International Journal of Mathematics And its Applications

Complementary Tree Domination in Unicyclic Graphs

S. Muthammai ${ }^{1}$ and P.Vidhya ${ }^{2 *}$
1 Government Arts College for Women (Autonomous), Pudukkottai, Tamilnadu, India.
2 S.D.N.B. Vaishnav College for Women (Autonomous), Chennai, Tamilnadu, India.

Abstract

A set D of a graph $G=(V, E)$ is a dominating set of every vertex in $V-D$ is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set. A dominating set D is called a complementary tree dominating set if the induced subgraph $\langle V-D\rangle$ is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of G and is denoted by $\gamma_{c t d}(G)$. In this paper, connected unicyclic graphs for which $\gamma_{c t d}(G)=\gamma(G)$ nad $\gamma_{c t d}(G)=\gamma(G)+1$ are characterized.

MSC: 05C69.

Keywords: Domination number, complementary tree domination number, unicyclic graphs.
(c) JS Publication.

1. Introduction

Graphs discussed in this paper are undirected and simple. For a graph $G(V, E)$, let V and E denotes its vertex set and edge set repectively. A graph G is unicyclic if it contains exactly one cycle. L. Volkman has studied graphs having equal domination number and edge independence number [5]. He has also investigated graphs with equal domination number and covering number. In this paper, connected unicyclic graphs for which $\gamma_{c t d}(G)=\gamma(G)$ and $\gamma_{c t d}(G)=\gamma(G)+1$ are established.

2. Prior Results

Definition 2.1. A dominating set $D \subseteq V$ of a connected graph $G=(V, E)$ is said to be a complementary tree dominating set of a connected graph G, if the induced subgraph $<V-D>$ is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of G and is denoted by $\gamma_{c t d}(G)$. A set corresponding to the complementary tree dominating number is called $\gamma_{c t d}$-set of G. A complementary tree dominating set is denoted as a ctd-set in brief.

Here, it is assumed as K_{1}, the complete graph on a single vertex is connected. Therefore, a complementary tree dominating set can have atmost $(p-1)$ vertices and hence, $\gamma_{c t d}(G) \leq p-1$ and $\gamma_{c t d}$-set exists for all connected graphs. Since every ctd-set is a dominating set, $\gamma(G) \leq \gamma_{c t d}(G)$.

A complementary tree dominating set D of G is said to be minimal, if no proper subset of D is a complementary tree dominating set of G.

[^0]Notation 2.2. Let P_{m} be a path on $m(m \geq 2)$ vertices and let $P_{1}=K_{1}$ and $P_{m}^{+}=P_{m} \circ K_{1}(m \geq 1)$ be the Corona of P_{m} and K_{1}.
(a) By joining $P_{m}^{+}(m \geq 1)$ at a vertex v of $C_{n},(n \geq 3)$, it is meant that, joining a vertex of degree 2 of P_{m}^{+}to v with an edge.
(b) By joining $K_{1, n}(n \geq 1)$ at a vertex v of C_{n}, it is meant that, joining the central vertex of $K_{1, n}$ to v with an edge.
(c) By attaching a pendant edge (or a path $P_{n}, n \geq 3$) at a vertex v of a graph G, it is meant that, merging a vertex of the pendant edge (or a pendant vertex of $P_{n}, n \geq 3$) with v.
(d) By attaching a tree to a vertex v of a graph G, it is meant that, merging a pendant vertex of the tree with v.

Notation 2.3. The following classes of unicyclic graphs can be defined.
Let $H_{1}^{(t)}$ be the graph obtained from $C_{n}(n \geq 5)$ by attaching a pendant edge at each of the t vertices of C_{n} such that $(n-t)$ consecutive vertices of C_{n} have degree 2 $(t \leq n)$.
(a) Let $\mathcal{G}_{1}^{(t)}$ be the class of unicyclic graphs $H_{1}^{(t)}$.
(b) Let $\mathcal{G}_{2}^{(t)}$ be the class of unicyclic graphs obtained from $H_{1}^{(t)}$ by joining atleast one $P_{m}^{+}(m \geq 1)$ at atleast one vertex of t consecutive vertices $(t \leq n)$ mentioned above.
(c) Let $\mathcal{G}_{3}^{(t)}$ be the class of unicyclic graphs obtained from $H_{1}^{(t)}$ by joining atleast one $P_{m}^{+}(m \geq 1)$ at atleast one of the two end vertices of above t consecutive vertices of C_{n}.

3. Main Results

Theorem 3.1. Let G be a connected unicyclic graph with the cycle C_{n} $(n \geq 5)$ and be not a cycle. Then, $\gamma_{c t d}(G)=\gamma(G)$ if and only if $G \in \bigcup_{i=1}^{3} \mathcal{G}_{i}^{(n-3)}$.

