

International Journal of Mathematics And its Applications

# **Complementary Tree Domination in Unicyclic Graphs**

**Research Article** 

### S. Muthammai<sup>1</sup> and P.Vidhya<sup>2</sup>\*

1 Government Arts College for Women (Autonomous), Pudukkottai, Tamilnadu, India.

2 S.D.N.B. Vaishnav College for Women (Autonomous), Chennai, Tamilnadu, India.

**Abstract:** A set *D* of a graph G = (V, E) is a dominating set of every vertex in V - D is adjacent to some vertex in *D*. The domination number  $\gamma(G)$  of *G* is the minimum cardinality of a dominating set. A dominating set *D* is called a complementary tree dominating set if the induced subgraph  $\langle V - D \rangle$  is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of *G* and is denoted by  $\gamma_{ctd}(G)$ . In this paper, connected unicyclic graphs for which  $\gamma_{ctd}(G) = \gamma(G)$  nad  $\gamma_{ctd}(G) = \gamma(G) + 1$  are characterized.

MSC: 05C69.

**Keywords:** Domination number, complementary tree domination number, unicyclic graphs. © JS Publication.

## 1. Introduction

Graphs discussed in this paper are undirected and simple. For a graph G(V, E), let V and E denotes its vertex set and edge set repectively. A graph G is unicyclic if it contains exactly one cycle. L. Volkman has studied graphs having equal domination number and edge independence number [5]. He has also investigated graphs with equal domination number and covering number. In this paper, connected unicyclic graphs for which  $\gamma_{ctd}(G) = \gamma(G)$  and  $\gamma_{ctd}(G) = \gamma(G) + 1$  are established.

# 2. Prior Results

**Definition 2.1.** A dominating set  $D \subseteq V$  of a connected graph G = (V, E) is said to be a complementary tree dominating set of a connected graph G, if the induced subgraph  $\langle V - D \rangle$  is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of G and is denoted by  $\gamma_{ctd}(G)$ . A set corresponding to the complementary tree dominating number is called  $\gamma_{ctd}$ -set of G. A complementary tree dominating set is denoted as a ctd-set in brief.

Here, it is assumed as  $K_1$ , the complete graph on a single vertex is connected. Therefore, a complementary tree dominating set can have atmost (p-1) vertices and hence,  $\gamma_{ctd}(G) \leq p-1$  and  $\gamma_{ctd}$ -set exists for all connected graphs. Since every ctd-set is a dominating set,  $\gamma(G) \leq \gamma_{ctd}(G)$ .

A complementary tree dominating set D of G is said to be minimal, if no proper subset of D is a complementary tree dominating set of G.

<sup>\*</sup> E-mail: vidhya\_lec@yahoo.co.in

Notation 2.2. Let  $P_m$  be a path on  $m \ (m \ge 2)$  vertices and let  $P_1 = K_1$  and  $P_m^+ = P_m \circ K_1 \ (m \ge 1)$  be the Corona of  $P_m$  and  $K_1$ .

- (a) By joining  $P_m^+$  ( $m \ge 1$ ) at a vertex v of  $C_n$ , ( $n \ge 3$ ), it is meant that, joining a vertex of degree 2 of  $P_m^+$  to v with an edge.
- (b) By joining  $K_{1,n}$   $(n \ge 1)$  at a vertex v of  $C_n$ , it is meant that, joining the central vertex of  $K_{1,n}$  to v with an edge.
- (c) By attaching a pendant edge (or a path  $P_n$ ,  $n \ge 3$ ) at a vertex v of a graph G, it is meant that, merging a vertex of the pendant edge (or a pendant vertex of  $P_n$ ,  $n \ge 3$ ) with v.
- (d) By attaching a tree to a vertex v of a graph G, it is meant that, merging a pendant vertex of the tree with v.

Notation 2.3. The following classes of unicyclic graphs can be defined.

