

International Journal of Mathematics And its Applications

Changing and Unchanging of Complementary Tree Domination Number in Graphs

Research Article

S.Muthammai¹ and P.Vidhya²*

1 Government Arts College for Women (Autonomous), Pudukkottai, Tamilnadu, India.

2 S.D.N.B. Vaishnav College for Women (Autonomous), Chennai, Tamilnadu, India

Abstract: A set D of a graph G = (V, E) is a dominating set if every vertex in V - D is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set. A dominating set D is called a complementary tree dominating set if the induced subgraph $\langle V - D \rangle$ is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of G and is denoted by $\gamma_{ctd}(G)$. The concept of complementary tree domination number in graphs is studied in [?]. In this paper, we have studied the changing and unchanging of complementary tree domination number in graphs.

MSC: 05C69.

Keywords: Domination number, complementary tree dominating set, complementary tree domination number. © JS Publication.

1. Introduction

The changing and unchanging terminology was first suggested by Harary [3]. It is useful to partition the vertex set or the edge set of a graph into sets according to how their addition or removal affects the domination number. This concept of changing and unchanging invariant of graphs is also studied in [1, 2, 4, 6, 8]. In this paper, a study of changing and unchanging of complementary tree domination number in connected graphs is initiated.

2. Prior Results

Definition 2.1. A dominating set $D \subseteq V$ of a connected graph G = (V, E) is said to be a **complementary tree dominating set** of a connected graph G, if the induced subgraph $\langle V - D \rangle$ is a tree. The minimum cardinality of a complementary tree dominating set is called the **complementary tree domination number** of G and is denoted by $\gamma_{ctd}(G)$. A set corresponding to the complementary tree dominating number is called γ_{ctd} -set of G. A complementary tree dominating set is denoted as a ctd-set in brief.

Here, it is assumed as K_1 , the complete graph on a single vertex is connected. Therefore, a complementary tree dominating set can have atmost (p-1) vertices and hence, $\gamma_{ctd}(G) \leq p-1$ and γ_{ctd} -set exists for all connected graphs. Since every ctd-set is a dominating set, $\gamma(G) \leq \gamma_{ctd}(G)$.

E-mail: @mail.com

A complementary tree dominating set D of G is said to be minimal, if no proper subset of D is a complementary tree dominating set of G.

Theorem 2.2. A ctd-set D of a connected graph G = (V, E) is minimal if and only if for each vertex v in D, one of the following conditions hold.

- (i) v is an isolated vertex of D.
- (ii) there exists a vertex u in V D for which $N(u) \cap D = \{v\}$.
- (iii) $N(v) \cap (V D) = \phi$.
- (iv) The subgraph $\langle (V D) \cup \{v\} \rangle$ induced by $(V D) \cup \{v\}$, either contains a cycle or disconnected.

Proof. Suppose D is a minimal ctd-set. On the contrary, if there exists a vertex $v \in D$, such that v does not satisfy any of the given conditions. Then by (i) and (ii), $D' = D - \{v\}$ is a dominating set of G, by (iii), $\langle V - D' \rangle$ is connected and by (iv), $\langle V - D' \rangle$ is a tree. This implies that D' is a complementary tree dominating set of G, which is a contradiction. Therefore, for each $v \in D$, one of the conditions (i)-(iv) holds.

Conversely, suppose D is a ctd-set and for each vertex v in D, one of the four stated conditions holds. Now, D is a minimal ctd-set is to be proved. Suppose, D is not a minimal ctd-set, then there exists a vertex v in D, such that $D - \{v\}$ is a ctd-set. Thus, v is adjacent to atleast one vertex in $D - \{v\}$. Therefore, condition (i) does not hold. Also if $D - \{v\}$ is a dominating set, then any vertex in $V - (D - \{v\})$ is adjacent to atleast one vertex in $D - \{v\}$. Therefore, for v, the condition (ii) does not hold. Since $D - \{v\}$ is a ctd-set, $\langle V - (D - \{v\}) \rangle$ is a tree, which contradicts the conditions (iii) and (iv). Therefore, there exists a vertex v in D such that v does not satisfy conditions (i), (ii), (iii) and (iv), a contradiction to the assumption. Hence, D is a minimal ctd-set.

