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Abstract: A set D of a graph G = (V,E) is a dominating set if every vertex in V −D is adjacent to some vertex in D. The domination

number γ(G) of G is the minimum cardinality of a dominating set. A dominating set D is called a complementary tree
dominating set if the induced subgraph < V −D > is a tree. The minimum cardinality of a complementary tree dominating

set is called the complementary tree domination number of G and is denoted by γctd(G). The concept of complementary

tree domination number in graphs is studied in [? ]. In this paper, we have studied the changing and unchanging of
complementary tree domination number in graphs.
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1. Introduction

The changing and unchanging terminology was first suggested by Harary [3]. It is useful to partition the vertex set or

the edge set of a graph into sets according to how their addition or removal affects the domination number. This concept

of changing and unchanging invariant of graphs is also studied in [1, 2, 4, 6, 8]. In this paper, a study of changing and

unchanging of complementary tree domination number in connected graphs is initiated.

2. Prior Results

Definition 2.1. A dominating set D ⊆ V of a connected graph G = (V,E) is said to be a complementary tree dominat-

ing set of a connected graph G, if the induced subgraph < V −D > is a tree. The minimum cardinality of a complementary

tree dominating set is called the complementary tree domination number of G and is denoted by γctd(G). A set

corresponding to the complementary tree dominating number is called γctd-set of G. A complementary tree dominating set

is denoted as a ctd-set in brief.

Here, it is assumed as K1, the complete graph on a single vertex is connected. Therefore, a complementary tree dominating

set can have atmost (p − 1) vertices and hence, γctd(G) ≤ p − 1 and γctd-set exists for all connected graphs. Since every

ctd-set is a dominating set, γ(G) ≤ γctd(G).

∗ E-mail: @mail.com
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A complementary tree dominating set D of G is said to be minimal, if no proper subset of D is a complementary tree

dominating set of G.

Theorem 2.2. A ctd-set D of a connected graph G = (V,E) is minimal if and only if for each vertex v in D, one of the

following conditions hold.

(i) v is an isolated vertex of D.

(ii) there exists a vertex u in V −D for which N(u) ∩D = {v}.

(iii) N(v) ∩ (V −D) = φ.

(iv) The subgraph < (V −D) ∪ {v} > induced by (V −D) ∪ {v},

either contains a cycle or disconnected.

Proof. Suppose D is a minimal ctd-set. On the contrary, if there exists a vertex v ∈ D, such that v does not satisfy any

of the given conditions. Then by (i) and (ii), D′ = D − {v} is a dominating set of G, by (iii), < V −D′ > is connected and

by (iv), < V −D′ > is a tree. This implies that D′ is a complementary tree dominating set of G, which is a contradiction.

Therefore, for each v ∈ D, one of the conditions (i)-(iv) holds.

Conversely, suppose D is a ctd-set and for each vertex v in D, one of the four stated conditions holds. Now, D is a minimal

ctd-set is to be proved. Suppose, D is not a minimal ctd-set, then there exists a vertex v in D, such that D−{v} is a ctd-set.

Thus, v is adjacent to atleast one vertex in D−{v}. Therefore, condition (i) does not hold. Also if D−{v} is a dominating

set, then any vertex in V − (D − {v}) is adjacent to atleast one vertex in D − {v}. Therefore, for v, the condition (ii) does

not hold. Since D−{v} is a ctd-set, < V − (D−{v}) > is a tree, which contradicts the conditions (iii) and (iv). Therefore,

there exists a vertex v in D such that v does not satisfy conditions (i), (ii), (iii) and (iv), a contradiction to the assumption.

Hence, D is a minimal ctd-set.

In the following, complementary tree domination number of some standard classes of graphs are given.

Observation 2.3.

(a) For any path Pn with n vertices, γctd(Pn) = n− 2, n ≥ 4.

