vy of y in τ2 such that Vy ∈ ϑ. Let A×B is closed in τ∗1 ×τ∗2 and (x, y) /∈ (A×B). Consider the neighborhood

s Ux and Vy of x and y respectively such that Ux ∈ = and Vy ∈ ϑ. Then Ux×Vy ∈ =×ϑ and (Vx×Vy)∩ (A×B) ∈ (=×ϑ),

and so (x, y) /∈ (A×B)∗. Hence A×B is closed with respect to (τ1 × τ2)∗, which also proves that τ∗1 × τ∗2 ⊆ (τ1 × τ2)∗.

The Theorems 2.2 and 2.3 can be extended to any finite product space. Now we extend the theorem for finite case.

Theorem 3.5. If ∧ is finite then ( π
α∈∧

τα)∗ ⊂ π
α∈∧

τ∗α.

Proof. Let = be the ideal for πXα, induced by {=α}α∈∧. Then {V − I : V is open with respect to πτα and I ∈ =} is a

basis for (πτα)∗. It is enough to show that I is πτ∗α- closed, for every I ∈ =. Let I ∈ = and x = (xα) /∈ I. Let, for each

α ∈ ∧, Bα = {y ∈ I : yα 6= xα}, then I =
⋃
α∈∧

Bα. As Bα ⊂ I, Bα ∈ = and hence pα(Bα) ∈ =α. Since xα /∈ pα(Bα) in Xα

and pα(Bα) is closed with respect to τ∗α, there exists τ∗α-open sets Vα in Xα such that xα ∈ Vα and Vα ∩ pα(Bα) = φ.

Let W =
⋂
α∈∧

p−1
α (Vα). As ∧ is finite, W is a πτ∗α-open neighborhood of x. Note that W ∩I = φ, it follows that I is πτ∗α-closed

in πXα. Hence ( π
α∈∧

τα)∗ ⊂ π
α∈∧

τ∗α, ∧ is finite.

Remark 3.6. If ∧ is not finite, then the Theorem 2.2 is not true, as seen from the following example.

Example 3.7. For every positive integer n, Let Xn= R, τn = the usual topology on R and =n be the ideal of all finite

subsets of R. Note that τn = τ∗n, for all n and hence
∞
π
n=1

τn =
∞
π
n=1

τ∗n.

Let An = {en : en = (0, 0, 0, . . . , 0, 1, 0, . . . ), n = 1, 2, . . . }. Then A ∈ =, where = be the ideal in
∞
π
n=1

Xn, induced by {=n}∞n=1,

as pn(A) = {0, 1} ∈ =n, for all n. Hence A is (πτn)∗-closed. Let x = (0, 0, . . . , 0, . . . ) i.e. xn = 0, for all n. Any basic open

neighborhood G of x in
∞
π
n=1

τn =
∞
π
n=1

τ∗n is of the form p−1
n1

(U1)∩ p−1
n2

(U2)∩ . . . p−1
nk

(Uk), where ∪j is open in Xnj with respect

to τnj . Clearly G ∩A 6= φ and hence A is not πτ∗α-closed. Hence
∞
π
n=1

τn)∗ 6⊂ ∞
π
n=1

τ∗n. This is also example for the space with

(a). τα = τ∗α, for all α ∈ ∧.

(b). πτα 6= (π τα)∗.

If ∧ is not finite, under what conditions (π τα)∗ ⊆ πτ∗α is true ?.
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