In the following, complementary tree domination number of some standard classes of graphs are given.

Observation 2.3.

- (a) For any path P_n with n vertices, $\gamma_{ctd}(P_n) = n 2, n \ge 4$.
- (b) For any cycle C_n with n vertices, $\gamma_{ctd}(C_n) = n 2$, $n \ge 3$. Let u, v be any two adjacent vertices of degree 2 in P_n (or C_n). Then $V(P_n) \{u, v\}$ (or $V(C_n) \{u, v\}$) is a γ_{ctd} -set of P_n (or C_n).
- (c) For any complete graph K_n with n vertices, $\gamma_{ctd}(K_n) = n 2$, $n \ge 3$. Here, a set having any n 2 vertices of K_n is a γ_{ctd} -set of K_n , $n \ge 3$.
- (d) For any star $K_{1,n}$, $\gamma_{ctd}(K_{1,n}) = n$, $n \ge 2$. Here, the set having all the vertices of $K_{1,n}$ except the central vertex forms a γ_{ctd} -set.
- (e) For any complete bipartite graph K_{m,n} with m, n ≥ 2, γ_{ctd}(K_{m,n}) = min{m,n}. Let A, B be a bipartition of K_{m,n}
 (m, n ≥ 2 and m ≤ n) with |A| = m and |B| = n. Then, the set containing (m − 1) vertices of A and a vertex of B forms a ctd-set of K_{m,n}.
- (f) $\gamma_{ctd}(C_n \circ K_1) = n + 1$, $n \ge 3$, where $C_n \circ K_1$ is the Corona of C_n and K_1 . Here, all the n-pendant vertices and a vertex of C_n forms a γ_{ctd} -set.
- (g) For any wheel W_n with n vertices, $\gamma_{ctd}(W_n) = 2$, $n \ge 4$. Here, the central vertex and a vertex of C_{n-1} forms a γ_{ctd} -set.

(h) Let G be a subdivision of a star $K_{1,n}$, $n \ge 2$. Then $\gamma_{ctd}(G) = n + 1$. Here, all the n-pendant vertices and a vertex of degree 2 (other than the central vertex) forms a γ_{ctd} -set.

In the following, the graphs G for which $\gamma_{ctd}(G) = 1, 2, p-1$ and p-2 are found.

Proposition 2.4. $\gamma_{ctd}(G) = 1$ if and only if $G \cong T + K_1$, where T is a tree.

Proof. Assume $G \cong T + K_1$ and $V(K_1) = \{v\}$. Then, the set $\{v\}$ is a complementary tree dominating set of G. Conversely, if $\gamma_{ctd}(G) = 1$, then there exists a complementary tree dominating set D of G with |D| = 1 such that $\langle V - D \rangle$ is a tree. Since, each vertex in V - D is adjacent to the vertex in $D, G \cong T + K_1$, where $T = \langle V - D \rangle$.

Theorem 2.5. Let G be a connected graph with $p \ge 4$. Then $\gamma_{ctd}(G) = p - 1$ if and only if G is a star on p vertices.

Proof. If $G \cong K_{1,p-1}$, then the set of all pendant vertices of $K_{1,p-1}$ forms a minimum complementary tree dominating set for G. Hence, $\gamma_{ctd}(G) = p - 1$.

Conversely, assume $\gamma_{ctd}(G) = p - 1$. Then, there exists a complementary tree dominating set D containing p - 1 vertices. Let $V - D = \{v\}$. Since D is a dominating set of G, v is adjacent to atleast one of the vertices in D, say u. If u is adjacent to any of the vertices in D, then the vertex u must be in V - D. Since D is minimum, u is adjacent to none of the vertices in D. Hence, $G \cong K_{1,p-1}$.

Theorem 2.6. Let G be a connected graph containing a cycle. Then, $\gamma_{ctd}(G) = p - 2$ $(p \ge 5)$ if and only if G is isomorphic to one of the following graphs. C_p, K_p or G is the graph obtained from a complete graph by attaching pendant edges at atleast one of the vertices of the complete graph.

Proof. For all graphs given in the theorem, $\gamma_{ctd}(G) = p - 2 \ (p \ge 5)$.