(b) For any cycle Cn with n vertices, γctd(Cn) = n − 2, n ≥ 3. Let u, v be any two adjacent vertices of degree 2 in Pn (or

Cn). Then V (Pn)− {u, v} (or V (Cn)− {u, v}) is a γctd-set of Pn (or Cn).

(c) For any complete graph Kn with n vertices, γctd(Kn) = n− 2, n ≥ 3. Here, a set having any n− 2 vertices of Kn is a

γctd-set of Kn, n ≥ 3.

(d) For any star K1,n, γctd(K1,n) = n, n ≥ 2. Here, the set having all the vertices of K1,n except the central vertex forms a

γctd-set.

(e) For any complete bipartite graph Km,n with m,n ≥ 2, γctd(Km,n) = min{m,n}. Let A,B be a bipartition of Km,n

(m,n ≥ 2 and m ≤ n) with |A| = m and |B| = n. Then, the set containing (m − 1) vertices of A and a vertex of B

forms a ctd-set of Km,n.

(f) γctd(Cn ◦K1) = n+ 1, n ≥ 3, where Cn ◦K1 is the Corona of Cn and K1. Here, all the n-pendant vertices and a vertex

of Cn forms a γctd-set.

(g) For any wheel Wn with n vertices, γctd(Wn) = 2, n ≥ 4. Here, the central vertex and a vertex of Cn−1 forms a γctd-set.
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(h) Let G be a subdivision of a star K1,n, n ≥ 2. Then γctd(G) = n + 1. Here, all the n-pendant vertices and a vertex of

degree 2 (other than the central vertex) forms a γctd-set.

In the following, the graphs G for which γctd(G) = 1, 2, p− 1 and p− 2 are found.

Proposition 2.4. γctd(G) = 1 if and only if G ∼= T +K1, where T is a tree.

Proof. Assume G ∼= T+K1 and V (K1) = {v}. Then, the set {v} is a complementary tree dominating set of G. Conversely,

if γctd(G) = 1, then there exists a complementary tree dominating set D of G with |D| = 1 such that < V −D > is a tree.

Since, each vertex in V −D is adjacent to the vertex in D, G ∼= T +K1, where T =< V −D >.

Theorem 2.5. Let G be a connected graph with p ≥ 4. Then γctd(G) = p− 1 if and only if G is a star on p vertices.

Proof. If G ∼= K1,p−1, then the set of all pendant vertices of K1,p−1 forms a minimum complementary tree dominating

set for G. Hence, γctd(G) = p− 1.

Conversely, assume γctd(G) = p − 1. Then, there exists a complementary tree dominating set D containing p − 1 vertices.

Let V −D = {v}. Since D is a dominating set of G, v is adjacent to atleast one of the vertices in D, say u. If u is adjacent

to any of the vertices in D, then the vertex u must be in V −D. Since D is minimum, u is adjacent to none of the vertices

in D. Hence, G ∼= K1,p−1.

Theorem 2.6. Let G be a connected graph containing a cycle. Then, γctd(G) = p− 2 (p ≥ 5) if and only if G is isomorphic

to one of the following graphs. Cp,Kp or G is the graph obtained from a complete graph by attaching pendant edges at atleast

one of the vertices of the complete graph.

Proof. For all graphs given in the theorem, γctd(G) = p− 2 (p ≥ 5).

Conversely, let G be a connected graph with γctd(G) = p − 2 and G contains a cycle. Let D be a complementary tree

dominating set of G such that |D| = p− 2 and V −D = {w1, w2} and < V −D >∼= K2.

Case 1. δ(G) = 1

By Proposition 2.4, all vertices of degree 1 are in D and any vertex of degree 1 in D is adjacent to atmost one vertex in

V −D since < V −D >∼= K2. Also each vertex in V −D is adjacent to atleast one vertex in D.

Let D′ = D − {pendant vertices}. Then, {w1, w2} ∪D′ will be a complete graph. Otherwise, there exists a vertex u ∈ D′,

such that u is not adjacent to atleast one of the vertices of D′−{u} and hence, D−{u} is a complementary tree dominating

set. Therefore, G is the graph obtained from a complete graph by attaching pendant edges at atleast one of the vertices.