Proof. Let G be a connected unicyclic graph with the cycle $C_{n}(n \geq 5)$ and be not a cycle.
(a) If there exists a vertex in C_{n} which is a support of G and is adjacent to atleast two pendant vertices, then $\gamma(G)=\left\lceil\frac{n}{3}\right\rceil$ and $\gamma_{c t d}(G) \geq 2+(n-3)=n-1$. Hence, $\gamma_{c t d}(G)>\gamma(G)+1$, since $n \geq 5$. Therefore, each support v of G such that $v \in C_{n}$ is adjacent to exactly one pendant vertex. Similarly is the case, when $v \notin C_{n}$ and is a support of G.
(b) Let there exists a vertex $u \in G$ such that $u \notin C_{n}$ and be neither a support nor a pendant vertex. Then, G has a vertex in C_{n}, in which a path P of length atleast three is attached. A minimum dominating set of G will contain atleast one vertex from P and atleast two vertices of C_{n}, whereas a minimum ctd-set of G contains atleast two vertices from P and atleast three vertices of C_{n}. Therefore, $\gamma_{c t d}(G)>\gamma(G)+1$. Hence, a vertex in $V(G)-V\left(C_{n}\right)$ is either a support or a pendant vertex of G. Therefore, G is the connected unicyclic graph obtained from $C_{n}(n \geq 5)$ by joining atleast one $P_{m}^{+}(m \geq 1)$ or by attaching a pendant vertex (or) both at atleast one vertex of C_{n}. In this case, number of pendant vertices of G is the same as those of supports of G.
(c) If either G has s vertices $(0 \leq s \leq n, s \neq 3)$ in C_{n}, each is of degree 2 in G and these are the only vertices in $V\left(C_{n}\right) \cap V(G)$ of degree 2 .
(or) G has three non consecutive vertices in C_{n}, each is of degree 2 in G, then also $\gamma_{c t d}(G)>\gamma(G)$, since in a dominating set support of G adjacent to a vertex of C_{n} dominates both its pendant vertices and a vertex of C_{n}, whereas in a ctd-set, pendant vertices dominate only its supports. Therefore, there exists exactly three consecutive vertices of C_{n} having degree

2 in G and the remaining $(n-3)$ vertices of C_{n} have degree atleast 3 in G.
(d) Let atleast one of the above $(n-3)$ vertices of C_{n} be not the supports of G. Then, atleast one $P_{m}^{+}(m \geq 1)$ alone is joined at atleast one of the above $(n-3)$ vertices. Then, $\gamma(G) \geq$ (number of supports of $G)+1$ and $\gamma_{c t d}(G) \geq($ number of pendant vertices) $+n-2$. That is, G is the connected graph obtained from C_{n} either by attaching a pendant edge
(or) by attaching a pendant edge and then joining atleast one $P_{m}^{+}(m \geq 1)$ at each of the $(n-3)$ consecutive vertices of C_{n}. Therefore, $G \in \mathcal{G}_{1}^{(n-3)} \cup \mathcal{G}_{2}^{(n-3)}$.
(e) Let w, x, y be the vertices in C_{n} each is of degree 2 in G such that x is adjacent to both w and y in C_{n}. If atleast one $P_{m}^{+}(m \geq 1)$ is joined either at any two adjacent vertices of w, x, y or at x, then $\gamma_{c t d}(G)>\gamma(G)$. Therefore, atleast one P_{m}^{+} $(m \geq 1)$ is joined at atleast one of w and y. Hence, $G \in \mathcal{G}_{3}^{(n-3)}$. In all the cases, $G \in \bigcup_{i=1}^{3} \mathcal{G}_{i}^{(n-3)}$.
Conversely, if $G \in \mathcal{G}_{1}^{(n-3)}$, then $\gamma(G)=\gamma_{c t d}(G)=n-2$ and if $G \in \mathcal{G}_{2}^{(n-3)} \cup \mathcal{G}_{3}^{(n-3)}$, then number of supports of $G=$ number of pendant vertices of G and $\gamma(G)=$ (number of supports of $G)+1$ and $\gamma_{c t d}(G)=($ number of pendant vertices) +1 . Hence the theorem is proved.

Example 3.1. In the following graphs, $G_{1} \in \mathcal{G}_{1}^{(n-3)}, G_{2} \in \mathcal{G}_{2}^{(n-3)}, G_{3}, G_{4} \in \mathcal{G}_{3}^{(n-3)}$.

Figure 1.

In a similar manner, the following theorem can be proved.