Conversely, let G be a connected graph with $\gamma_{ctd}(G) = p - 2$ and G contains a cycle. Let D be a complementary tree dominating set of G such that |D| = p - 2 and $V - D = \{w_1, w_2\}$ and $\langle V - D \rangle \cong K_2$.

Case 1. $\delta(G) = 1$

By Proposition 2.4, all vertices of degree 1 are in D and any vertex of degree 1 in D is adjacent to atmost one vertex in V - D since $\langle V - D \rangle \cong K_2$. Also each vertex in V - D is adjacent to atleast one vertex in D.

Let $D' = D - \{\text{pendant vertices}\}$. Then, $\{w_1, w_2\} \cup D'$ will be a complete graph. Otherwise, there exists a vertex $u \in D'$, such that u is not adjacent to atleast one of the vertices of $D' - \{u\}$ and hence, $D - \{u\}$ is a complementary tree dominating set. Therefore, G is the graph obtained from a complete graph by attaching pendant edges at atleast one of the vertices. Case 2. $\delta(G) = 2$

Let w be vertex of degree at least 3 in G and $w \in V - D$ and $w = w_1$. Let each vertex of D be adjacent to both w_1 and w_2 . If $\langle D \rangle$ is complete, then G is complete. Assume $\langle D \rangle$ is not complete. Then, there exists at least one pair of nonadjacent vertices in D, say $u, v \in D$ and $V - \{u, v, w_1\}$ is a complementary tree dominating set of G containing (p - 3) vertices, which is a contradiction. Therefore, there exists a vertex in D which is adjacent to exactly one of w_1 and w_2 and again a complementary tree dominating set having (p - 3) vertices is obtained and hence, $w \in D$. Since $deg(w) \geq 3$, there exists at least one vertex, say $v \in D$, adjacent to w. Then, either $V - \{v, w, w_1\}$ or $V - \{v, w, w_2\}$ will be a complementary tree dominating set of G. Therefore, there exists no vertex of degree at least 3 in G and hence, each vertex in G is of degree 2 and G is a cycle.

Case 3. $\delta(G) \geq 3$.

Let u, v be any two nonadjacent vertices in $\langle D \rangle$. Then, either $V - \{u, v, w_1\}$ or $V - \{u, v, w_2\}$ will be a complementary tree dominating set, which is a contradiction. Therefore $\langle D \cup \{w_1, w_2\} \rangle$ is complete. Hence, $G \cong K_p$.

3. Main Results

Observation 3.1.