Case 2. δ(G) = 2

Let w be vertex of degree atleast 3 in G and w ∈ V − D and w = w1. Let each vertex of D be adjacent to both w1 and

w2. If < D > is complete, then G is complete. Assume < D > is not complete. Then, there exists atleast one pair of

nonadjacent vertices in D, say u, v ∈ D and V − {u, v, w1} is a complementary tree dominating set of G containing (p− 3)

vertices, which is a contradiction. Therefore, there exists a vertex in D which is adjacent to exactly one of w1 and w2 and

again a complementary tree dominating set having (p− 3) vertices is obtained and hence, w ∈ D. Since deg(w) ≥ 3, there

exists atleast one vertex, say v ∈ D, adjacent to w. Then, either V − {v, w,w1} or V − {v, w,w2} will be a complementary

tree dominating set of G. Therefore, there exists no vertex of degree atleast 3 in G and hence, each vertex in G is of degree

2 and G is a cycle.

Case 3. δ(G) ≥ 3.

Let u, v be any two nonadjacent vertices in < D >. Then, either V − {u, v, w1} or V − {u, v, w2} will be a complementary

tree dominating set, which is a contradiction. Therefore < D ∪ {w1, w2} > is complete. Hence, G ∼= Kp.
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3. Main Results

Observation 3.1.

(a) If G is a cycle or a complete graph on atleast three vertices, then, V (G) = V D−. Let G ∼= Cn or Kn, n ≥ 3. By

Observation 2.3(b) and 2.3(c) γctd(G) = n− 2. Let v ∈ V (G). Then G− v ∼= Pn−1 or Kn−1 and γctd(G− v) = n− 3 <

γctd(G). Therefore, v ∈ V D− and hence, V (G) = V D−.

(b) If G is a path on atleast four vertices and if v is a pendant vertex of G, then v ∈ V D−. Let G ∼= Pn, n ≥ 4. By Observation

2.3(a), γctd(Pn) = n − 2. Let v be a pendant vertex in Pn. Then, G − v ∼= Pn−1 and γctd(G − v) = n − 3 < γctd(G).

Therefore, v ∈ V D−.

(c) If G is a complete bipartite graph Km,n (m,n ≥ 3), then, V (G) = V D− ∪ V D0 and if G is K2,n (n ≥ 3), then

V (G) = V D0 ∪ V D+. Let G be a complete bipartite graph Km,n, where m ≥ 2, n ≥ 3. Without loss of generality,

let m < n. Therefore, γctd(G) = min(m,n) = m (by Observation 2.3(e)). Let v ∈ V (G). If G ∼= Km,n (m,n ≥ 3).

Then, G − v ∼= Km−1,n or Km,n−1. Therefore, γctd(G − v) = m − 1 or m. Therefore, v ∈ V D− ∪ V D0. Hence,

V (G) = V D− ∪ V D0. Similarly if G ∼= K2,n (n ≥ 3), then G − v ∼= K1,n or K2,n−1. Therefore, γctd(G − v) = n or 2.

Hence, v ∈ V D+ ∪ V D0 and V (G) = V D+ ∪ V D0.

(d) If G is a Corona Cn ◦K1 (n ≥ 3) and if v is a pendant vertex of G, then v ∈ V D−. Let G be the corona Cn ◦K1 and let

v be the pendant vertex of G. Then, G− v is a graph obtained by attaching exactly one pendant edge at each of (n− 1)

vertices of Cn. Then a minimum ctd-set of G−v contains all the (n−1) pendant vertices and a vertex of Cn and hence,

γctd(G− v) = n. But, γctd(G) = n+ 1 > γctd(G− v). Therefore, v ∈ V D−.