Let  $H_1^{(t)}$  be the graph obtained from  $C_n$   $(n \ge 5)$  by attaching a pendant edge at each of the t vertices of  $C_n$  such that (n-t) consecutive vertices of  $C_n$  have degree 2  $(t \le n)$ .

- (a) Let  $\mathcal{G}_1^{(t)}$  be the class of unicyclic graphs  $H_1^{(t)}$ .
- (b) Let  $\mathcal{G}_2^{(t)}$  be the class of unicyclic graphs obtained from  $H_1^{(t)}$  by joining atleast one  $P_m^+$   $(m \ge 1)$  at atleast one vertex of t consecutive vertices  $(t \le n)$  mentioned above.
- (c) Let  $\mathcal{G}_3^{(t)}$  be the class of unicyclic graphs obtained from  $H_1^{(t)}$  by joining atleast one  $P_m^+$   $(m \ge 1)$  at atleast one of the two end vertices of above t consecutive vertices of  $C_n$ .

## 3. Main Results

**Theorem 3.1.** Let G be a connected unicyclic graph with the cycle  $C_n$   $(n \ge 5)$  and be not a cycle. Then,  $\gamma_{ctd}(G) = \gamma(G)$  if and only if  $G \in \bigcup_{i=1}^{3} \mathcal{G}_i^{(n-3)}$ .

*Proof.* Let G be a connected unicyclic graph with the cycle  $C_n$   $(n \ge 5)$  and be not a cycle.

(a) If there exists a vertex in  $C_n$  which is a support of G and is adjacent to atleast two pendant vertices, then  $\gamma(G) = \left\lceil \frac{n}{3} \right\rceil$ and  $\gamma_{ctd}(G) \ge 2 + (n-3) = n-1$ . Hence,  $\gamma_{ctd}(G) > \gamma(G) + 1$ , since  $n \ge 5$ . Therefore, each support v of G such that  $v \in C_n$ is adjacent to exactly one pendant vertex. Similarly is the case, when  $v \notin C_n$  and is a support of G.

(b) Let there exists a vertex  $u \in G$  such that  $u \notin C_n$  and be neither a support nor a pendant vertex. Then, G has a vertex in  $C_n$ , in which a path P of length atleast three is attached. A minimum dominating set of G will contain atleast one vertex from P and atleast two vertices of  $C_n$ , whereas a minimum ctd-set of G contains atleast two vertices from P and atleast three vertices of  $C_n$ . Therefore,  $\gamma_{ctd}(G) > \gamma(G) + 1$ . Hence, a vertex in  $V(G) - V(C_n)$  is either a support or a pendant vertex of G. Therefore, G is the connected unicyclic graph obtained from  $C_n$   $(n \ge 5)$  by joining atleast one  $P_m^+$   $(m \ge 1)$  or by attaching a pendant vertex (or) both at atleast one vertex of  $C_n$ . In this case, number of pendant vertices of G is the same as those of supports of G.

(c) If either G has s vertices  $(0 \le s \le n, s \ne 3)$  in  $C_n$ , each is of degree 2 in G and these are the only vertices in  $V(C_n) \cap V(G)$  of degree 2.

(or) G has three non consecutive vertices in  $C_n$ , each is of degree 2 in G, then also  $\gamma_{ctd}(G) > \gamma(G)$ , since in a dominating set support of G adjacent to a vertex of  $C_n$  dominates both its pendant vertices and a vertex of  $C_n$ , whereas in a ctd-set, pendant vertices dominate only its supports. Therefore, there exists exactly three consecutive vertices of  $C_n$  having degree 2 in G and the remaining (n-3) vertices of  $C_n$  have degree at least 3 in G.

(d) Let atleast one of the above (n-3) vertices of  $C_n$  be not the supports of G. Then, atleast one  $P_m^+$   $(m \ge 1)$  alone is joined at atleast one of the above (n-3) vertices. Then,  $\gamma(G) \ge (\text{number of supports of } G)+1$  and  $\gamma_{ctd}(G) \ge (\text{number of pendant vertices}) + n - 2$ . That is, G is the connected graph obtained from  $C_n$  either by attaching a pendant edge

(or) by attaching a pendant edge and then joining atleast one  $P_m^+$   $(m \ge 1)$  at each of the (n-3) consecutive vertices of  $C_n$ . Therefore,  $G \in \mathcal{G}_1^{(n-3)} \cup \mathcal{G}_2^{(n-3)}$ .