- (a) If G is a cycle or a complete graph on atleast three vertices, then, $V(G) = VD^-$. Let $G \cong C_n$ or K_n , $n \ge 3$. By Observation 2.3(b) and 2.3(c) $\gamma_{ctd}(G) = n 2$. Let $v \in V(G)$. Then $G v \cong P_{n-1}$ or K_{n-1} and $\gamma_{ctd}(G v) = n 3 < \gamma_{ctd}(G)$. Therefore, $v \in VD^-$ and hence, $V(G) = VD^-$.
- (b) If G is a path on atleast four vertices and if v is a pendant vertex of G, then v ∈ VD⁻. Let G ≅ P_n, n ≥ 4. By Observation
 2.3(a), γ_{ctd}(P_n) = n − 2. Let v be a pendant vertex in P_n. Then, G − v ≅ P_{n-1} and γ_{ctd}(G − v) = n − 3 < γ_{ctd}(G). Therefore, v ∈ VD⁻.
- (c) If G is a complete bipartite graph $K_{m,n}$ $(m,n \ge 3)$, then, $V(G) = VD^- \cup VD^0$ and if G is $K_{2,n}$ $(n \ge 3)$, then $V(G) = VD^0 \cup VD^+$. Let G be a complete bipartite graph $K_{m,n}$, where $m \ge 2, n \ge 3$. Without loss of generality, let m < n. Therefore, $\gamma_{ctd}(G) = min(m,n) = m$ (by Observation 2.3(e)). Let $v \in V(G)$. If $G \cong K_{m,n}$ $(m,n \ge 3)$. Then, $G v \cong K_{m-1,n}$ or $K_{m,n-1}$. Therefore, $\gamma_{ctd}(G v) = m 1$ or m. Therefore, $v \in VD^- \cup VD^0$. Hence, $V(G) = VD^- \cup VD^0$. Similarly if $G \cong K_{2,n}$ $(n \ge 3)$, then $G v \cong K_{1,n}$ or $K_{2,n-1}$. Therefore, $\gamma_{ctd}(G v) = n$ or 2. Hence, $v \in VD^+ \cup VD^0$ and $V(G) = VD^+ \cup VD^0$.
- (d) If G is a Corona $C_n \circ K_1$ $(n \ge 3)$ and if v is a pendant vertex of G, then $v \in VD^-$. Let G be the corona $C_n \circ K_1$ and let v be the pendant vertex of G. Then, G v is a graph obtained by attaching exactly one pendant edge at each of (n 1) vertices of C_n . Then a minimum ctd-set of G v contains all the (n 1) pendant vertices and a vertex of C_n and hence, $\gamma_{ctd}(G - v) = n$. But, $\gamma_{ctd}(G) = n + 1 > \gamma_{ctd}(G - v)$. Therefore, $v \in VD^-$.
- (e) If G is a wheel W_n on $n \ (n \ge 6)$ vertices, then $V(G) = VD^- \cup VD^+$. If $G \cong W_5$, then $V(G) = VD^0 \cup VD^+$. If $G \cong W_4$, then $V(G) = VD^-$. Let G be a wheel W_n on $n \ (n \ge 6)$ vertices, where $W_n = C_{n-1} + K_1$. Then, $\gamma_{ctd}(W_n) = 2$ (by Observation 2.3(g)). Let v be a vertex of W_n . **Case 1.** $v \in V(C_{n-1})$. Then, $G - v \cong K_1 + P_{n-2}$ and $\gamma_{ctd}(G - v) = 1 < \gamma_{ctd}(G)$. Hence, $v \in VD^-$. **Case 2.** $v \in V(K_1)$. Then, $G - v \cong C_{n-1}$ and $\gamma_{ctd}(G - v) = n - 3 > \gamma_{ctd}(G)$. Hence, $v \in VD^+$. Therefore, $V(G) = VD^- \cup VD^+$.

Proposition 3.2. Let G be a connected graph with $p \ (p \ge 4)$ vertices. If $\gamma_{ctd}(G) = 1$, then $V(G) = VD^0 \cup VD^+$.

Proof. Assume $\gamma_{ctd}(G) = 1$. Then by the Proposition 2.4, $G \cong K_1 + T$, where T is a tree on (p-1) vertices. Let $v \in V(G)$. **Case 1.** T is a star. Then, $G \cong K_2 + (p-2)K_1$. If $v \in V(K_1)$, then $G - v \cong K_2 + (p-3)K_1$ and $\gamma_{ctd}(G - v) = 1 = \gamma_{ctd}(G)$. Therefore, $v \in VD^0$. If $v \in V(K_2)$, then $G - v \cong K_{1,p-2}$ and $\gamma_{ctd}(G - v) = p - 2 > \gamma_{ctd}(G)$ and hence $v \in VD^+$ **Case 2.** T is not a star

Subcase 2.1. $v \in V(K_1)$. Then, $G - v \cong T$ and $\gamma_{ctd}(G - v) > 1 = \gamma_{ctd}(G)$. Hence, $v \in VD^+$.

Subcase 2.2. $v \in V(T)$ is such that $deg_T(v) = 1$. Then $G - v \cong K_1 + T'$, where T' = T - v is a tree on (p - 2) vertices. Hence, $\gamma_{ctd}(G - v) = 1 = \gamma_{ctd}(G)$ and $v \in VD^0$.

Subcase 2.3. $v \in V(T)$ is such that $deg_T(v) \ge 2$. Then, T - v is disconnected such that each component of T - v is either a tree or an isolated vertex and $G - v \cong K_1 + (T - v)$. Hence, $\gamma_{ctd}(G - v) > 1 = \gamma_{ctd}(G)$ and $v \in VD^+$. From the above cases, it can be concluded that $v \in VD^0 \cup VD^+$, for all $v \in V(G)$ and hence, $V(G) = VD^0 \cup VD^+$.