(e) If G is a wheel Wn on n (n ≥ 6) vertices, then V (G) = V D−∪V D+. If G ∼= W5, then V (G) = V D0∪V D+. If G ∼= W4,

then V (G) = V D−. Let G be a wheel Wn on n (n ≥ 6) vertices, where Wn = Cn−1 + K1. Then, γctd(Wn) = 2 (by

Observation 2.3(g)). Let v be a vertex of Wn.

Case 1. v ∈ V (Cn−1). Then, G− v ∼= K1 + Pn−2 and γctd(G− v) = 1 < γctd(G). Hence, v ∈ V D−.

Case 2. v ∈ V (K1). Then, G − v ∼= Cn−1 and γctd(G − v) = n − 3 > γctd(G). Hence, v ∈ V D+. Therefore,

V (G) = V D− ∪ V D+.

Proposition 3.2. Let G be a connected graph with p (p ≥ 4) vertices. If γctd(G) = 1, then V (G) = V D0 ∪ V D+.

Proof. Assume γctd(G) = 1. Then by the Proposition 2.4, G ∼= K1+T , where T is a tree on (p−1) vertices. Let v ∈ V (G).

Case 1. T is a star. Then, G ∼= K2 + (p− 2)K1. If v ∈ V (K1), then G− v ∼= K2 + (p− 3)K1 and γctd(G− v) = 1 = γctd(G).

Therefore, v ∈ V D0. If v ∈ V (K2), then G− v ∼= K1,p−2 and γctd(G− v) = p− 2 > γctd(G) and hence v ∈ V D+

Case 2. T is not a star

Subcase 2.1. v ∈ V (K1). Then, G− v ∼= T and γctd(G− v) > 1 = γctd(G). Hence, v ∈ V D+.

Subcase 2.2. v ∈ V (T ) is such that degT (v) = 1. Then G − v ∼= K1 + T ′, where T ′ = T − v is a tree on (p − 2) vertices.

Hence, γctd(G− v) = 1 = γctd(G) and v ∈ V D0.

Subcase 2.3. v ∈ V (T ) is such that degT (v) ≥ 2. Then, T − v is disconnected such that each component of T − v is either

a tree or an isolated vertex and G − v ∼= K1 + (T − v). Hence, γctd(G − v) > 1 = γctd(G) and v ∈ V D+. From the above

cases, it can be concluded that v ∈ V D0 ∪ V D+, for all v ∈ V (G) and hence, V (G) = V D0 ∪ V D+.

Proposition 3.3. Let T be any tree. If G is a graph with atleast four vertices obtained from K1 + T with one pendant edge
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attached at the vertex of K1, then V (G) = V D− ∪ V D0 ∪ V D+, where

V D− = {v ∈ V (G)/degG(v) = 1}

V D0 = {v ∈ V (G)/v ∈ V (T ) and degT (v) = 1}

V D+ = {v ∈ V (G)/v ∈ V (T ) and degT (v) ≥ 2}

Proof. Let G be a graph given above. Then by Theorem ??, γctd(G) = 2.

Case 1. v ∈ V (G) is such that degG(v) = 1. Then, G − v ∼= K1 + T and by Proposition 2.4, γctd(G − v) = 1 and hence

v ∈ V D−.

Case 2. v ∈ V (G)∩V (T ) is such that degT (v) = 1. Then, the set containing the pendant vertex of G and the vertex of K1

forms a γctd-set of G− v and hence γctd(G− v) = 2 = γctd(G). Therefore, v ∈ V D0.

Case 3. v ∈ V (G) ∩ V (T ) is such that degT (v) ≥ 2. If v is a support of T , then G − v has atleast two pendant vertices

and the set containing pendant vertices of G − v and the vertex of K1 forms a γctd-set of G − v. Hence, γctd(G − v) ≥ 3

and therefore, v ∈ V D+. Let v be not a support of T and degT (v) ≥ 2. Let T1, T2, . . . , Tn (n ≥ 2) be the components of

T − v and let Ti be a component of T − v with maximum number of vertices. Then, V (G) − V (Ti) is a ctd-set of G − v

having atleast three vertices. Choose a vertex from each component T1, T2, . . . , Tn (n ≥ 3). Let D be the set of these n

vertices together with the vertex of K1. Then, < D >∼= K1,n (n ≥ 3) and V −D has atleast three vertices and is a ctd-set

of G − v. Then, γctd(G − v) = min{|V (G) − V (Ti)|, |V −D|} and γctd(G − v) ≥ 3. Therefore, v ∈ V D+. From the above

cases, V (G) = V D− ∪ V D0 ∪ V D+.