(e) Let w, x, y be the vertices in  $C_n$  each is of degree 2 in G such that x is adjacent to both w and y in  $C_n$ . If atleast one  $P_m^+$   $(m \ge 1)$  is joined either at any two adjacent vertices of w, x, y or at x, then  $\gamma_{ctd}(G) > \gamma(G)$ . Therefore, atleast one  $P_m^+$   $(m \ge 1)$  is joined at atleast one of w and y. Hence,  $G \in \mathcal{G}_3^{(n-3)}$ . In all the cases,  $G \in \bigcup_{i=1}^3 \mathcal{G}_i^{(n-3)}$ .

Conversely, if  $G \in \mathcal{G}_1^{(n-3)}$ , then  $\gamma(G) = \gamma_{ctd}(G) = n-2$  and if  $G \in \mathcal{G}_2^{(n-3)} \cup \mathcal{G}_3^{(n-3)}$ , then number of supports of G = number of pendant vertices of G and  $\gamma(G) =$  (number of supports of G)+1 and  $\gamma_{ctd}(G) =$  (number of pendant vertices) +1. Hence the theorem is proved.

**Example 3.1.** In the following graphs,  $G_1 \in \mathcal{G}_1^{(n-3)}$ ,  $G_2 \in \mathcal{G}_2^{(n-3)}$ ,  $G_3, G_4 \in \mathcal{G}_3^{(n-3)}$ .



#### Figure 1.

In a similar manner, the following theorem can be proved.

**Theorem 3.2.** Let G be a connected unicyclic graph with the cycle  $C_3$  or  $C_4$ . Then,  $\gamma(G) = \gamma_{ctd}(G)$  if and only if G is one of the following graphs.

- (a) G is obtained from  $C_3$  by joining atleast one  $P_m^+$   $(m \ge 1)$  at one or two vertices of  $C_n$ .
- (b) G is obtained from  $C_4$  by joining atleast one  $P_m^+$   $(m \ge 1)$  at one or two adjacent vertices of  $C_4$  and then attaching a pendant edge at exactly one of the above vertices.
- (c) G is obtained from  $C_4$  by joining atleast one  $P_m^+$  ( $m \ge 1$ ) at a vertex, say v of  $C_4$  and then attaching a pendant edge at a vertex of  $C_4$  adjacent to v.

In the following, the connected unicyclic graphs, for which  $\gamma_{ctd}(G) = \gamma(G) + 1$ , are found.

**Theorem 3.3.** Let G be a connected unicyclic graph with the cycle  $C_n$ ,  $n \ge 5$ . Then,  $\gamma_{ctd}(G) = \gamma(G) + 1$  if and only if

(i) 
$$G \in \{\mathcal{G}_1^{(t)}, n-4 \le t \le n, t \ne n-3\} \cup \{\mathcal{G}_2^{(t)}, n-4 \le t \le n-1, t \ne n-3\} \cup \{\mathcal{G}_3^{(t)}, t \ne n\}$$
 (or)

- (ii) G is obtained from  $C_5$  by joining atleast one  $P_m^+$   $(m \ge 1)$  at a vertex of  $C_5$  (or)
- (iii) G is obtained from  $C_5$  (or)  $C_6$  by joining atleast one  $P_m^+$  ( $m \ge 1$ ) at any two adjacent vertices of  $C_5$  or  $C_6$  and then attaching a pendant edge at one of the above two vertices.