Proposition 3.3. Let T be any tree. If G is a graph with atleast four vertices obtained from $K_1 + T$ with one pendant edge

attached at the vertex of K_1 , then $V(G) = VD^- \cup VD^0 \cup VD^+$, where

$$VD^{-} = \{v \in V(G)/deg_{G}(v) = 1\}$$
$$VD^{0} = \{v \in V(G)/v \in V(T) \text{ and } deg_{T}(v) = 1\}$$
$$VD^{+} = \{v \in V(G)/v \in V(T) \text{ and } deg_{T}(v) \ge 2\}$$

Proof. Let G be a graph given above. Then by Theorem ??, $\gamma_{ctd}(G) = 2$.

Case 1. $v \in V(G)$ is such that $deg_G(v) = 1$. Then, $G - v \cong K_1 + T$ and by Proposition 2.4, $\gamma_{ctd}(G - v) = 1$ and hence $v \in VD^-$.

Case 2. $v \in V(G) \cap V(T)$ is such that $deg_T(v) = 1$. Then, the set containing the pendant vertex of G and the vertex of K_1 forms a γ_{ctd} -set of G - v and hence $\gamma_{ctd}(G - v) = 2 = \gamma_{ctd}(G)$. Therefore, $v \in VD^0$.

Case 3. $v \in V(G) \cap V(T)$ is such that $deg_T(v) \ge 2$. If v is a support of T, then G - v has atleast two pendant vertices and the set containing pendant vertices of G - v and the vertex of K_1 forms a γ_{ctd} -set of G - v. Hence, $\gamma_{ctd}(G - v) \ge 3$ and therefore, $v \in VD^+$. Let v be not a support of T and $deg_T(v) \ge 2$. Let T_1, T_2, \ldots, T_n $(n \ge 2)$ be the components of T - v and let T_i be a component of T - v with maximum number of vertices. Then, $V(G) - V(T_i)$ is a ctd-set of G - vhaving atleast three vertices. Choose a vertex from each component T_1, T_2, \ldots, T_n $(n \ge 3)$. Let D be the set of these nvertices together with the vertex of K_1 . Then, $\langle D \rangle \cong K_{1,n}$ $(n \ge 3)$ and V - D has atleast three vertices and is a ctd-set of G - v. Then, $\gamma_{ctd}(G - v) = min\{|V(G) - V(T_i)|, |V - D|\}$ and $\gamma_{ctd}(G - v) \ge 3$. Therefore, $v \in VD^+$. From the above cases, $V(G) = VD^- \cup VD^0 \cup VD^+$.

Proposition 3.4. Let G be a connected graph with $p \ (p \ge 4)$ vertices. If $\gamma_{ctd}(G) = p-1$, then $VD^- = \{v \in V(G)/deg_G(v) = 1\}$.

Proof. Let $v \in V(G)$. Assume $\gamma_{ctd}(G) = p - 1$. Then, $G \cong K_{1,p-1}$. If $deg_G(v) = p - 1$, then G - v is totally disconnected. If $deg_G(v) = 1$, then $G - v \cong K_{1,p-2}$ and $\gamma_{ctd}(G - v) = p - 2 < \gamma_{ctd}(G)$. Hence, $v \in VD^-$ and therefore, $VD^- = \{v \in V(G)/deg_G(v) = 1\}$.

Proposition 3.5. Let G be a connected graph with $p \ (p \ge 5)$ vertices. If $\gamma_{ctd}(G) = p - 2$ and if S be the set of cutvertices of G, then $VD^- = V(G) - S$.

Proof. By Theorems 2.6 and ??, $\gamma_{ctd}(G) = p - 2$ $(p \ge 5)$ if and only if G is one of the following graphs

- (i) G is a cycle on p vertices
- (ii) G is a complete graph on p vertices
- (iii) G is a graph obtained from a complete graph by attaching pendant edges at atleast one of the vertices of the complete graph
- (iv) G is a path on p vertices

 (\mathbf{v}) G is a tree obtained from a path by attaching pendant edges at atleast one of the end vertices of the path

Let $v \in V(G)$.