Proposition 3.4. Let G be a connected graph with p (p ≥ 4) vertices. If γctd(G) = p−1, then V D− = {v ∈ V (G)/degG(v) =

1}.

Proof. Let v ∈ V (G). Assume γctd(G) = p − 1. Then, G ∼= K1,p−1. If degG(v) = p − 1, then G − v is totally

disconnected. If degG(v) = 1, then G − v ∼= K1,p−2 and γctd(G − v) = p − 2 < γctd(G). Hence, v ∈ V D− and therefore,

V D− = {v ∈ V (G)/degG(v) = 1}.

Proposition 3.5. Let G be a connected graph with p (p ≥ 5) vertices. If γctd(G) = p− 2 and if S be the set of cutvertices

of G, then V D− = V (G)− S.

Proof. By Theorems 2.6 and ??, γctd(G) = p− 2 (p ≥ 5) if and only if G is one of the following graphs

(i) G is a cycle on p vertices

(ii) G is a complete graph on p vertices

(iii) G is a graph obtained from a complete graph by attaching pendant edges at atleast one of the vertices of the complete

graph

(iv) G is a path on p vertices

(v) G is a tree obtained from a path by attaching pendant edges at atleast one of the end vertices of the path

Let v ∈ V (G).

Case 1. G is a cycle on p vertices. Then, G− v ∼= Pp−1 and γctd(G− v) = p− 3 < γctd(G). Therefore, v ∈ V D−

Case 2. G is a complete graph on p vertices. Then, G− v ∼= Kp−1 and γctd(G− v) = p− 3 < γctd(G). Therefore, v ∈ V D−

Case 3. G is a graph obtained from a complete graph by attaching pendant edges at atleast one of the vertices of the

complete graph.
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(a) If degG(v) = 1 and if v is the only vertex of degree 1 in G, then G − v ∼= Kp−1 and γctd(G − v) = p − 3 < γctd(G).

Hence, v ∈ V D−.

(b) Let degG(v) = 1 and let there exists t (t ≥ 2) vertices of degree 1 in G. Then, G − v is a graph with (p − 1) vertices

obtained from a complete graph by attaching (t− 1) pendant edges at atleast one of the vertices of the complete graph.

Then, γctd(G− v) = (p− 1)− 2 = p− 3 < γctd(G). Hence, v ∈ V D−.

(c) Let v be a vertex of the complete graph and be not a support of G. Then, degG(v) = n − 1, where n (n < p) is the

number of vertices of the complete graph and G− v is the graph obtained by attaching pendant edges at atleast one of

the vertices of the complete graph Kn−1. Since G− v has (p− 1) vertices, γctd(G− v) = p− 3 and hence, v ∈ V D−.

(d) If v is a support of G, then G− v is disconnected.

Case 4. G is a path on p vertices (or) G is a tree obtained from a path by attaching pendant edges at atleast one of the

vertices of the path. If v is a pendant vertex of G, then γctd(G−v) = p−3 < γctd(G). Hence, v ∈ V D−. If v is not a pendant

vertex of G, then G− v is disconnected. From Case 1-4, it can be seen that v ∈ V D− and therefore, V (G) = V D−.

Theorem 3.6. Let G be a connected graph and let v ∈ V (G) and D be a γctd-set of G. Then, v ∈ V D− if either

(i) vertices of V −D adjacent to v ∈ D are adjacent to atleast one vertex in D other than v (or)

(ii) v is a pendant vertex in V −D and there exists a vertex u ∈ N(v) ∩D such that N(u) ∩D 6= φ and u is adjacent to

exactly one vertex, say w in (V (G)−D)− {v} such that N(w) ∩ (D − {u}) 6= φ.