*Proof.* Let G be a connected unicyclic graph with  $C_n$   $(n \ge 5)$  as the cycle. Assume  $\gamma_{ctd}(G) = \gamma(G) + 1$ . From the proof of Theorem 3.1, G is a connected unicyclic graph obtained from  $C_n$   $(n \ge 5)$  by joining atleast one  $P_m^+$   $(m \ge 1)$  or by attaching a pendant edge or both at atleast one vertex of  $C_n$   $(n \ge 5)$ . In this case, number of pendant vertices of G is the same as those of supports of G. Let t be the number of supports of G in  $C_n$ .

(a) Let s consecutive vertices of  $C_n$  have degree 2 in G, where  $s \ge 5$  and  $s \le n-1$  and t+s = n. Then,  $\gamma(G) = (number of supports of G) + \left\lceil \frac{s-2}{3} \right\rceil$  whereas,  $\gamma_{ctd}(G) = (number of pendant vertices of G) + (s-2)$ . Hence, for  $n \ge 5$ ,  $\gamma_{ctd}(G) > \gamma(G) + 1$ . Therefore, atmost four consecutive vertices of  $C_n$  have degree 2 in G. As in Theorem 3.1, G is a connected unicyclic graph obtained from  $C_n$  either by attaching a pendant edge (or) attaching a pendant edge and joining atleast one  $P_m^+$  ( $m \ge 1$ ) at atleast (n-4) consecutive vertices of  $C_n$ .

(b) If (n-3) consecutive vertices of  $C_n$  are supports of G and the remaining three vertices of  $C_n$  have degree two, then  $\gamma_{ctd}(G) = \gamma(G)$ . Hence, s consecutive vertices of  $C_n$  have degree 2 in G, where  $0 \le s \le 4$ ,  $s \ne 3$ . Therefore, t ( $t \le n$ ) consecutive vertices of  $C_n$  are supports of G such that each support is adjacent to exactly one pendant vertex. At these support atleast one  $P_m^+$  ( $m \ge 1$ ) may be or may not be joined. The remaining (n-t)(=s) consecutive vertices of  $C_n$  have degree 2 in G, where  $n - t \le 4$  and  $n - t \ne 3$ . That is,  $n - 4 \le t \le n$ ,  $t \ne n - 3$ . If both a pendant edge is attached and atleast one  $P_m^+$  ( $m \ge 1$ ) is joined at each vertex of  $C_n$  in G, then  $\gamma_{ctd}(G) > \gamma(G) + 1$ . Therefore, the connected unicyclic graph G is such that

- (i)  $t \ (t \le n)$  consecutive vertices of  $C_n$  are supports of G, each is adjacent to exactly one pendant vertex and the remaining (n-t) consecutive vertices of  $C_n$  have degree 2 in G, where  $n-4 \le t \le n$ ,  $t \ne n-3$ . That is,  $G \in \mathcal{G}_1^{(t)}$ ,  $n-4 \le t \le n$ ,  $t \ne n-3$ . (or)
- (ii) G is obtained from the class of graphs  $\mathcal{G}_1^{(t)}$ ,  $n-4 \leq t \leq n-1$ ,  $t \neq n-3$  by joining at least one  $P_m^+$   $(m \geq 1)$  at the above t vertices of  $C_n$ , where  $n-4 \leq t \leq n-1$ ,  $t \neq n-3$ . That is,  $G \in \mathcal{G}_2^{(t)}$ ,  $n-4 \leq t \leq n-1$ ,  $t \neq n-3$ .

(c) Let  $G \in \mathcal{G}_1^{(t)}$ ,  $n-4 \leq t \leq n$ ,  $t \neq n-3$  then (n-t) consecutive vertices of  $C_n$  have degree 2 in G. If at least one  $P_m^+$  $(m \geq 1)$  is joined at at least two of these (n-t) consecutive vertices of  $C_n$  (or) at a vertex which is not adjacent to one of the end vertices of above (n-t)  $(n \neq t)$  consecutive vertices of  $C_n$ , then  $\gamma_{ctd}(G) > \gamma(G) + 1$ . Therefore,  $G \in \mathcal{G}_3^{(t)}$ ,  $t \neq n$ . In a similar manner, it can also be proved that, if  $\gamma_{ctd}(G) = \gamma(G) + 1$ , then G can be one of the graphs mentioned in (ii) and (iii) in the theorem.