Theorem 3.2. Let G be a connected unicyclic graph with the cycle C_{3} or C_{4}. Then, $\gamma(G)=\gamma_{c t d}(G)$ if and only if G is one of the following graphs.
(a) G is obtained from C_{3} by joining atleast one $P_{m}^{+}(m \geq 1)$ at one or two vertices of C_{n}.
(b) G is obtained from C_{4} by joining atleast one $P_{m}^{+}(m \geq 1)$ at one or two adjacent vertices of C_{4} and then attaching a pendant edge at exactly one of the above vertices.
(c) G is obtained from C_{4} by joining atleast one $P_{m}^{+}(m \geq 1)$ at a vertex, say v of C_{4} and then attaching a pendant edge at a vertex of C_{4} adjacent to v.

In the following, the connected unicyclic graphs, for which $\gamma_{c t d}(G)=\gamma(G)+1$, are found.

Theorem 3.3. Let G be a connected unicyclic graph with the cycle $C_{n}, n \geq 5$. Then, $\gamma_{c t d}(G)=\gamma(G)+1$ if and only if
(i) $G \in\left\{\mathcal{G}_{1}^{(t)}, n-4 \leq t \leq n, t \neq n-3\right\} \cup\left\{\mathcal{G}_{2}^{(t)}, n-4 \leq t \leq n-1, t \neq n-3\right\} \cup\left\{\mathcal{G}_{3}^{(t)}, t \neq n\right\}$ (or)
(ii) G is obtained from C_{5} by joining atleast one $P_{m}^{+}(m \geq 1)$ at a vertex of C_{5} (or)
(iii) G is obtained from C_{5} (or) C_{6} by joining atleast one $P_{m}^{+}(m \geq 1)$ at any two adjacent vertices of C_{5} or C_{6} and then attaching a pendant edge at one of the above two vertices.

Proof. Let G be a connected unicyclic graph with $C_{n}(n \geq 5)$ as the cycle. Assume $\gamma_{c t d}(G)=\gamma(G)+1$. From the proof of Theorem 3.1, G is a connected unicyclic graph obtained from $C_{n}(n \geq 5)$ by joining atleast one $P_{m}^{+}(m \geq 1)$ or by attaching a pendant edge or both at atleast one vertex of $C_{n}(n \geq 5)$. In this case, number of pendant vertices of G is the same as those of supports of G. Let t be the number of supports of G in C_{n}.
(a) Let s consecutive vertices of C_{n} have degree 2 in G, where $s \geq 5$ and $s \leq n-1$ and $t+s=n$. Then, $\gamma(G)=$ (number of supports of $G)+\left\lceil\frac{s-2}{3}\right\rceil$ whereas, $\gamma_{c t d}(G)=$ (number of pendant vertices of $\left.G\right)+(s-2)$. Hence, for $n \geq 5$, $\gamma_{c t d}(G)>\gamma(G)+1$. Therefore, atmost four consecutive vertices of C_{n} have degree 2 in G. As in Theorem 3.1, G is a connected unicyclic graph obtained from C_{n} either by attaching a pendant edge (or) attaching a pendant edge and joining atleast one $P_{m}^{+}(m \geq 1)$ at atleast $(n-4)$ consecutive vertices of C_{n}.
(b) If $(n-3)$ consecutive vertices of C_{n} are supports of G and the remaining three vertices of C_{n} have degree two, then $\gamma_{c t d}(G)=\gamma(G)$. Hence, s consecutive vertices of C_{n} have degree 2 in G, where $0 \leq s \leq 4, s \neq 3$. Therefore, $t(t \leq n)$ consecutive vertices of C_{n} are supports of G such that each support is adjacent to exactly one pendant vertex. At these support atleast one $P_{m}^{+}(m \geq 1)$ may be or may not be joined. The remaining $(n-t)(=s)$ consecutive vertices of C_{n} have degree 2 in G, where $n-t \leq 4$ and $n-t \neq 3$. That is, $n-4 \leq t \leq n, t \neq n-3$. If both a pendant edge is attached and atleast one $P_{m}^{+}(m \geq 1)$ is joined at each vertex of C_{n} in G, then $\gamma_{c t d}(G)>\gamma(G)+1$. Therefore, the connected unicyclic graph G is such that
(i) $t(t \leq n)$ consecutive vertices of C_{n} are supports of G, each is adjacent to exactly one pendant vertex and the remaining $(n-t)$ consecutive vertices of C_{n} have degree 2 in G, where $n-4 \leq t \leq n, t \neq n-3$. That is, $G \in \mathcal{G}_{1}^{(t)}, n-4 \leq t \leq n$, $t \neq n-3$. (or)
(ii) G is obtained from the class of graphs $\mathcal{G}_{1}^{(t)}, n-4 \leq t \leq n-1, t \neq n-3$ by joining atleast one $P_{m}^{+}(m \geq 1)$ at the above t vertices of C_{n}, where $n-4 \leq t \leq n-1, t \neq n-3$. That is, $G \in \mathcal{G}_{2}^{(t)}, n-4 \leq t \leq n-1, t \neq n-3$.
(c) Let $G \in \mathcal{G}_{1}^{(t)}, n-4 \leq t \leq n, t \neq n-3$ then $(n-t)$ consecutive vertices of C_{n} have degree 2 in G. If atleast one P_{m}^{+} $(m \geq 1)$ is joined at atleast two of these $(n-t)$ consecutive vertices of C_{n} (or) at a vertex which is not adjacent to one of the end vertices of above $(n-t)(n \neq t)$ consecutive vertices of C_{n}, then $\gamma_{c t d}(G)>\gamma(G)+1$. Therefore, $G \in \mathcal{G}_{3}^{(t)}, t \neq n$. In a similar manner, it can also be proved that, if $\gamma_{c t d}(G)=\gamma(G)+1$, then G can be one of the graphs mentioned in (ii) and (iii) in the theorem.