Proof. Let D be a γctd-set of G and v ∈ V (G). Assume (i).

Let v ∈ D and let D′ = D − {v}, V − D′ = V − (D − {v}) and D′ ⊆ V − {v}. Since < V − D > is a tree and v ∈ D,

< V (G − v) − D′ > is also a tree. Also, each vertex in V (G − v) − D′ is adjacent to atleast one vertex in D′ and hence,

D′ = D − {v} is a ctd-set of G− v. Therefore,

γctd(G− v) ≤ |D − {v}|

= γctd(G)− 1 < γvtd(G)

Hence, v ∈ V D−. Assume (ii).

Let v ∈ V −D and be a pendant vertex in V −D, u ∈ N(v) ∩D be such that N(u) ∩D 6= φ and u be adjacent to exactly

one vertex w in (V − D) − {v} such that N(w) ∩ (D − {u}) 6= φ. Let D′ = D − {u}. Then, u ∈ V − D′, N(u) ∩ D 6= φ

implies that u is adjacent to atleast one vertex in D′.

Similarly, N(w) ∩ (D − {u}) 6= φ implies that w is also adjacent to atleast one vertex in D′. Since D is a dominating set of

G, all the remaining vertices in V −D′ are adjacent to atleast one vertex in D′. Therefore, D′ is a dominating set of G− v.

Since < V −D > is a tree and u is adjacent to exactly one vertex in (V −D)− {v}, < V −D′ > is also a tree. Hence, D′

is a ctd-set of G− v and γctd(G− v) ≤ |D′| = |D| − 1 = γctd(G)− 1 < γctd(G). Therefore, v ∈ V D−.

Theorem 3.7. Let G be a connected graph and let D be a γctd-set of G. If v ∈ V (G) is a pendant vertex in V −D and for

every u ∈ D, < V −D) ∪ {u} > either contains a cycle or is disconnected, then v ∈ V D0 ∪ V D−.

Proof. Let D be a γctd-set of G and let v be a pendant vertex in V −D. If v satisfies the conditions given in the theorem,

then D is also a ctd-set of G− v. Therefore, γctd(G− v) ≤ |D| = γctd(G) and hence v ∈ V D0 ∪ V D−.
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Observation 3.8. Let G be a connected graph and let v ∈ V (G)

(i) Let G− v be a connected graph such that each vertex of degree atleast two is a support. Let t be the number of pendant

vertices of G. Then,

(a) v ∈ V D0, if t = γctd(G)

(b) v ∈ V D−, if t < γctd(G)

(c) v ∈ V D+, if t > γctd(G)

(ii) If G− v is a connected graph with γctd(G) pendant vertices and if there exists atleast one nonsupport vertex of degree

atleast two, then v ∈ V D+.

(iii) Let G− v be a complete graph, a cycle or a path on n vertices, then

(a) v ∈ V D0, if γctd(G) = n− 2

(b) v ∈ V D−, if γctd(G) > n− 2

(c) v ∈ V D+, if γctd(G) < n− 2

(iv) Let G− v be a graph which is the one point union of t triangles. Then

(a) v ∈ V D0, if t = γctd(G)

(b) v ∈ V D−, if t < γctd(G)

(c) v ∈ V D+, if t > γctd(G)

Proposition 3.9. If G is a connected graph having atleast four vertices with γctd(G) = 1, then E(G) = ED+.

Proof. Let G be a connected graph with p (p ≥ 4) vertices. γctd(G) = 1 implies that G ∼= K1 + T , where T is a tree on

(p− 1) vertices (by Proposition 2.4). Let e = (u, v) ∈ E(G) and let D be a γctd-set of G. Therefore, |D| = 1.

Case 1. u ∈ D and v ∈ V −D. Then, u ∈ V (K1) and v ∈ V (T ).