Case 1. G is a cycle on p vertices. Then, $G - v \cong P_{p-1}$ and $\gamma_{ctd}(G - v) = p - 3 < \gamma_{ctd}(G)$. Therefore, $v \in VD^-$ **Case 2.** G is a complete graph on p vertices. Then, $G - v \cong K_{p-1}$ and $\gamma_{ctd}(G - v) = p - 3 < \gamma_{ctd}(G)$. Therefore, $v \in VD^-$ **Case 3.** G is a graph obtained from a complete graph by attaching pendant edges at atleast one of the vertices of the complete graph.

- (a) If $deg_G(v) = 1$ and if v is the only vertex of degree 1 in G, then $G v \cong K_{p-1}$ and $\gamma_{ctd}(G v) = p 3 < \gamma_{ctd}(G)$. Hence, $v \in VD^-$.
- (b) Let $deg_G(v) = 1$ and let there exists $t \ (t \ge 2)$ vertices of degree 1 in G. Then, G v is a graph with (p 1) vertices obtained from a complete graph by attaching (t 1) pendant edges at atleast one of the vertices of the complete graph. Then, $\gamma_{ctd}(G - v) = (p - 1) - 2 = p - 3 < \gamma_{ctd}(G)$. Hence, $v \in VD^-$.
- (c) Let v be a vertex of the complete graph and be not a support of G. Then, $deg_G(v) = n 1$, where $n \ (n < p)$ is the number of vertices of the complete graph and G v is the graph obtained by attaching pendant edges at atleast one of the vertices of the complete graph K_{n-1} . Since G v has (p-1) vertices, $\gamma_{ctd}(G v) = p 3$ and hence, $v \in VD^-$.
- (d) If v is a support of G, then G v is disconnected.

Case 4. G is a path on p vertices (or) G is a tree obtained from a path by attaching pendant edges at atleast one of the vertices of the path. If v is a pendant vertex of G, then $\gamma_{ctd}(G-v) = p-3 < \gamma_{ctd}(G)$. Hence, $v \in VD^-$. If v is not a pendant vertex of G, then G-v is disconnected. From Case 1-4, it can be seen that $v \in VD^-$ and therefore, $V(G) = VD^-$.

Theorem 3.6. Let G be a connected graph and let $v \in V(G)$ and D be a γ_{ctd} -set of G. Then, $v \in VD^-$ if either

- (i) vertices of V D adjacent to $v \in D$ are adjacent to atleast one vertex in D other than v (or)
- (ii) v is a pendant vertex in V D and there exists a vertex $u \in N(v) \cap D$ such that $N(u) \cap D \neq \phi$ and u is adjacent to exactly one vertex, say w in $(V(G) D) \{v\}$ such that $N(w) \cap (D \{u\}) \neq \phi$.

Proof. Let D be a γ_{ctd} -set of G and $v \in V(G)$. Assume (i).

Let $v \in D$ and let $D' = D - \{v\}$, $V - D' = V - (D - \{v\})$ and $D' \subseteq V - \{v\}$. Since $\langle V - D \rangle$ is a tree and $v \in D$, $\langle V(G - v) - D' \rangle$ is also a tree. Also, each vertex in V(G - v) - D' is adjacent to atleast one vertex in D' and hence, $D' = D - \{v\}$ is a ctd-set of G - v. Therefore,

$$\gamma_{ctd}(G-v) \le |D-\{v\}|$$
$$= \gamma_{ctd}(G) - 1 < \gamma_{vtd}(G)$$

Hence, $v \in VD^-$. Assume (ii).

Let $v \in V - D$ and be a pendant vertex in V - D, $u \in N(v) \cap D$ be such that $N(u) \cap D \neq \phi$ and u be adjacent to exactly one vertex w in $(V - D) - \{v\}$ such that $N(w) \cap (D - \{u\}) \neq \phi$. Let $D' = D - \{u\}$. Then, $u \in V - D'$, $N(u) \cap D \neq \phi$ implies that u is adjacent to atleast one vertex in D'.