Conversely, if G is a connected unicyclic graph mentioned in (i), (ii) or (iii), then it can be verified that $\gamma_{c t d}(G)=\gamma(G)+1$.

In a similar manner, the following Theorems 3.4 and 3.5 can be proved.

Theorem 3.4. Let G be any connected unicyclic graph with C_{3} as the unique cycle. Then, $\gamma_{c t d}(G)=\gamma(G)+1$ if and only if G is one of the following graphs.
(a) G is obtained from C_{3} by attaching exactly one pendant edge at atleast one vertex of C_{3}.
(b) G is obtained from C_{3} by attaching a path of length three (or) a path of length three and then joining atleast one P_{m}^{+} $(m \geq 1)$ at exactly one vertex of C_{3}.
(c) G is obtained from C_{3} by joining atleast one P_{m}^{+}at one or two vertices of C_{3} and then attaching a pendant edge at atleast one vertex of C_{3}.

Theorem 3.5. Let G be any connected unicyclic graph with C_{4} as the unique cycle. Then, $\gamma_{c t d}(G)=\gamma(G)+1$ if and only if G is one of the following graphs.
(a) G is obtained from C_{4} by attaching exactly one pendant edge at atleast two vertices of C_{4}.
(b) G is obtained from C_{4} by joining atleast one $P_{m}^{+}(m \geq 1)$ at a vertex of C_{4} and then attaching a pendant edge at t vertices of C_{4}, where $0 \leq t \leq 4, t \neq 1$.
(c) G is obtained from C_{4} by attaching two pendant edges at a vertex of C_{4} (or) by attaching two pendant edges at a vertex and joining atleast one $P_{m}^{+}(m \geq 1)$ at this vertex or a vertex adjacent to it.
(d) G is obtained from C_{4} by joining atleast one $P_{m}^{+}(m \geq 1)$ at any two adjacent vertices, say u and v of C_{4} and attaching a pendant edge at t vertices of C_{4} where $0 \leq t \leq 4, t \neq 1$ and these t vertices include both u and v.
(e) G is obtained from C_{4} by attaching a path of length 3 at a vertex of C_{4}.
(f) G is obtained from C_{4} by attaching a path of length 3 at a vertex u and then attaching a pendant edge at u or at a vertex of C_{4} adjacent to u.
(g) G is obtained from the graphs mentioned in (vi) by joining atleast one $P_{m}^{+}(m \geq 1)$ at the vertex having the pendant edge.

Theorem 3.6. For any integer $a \geq 2$, there exists a connected graph G with $\gamma_{c t d}(G)=\gamma(G)+a$.

Proof. Consider the cycle $C_{2 a+3}$ on $(2 a+3)$ vertices. Attach exactly one pendant edge at each of any two consecutive vertices of $C_{2 a+3}$. Let the resulting graph be G. For this $G, \gamma(G)=a+1, \gamma_{c t d}(G)=2 a+1$. Hence, $\gamma_{c t d}(G)=\gamma(G)+a$, $a \geq 2$.

References

[1] F.Harary, Graph Theory, Addison Wesley, Reading Mass, (1969).
[2] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New York, (1998).
[3] S.Muthammai, M.Bhanumathi and P.Vidhya, Complementary tree domination in graphs, International Mathematical Forum, 6(26)(2011), 1273-1283.
[4] O.Ore, Theory of Graphs, Amer. Math Soc. Colloq. Publ., 38, Providence, (1962).
[5] L.Volkman, On graph with equal domination and covering numbers, Discrete Math., 51(1994), 211-217.

[^0]: * E-mail: vidhya_lec@yahoo.co.in