Subcase 1.1. v is a pendant vertex in T , then G − e is a graph obtained by attaching a pendant edge at a vertex of the

graph K1 + T ′, where T ′ is a tree on (p− 2) vertices. γctd(G− e) = γctd(K1 + T ′) = 2 > γctd(G). Hence, e ∈ ED+.

Subcase 1.2. v is a vertex of degree atleast two in T . Then, G−e is not isomorphic to K1 +T ′′, for any tree T ′′. Therefore,

γctd(G− e) ≥ 2 > γctd(G). Hence, e ∈ ED+.

Case 2. u, v ∈ V −D. Then, G− e is a graph K1 + (T1 ∪ T2), where T1 and T2 are any two disjoint trees and the number

of vertices in T1 ∪ T2 is p− 1. γctd(G− e) = 1 +min(|T1|, |T2|) > γctd(G) and hence, e ∈ ED+. From Case 1 and Case 2, it

can be concluded that E(G) = ED+.

Proposition 3.10. Let T be any tree. Let G be the graph with atleast four vertices, obtained from K1 +T with one pendant

edge attached at the vertex of K1. If e is not a pendant edge of G, then e ∈ ED0 ∪ ED+.

Proof. Let G be the graph with atleast four vertices obtained from K1 + T with one pendant edge attached at the vertex

of K1, where T is any tree. Let D be a γctd-set of G. D contains the vertices of the pendant edge. By Theorem ??,

γctd(G) = 2. Let e = (u, v) ∈ E(G).

Case 1. u, v ∈ D. Then, e = (u, v) is the pendant edge and G− e is disconnected with one isolated vertex.

Case 2. u ∈ D, v ∈ V − D and degG(v) = 2. Then, v is a pendant vertex in T and G − e has two pendant vertices.

Therefore, γctd(G− e) ≥ 2 = γctd(G). Hence, e ∈ ED0 ∪ ED+.
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Case 3. u ∈ D, v ∈ V −D and degG(v) > 2. If T is a path on three vertices, then γctd(G − e) = γctd(G) = 2. Therefore,

e ∈ ED0. Let T be not a path on three vertices. If v is a support of T , then the set {u,w, x} is a γctd-set of G− e, where

w is the pendant vertex of G and x ∈ N(v) is a pendant vertex of T . Therefore, γctd(G − e) = 3 > γctd(G) and hence,

e ∈ ED+. If v is not a support of T , then the set containing u, pendant vertex of T and atleast two vertices of T forms a

γctd-set of G− e. Therefore, e ∈ ED+.

Case 4. u, v ∈ V −D.

Subcase 4.1. degG(u) = 2 and degG(v) ≥ 2. Then, u is a pendant vertex of T and v is a support of T adjacent to u in T , and

G−e contains two pendant vertices. Since degG(v) ≥ 2, T contains atleast three vertices and hence, γctd(G−e) ≥ 3 > γctd(G).

Therefore, e ∈ ED+.

Subcase 4.2. degG(u) ≥ 2 and degG(v) ≥ 2. Then, G − e is a graph K1 + (T1 ∪ T2) with a pendant edge attached at

the vertex of K1, where T1 and T2 are any two trees. Therefore, γctd-set of G − e contains a pendant vertex and atleast

one vertex from each of T1 and T2. Hence, γctd(G− e) ≥ 3 and e ∈ ED+. From the above cases, it can be concluded that

e ∈ ED+, if e is not a pendant edge of G.

Proposition 3.11. Let G be a connected graph obtained from a tree by joining each of the vertices of the tree to the vertices

of K2 such that for all v ∈ V (K2), degG(v) ≥ 2 and let e = (u, v) ∈ E(G). If D is a γctd-set of G and if atleast one of u

and v is an element of D, then e ∈ ED0 ∪ ED+.

Proof. Let G be a connected graph as given in the proposition. Then by Theorem ??, γctd(G) = 2. Let e = (u, v) ∈ E(G)

and let D be a γctd-set of G. Assume u ∈ D.