Conversely, if G is a connected unicyclic graph mentioned in (i), (ii) or (iii), then it can be verified that  $\gamma_{ctd}(G) = \gamma(G) + 1$ .

In a similar manner, the following Theorems 3.4 and 3.5 can be proved.

**Theorem 3.4.** Let G be any connected unicyclic graph with  $C_3$  as the unique cycle. Then,  $\gamma_{ctd}(G) = \gamma(G) + 1$  if and only if G is one of the following graphs.

(a) G is obtained from  $C_3$  by attaching exactly one pendant edge at atleast one vertex of  $C_3$ .

- (b) G is obtained from  $C_3$  by attaching a path of length three (or) a path of length three and then joining atleast one  $P_m^+$ ( $m \ge 1$ ) at exactly one vertex of  $C_3$ .
- (c) G is obtained from  $C_3$  by joining atleast one  $P_m^+$  at one or two vertices of  $C_3$  and then attaching a pendant edge at atleast one vertex of  $C_3$ .

**Theorem 3.5.** Let G be any connected unicyclic graph with  $C_4$  as the unique cycle. Then,  $\gamma_{ctd}(G) = \gamma(G) + 1$  if and only if G is one of the following graphs.

- (a) G is obtained from  $C_4$  by attaching exactly one pendant edge at atleast two vertices of  $C_4$ .
- (b) G is obtained from  $C_4$  by joining atleast one  $P_m^+$   $(m \ge 1)$  at a vertex of  $C_4$  and then attaching a pendant edge at t vertices of  $C_4$ , where  $0 \le t \le 4$ ,  $t \ne 1$ .
- (c) G is obtained from  $C_4$  by attaching two pendant edges at a vertex of  $C_4$  (or) by attaching two pendant edges at a vertex and joining atleast one  $P_m^+$  ( $m \ge 1$ ) at this vertex or a vertex adjacent to it.
- (d) G is obtained from  $C_4$  by joining atleast one  $P_m^+$  ( $m \ge 1$ ) at any two adjacent vertices, say u and v of  $C_4$  and attaching a pendant edge at t vertices of  $C_4$  where  $0 \le t \le 4$ ,  $t \ne 1$  and these t vertices include both u and v.
- (e) G is obtained from  $C_4$  by attaching a path of length 3 at a vertex of  $C_4$ .
- (f) G is obtained from  $C_4$  by attaching a path of length 3 at a vertex u and then attaching a pendant edge at u or at a vertex of  $C_4$  adjacent to u.
- (g) G is obtained from the graphs mentioned in (vi) by joining atleast one  $P_m^+$  ( $m \ge 1$ ) at the vertex having the pendant edge.

**Theorem 3.6.** For any integer  $a \ge 2$ , there exists a connected graph G with  $\gamma_{ctd}(G) = \gamma(G) + a$ .

*Proof.* Consider the cycle  $C_{2a+3}$  on (2a+3) vertices. Attach exactly one pendant edge at each of any two consecutive vertices of  $C_{2a+3}$ . Let the resulting graph be G. For this G,  $\gamma(G) = a + 1$ ,  $\gamma_{ctd}(G) = 2a + 1$ . Hence,  $\gamma_{ctd}(G) = \gamma(G) + a$ ,  $a \ge 2$ .

### References

- [1] F.Harary, Graph Theory, Addison Wesley, Reading Mass, (1969).
- [2] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New York, (1998).
- [3] S.Muthammai, M.Bhanumathi and P.Vidhya, Complementary tree domination in graphs, International Mathematical Forum, 6(26)(2011), 1273-1283.
- [4] O.Ore, Theory of Graphs, Amer. Math Soc. Colloq. Publ., 38, Providence, (1962).
- [5] L.Volkman, On graph with equal domination and covering numbers, Discrete Math., 51(1994), 211-217.