Similarly, $N(w) \cap (D - \{u\}) \neq \phi$ implies that w is also adjacent to atleast one vertex in D'. Since D is a dominating set of G, all the remaining vertices in V - D' are adjacent to atleast one vertex in D'. Therefore, D' is a dominating set of G - v. Since $\langle V - D \rangle$ is a tree and u is adjacent to exactly one vertex in $(V - D) - \{v\}, \langle V - D' \rangle$ is also a tree. Hence, D' is a ctd-set of G - v and $\gamma_{ctd}(G - v) \leq |D'| = |D| - 1 = \gamma_{ctd}(G) - 1 < \gamma_{ctd}(G)$. Therefore, $v \in VD^-$.

Theorem 3.7. Let G be a connected graph and let D be a γ_{ctd} -set of G. If $v \in V(G)$ is a pendant vertex in V - D and for every $u \in D$, $\langle V - D \rangle \cup \{u\} >$ either contains a cycle or is disconnected, then $v \in VD^0 \cup VD^-$.

Proof. Let D be a γ_{ctd} -set of G and let v be a pendant vertex in V - D. If v satisfies the conditions given in the theorem, then D is also a ctd-set of G - v. Therefore, $\gamma_{ctd}(G - v) \leq |D| = \gamma_{ctd}(G)$ and hence $v \in VD^0 \cup VD^-$.

Observation 3.8. Let G be a connected graph and let $v \in V(G)$

(i) Let G - v be a connected graph such that each vertex of degree atleast two is a support. Let t be the number of pendant vertices of G. Then,

(a)
$$v \in VD^0$$
, if $t = \gamma_{ctd}(G)$

(b)
$$v \in VD^-$$
, if $t < \gamma_{ctd}(G)$

(c)
$$v \in VD^+$$
, if $t > \gamma_{ctd}(G)$

- (ii) If G v is a connected graph with $\gamma_{ctd}(G)$ pendant vertices and if there exists at least one nonsupport vertex of degree at least two, then $v \in VD^+$.
- (iii) Let G v be a complete graph, a cycle or a path on n vertices, then
 - (a) $v \in VD^0$, if $\gamma_{ctd}(G) = n 2$
 - (b) $v \in VD^{-}$, if $\gamma_{ctd}(G) > n-2$
 - (c) $v \in VD^+$, if $\gamma_{ctd}(G) < n-2$
- (iv) Let G v be a graph which is the one point union of t triangles. Then
 - (a) $v \in VD^0$, if $t = \gamma_{ctd}(G)$
 - (b) $v \in VD^-$, if $t < \gamma_{ctd}(G)$
 - (c) $v \in VD^+$, if $t > \gamma_{ctd}(G)$

Proposition 3.9. If G is a connected graph having atleast four vertices with $\gamma_{ctd}(G) = 1$, then $E(G) = ED^+$.

Proof. Let G be a connected graph with p ($p \ge 4$) vertices. $\gamma_{ctd}(G) = 1$ implies that $G \cong K_1 + T$, where T is a tree on (p-1) vertices (by Proposition 2.4). Let $e = (u, v) \in E(G)$ and let D be a γ_{ctd} -set of G. Therefore, |D| = 1.

Case 1. $u \in D$ and $v \in V - D$. Then, $u \in V(K_1)$ and $v \in V(T)$.

Subcase 1.1. v is a pendant vertex in T, then G - e is a graph obtained by attaching a pendant edge at a vertex of the graph $K_1 + T'$, where T' is a tree on (p-2) vertices. $\gamma_{ctd}(G-e) = \gamma_{ctd}(K_1 + T') = 2 > \gamma_{ctd}(G)$. Hence, $e \in ED^+$.

Subcase 1.2. v is a vertex of degree at least two in T. Then, G-e is not isomorphic to $K_1 + T''$, for any tree T''. Therefore, $\gamma_{ctd}(G-e) \ge 2 > \gamma_{ctd}(G)$. Hence, $e \in ED^+$.

Case 2. $u, v \in V - D$. Then, G - e is a graph $K_1 + (T_1 \cup T_2)$, where T_1 and T_2 are any two disjoint trees and the number of vertices in $T_1 \cup T_2$ is p - 1. $\gamma_{ctd}(G - e) = 1 + min(|T_1|, |T_2|) > \gamma_{ctd}(G)$ and hence, $e \in ED^+$. From Case 1 and Case 2, it can be concluded that $E(G) = ED^+$.