Case 1. v ∈ D. Then G − e is a graph obtained from a tree by joining each of the vertices of the tree to the vertices of

2K1 such that degG(w) ≥ 1, for all w ∈ V (2K1). By Theorem ??, γctd(G − e) = 2. Therefore, γctd(G − e) = γctd(G) and

hence, e ∈ ED0.

Case 2. v ∈ V −D.

Subcase 2.1. degG(u) = degG(v) = 2. Then, G− e is a graph with two pendant vertices. If |D| = |V −D| = 2, then G is

a path on four vertices. Therefore, γctd(G− e) = γctd(G) = 2. Otherwise, G− e contains a cycle with two pendant vertices

and hence, γctd(G− e) ≥ 3 > γctd(G). Therefore, e ∈ ED+.

Subcase 2.2. degG(u) ≥ 3. If degG(u) = 3, and w ∈ N(u) ∩ D is adjacent to all the vertices of the tree, then {w} is a

ctd-set of G− e and hence, γctd(G− e) = 1 < γctd(G). Therefore, e ∈ ED0. If degG(u) ≥ 3 and if G− e is a graph obtained

from a tree by joining each of the vertices of the tree to the vertices of 2K2 such that degG−e(x) ≥ 2, for all x ∈ V (2K2),

then γctd(G− e) = 2. Otherwise, γctd(G− e) ≥ 2. Hence, e ∈ ED0 ∪ ED+. From the above cases, e ∈ ED0 ∪ ED+.

In analogous to Proposition ??, the following proposition is stated without proof.

Proposition 3.12. Let G be a connected graph obtained from a tree by joining each of the vertices of the tree to the vertices

of 2K1 such that degG(v) ≥ 1 for all v ∈ V (2K1) and let e = (u, v) ∈ E(G). If G is a γctd-set of G and if atleast one of u

and v is a member of V −D, then e ∈ ED− ∪ ED0 ∪ ED+.

Proposition 3.13. Let G be a connected graph with p (p ≥ 5) vertices and let γctd(G) = p− 2. If e is not a cut edge of G,

then e ∈ ED0 ∪ ED−.

Proof. By Theorem 2.6 and Theorem ??, γctd(G) = p− 2 if and only if G is one of the following graphs

(i) G is a cycle on p vertices.

(ii) G is a complete graph on p vertices.

14



S.Muthammai and P.Vidhya

(iii) G is a graph obtained from a complete graph by attaching pendant edges at atleast one of the vertics of the complete

graph.

(iv) G is a path on p vertices.

(v) G is a tree obtained from a path by attaching pendant edges at atleast one of the end vertices of the path.

If G is a graph as in (i) or (ii), then e ∈ ED0 or e ∈ ED−. If G is a graph as in (iv) and (v), then each edge of G is a

cut edge. Let G be a graph given as in (iii). Let the complete graph be Kn, where n < p. Since e is not a cut edge of G,

e ∈ E(Kn). Then G− e is a graph obtained from Kn− e by attaching pendant edges at atleast one of the vertices of Kn− e.

Therefore, γctd(G− e) = p− 3 < p− 2 = γctd(G) and e ∈ ED−. Hence, e ∈ ED0 ∪ ED−.

Observation 3.14. Let G be a connected graph and let e = (u, v) ∈ E(G). Let D be a γctd-set of G, then

i) e ∈ ED0, if either

(a) both u, v ∈ D (or)

(b) u ∈ D, v ∈ V −D and v is adjacent to atleast two vertices in D

ii) e ∈ ED−, if u, v ∈ V −D and there exists a vertex w ∈ D such that N(w) ∩D 6= φ and N(w) ∩ (V −D) = {u, v}

iii) e ∈ ED0 ∪ ED+, if either

(a) u, v ∈ V −D (or)

(b) u ∈ D, v ∈ V −D and v is adjacent to exactly one vertex in D
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