Proposition 3.10. Let T be any tree. Let G be the graph with atleast four vertices, obtained from $K_1 + T$ with one pendant edge attached at the vertex of K_1 . If e is not a pendant edge of G, then $e \in ED^0 \cup ED^+$.

Proof. Let G be the graph with atleast four vertices obtained from $K_1 + T$ with one pendant edge attached at the vertex of K_1 , where T is any tree. Let D be a γ_{ctd} -set of G. D contains the vertices of the pendant edge. By Theorem ??, $\gamma_{ctd}(G) = 2$. Let $e = (u, v) \in E(G)$.

Case 1. $u, v \in D$. Then, e = (u, v) is the pendant edge and G - e is disconnected with one isolated vertex.

Case 2. $u \in D$, $v \in V - D$ and $deg_G(v) = 2$. Then, v is a pendant vertex in T and G - e has two pendant vertices. Therefore, $\gamma_{ctd}(G - e) \ge 2 = \gamma_{ctd}(G)$. Hence, $e \in ED^0 \cup ED^+$. **Case 3.** $u \in D$, $v \in V - D$ and $deg_G(v) > 2$. If T is a path on three vertices, then $\gamma_{ctd}(G - e) = \gamma_{ctd}(G) = 2$. Therefore, $e \in ED^0$. Let T be not a path on three vertices. If v is a support of T, then the set $\{u, w, x\}$ is a γ_{ctd} -set of G - e, where w is the pendant vertex of G and $x \in N(v)$ is a pendant vertex of T. Therefore, $\gamma_{ctd}(G - e) = 3 > \gamma_{ctd}(G)$ and hence, $e \in ED^+$. If v is not a support of T, then the set containing u, pendant vertex of T and at least two vertices of T forms a γ_{ctd} -set of G - e. Therefore, $e \in ED^+$.

Case 4. $u, v \in V - D$.

Subcase 4.1. $deg_G(u) = 2$ and $deg_G(v) \ge 2$. Then, u is a pendant vertex of T and v is a support of T adjacent to u in T, and G-e contains two pendant vertices. Since $deg_G(v) \ge 2$, T contains at least three vertices and hence, $\gamma_{ctd}(G-e) \ge 3 > \gamma_{ctd}(G)$. Therefore, $e \in ED^+$.

Subcase 4.2. $deg_G(u) \ge 2$ and $deg_G(v) \ge 2$. Then, G - e is a graph $K_1 + (T_1 \cup T_2)$ with a pendant edge attached at the vertex of K_1 , where T_1 and T_2 are any two trees. Therefore, γ_{ctd} -set of G - e contains a pendant vertex and atleast one vertex from each of T_1 and T_2 . Hence, $\gamma_{ctd}(G - e) \ge 3$ and $e \in ED^+$. From the above cases, it can be concluded that $e \in ED^+$, if e is not a pendant edge of G.

Proposition 3.11. Let G be a connected graph obtained from a tree by joining each of the vertices of the tree to the vertices of K_2 such that for all $v \in V(K_2)$, $deg_G(v) \ge 2$ and let $e = (u, v) \in E(G)$. If D is a γ_{ctd} -set of G and if atleast one of u and v is an element of D, then $e \in ED^0 \cup ED^+$.

Proof. Let G be a connected graph as given in the proposition. Then by Theorem ??, $\gamma_{ctd}(G) = 2$. Let $e = (u, v) \in E(G)$ and let D be a γ_{ctd} -set of G. Assume $u \in D$.

Case 1. $v \in D$. Then G - e is a graph obtained from a tree by joining each of the vertices of the tree to the vertices of $2K_1$ such that $deg_G(w) \ge 1$, for all $w \in V(2K_1)$. By Theorem ??, $\gamma_{ctd}(G - e) = 2$. Therefore, $\gamma_{ctd}(G - e) = \gamma_{ctd}(G)$ and hence, $e \in ED^0$.

Case 2. $v \in V - D$.

Subcase 2.1. $deg_G(u) = deg_G(v) = 2$. Then, G - e is a graph with two pendant vertices. If |D| = |V - D| = 2, then G is a path on four vertices. Therefore, $\gamma_{ctd}(G - e) = \gamma_{ctd}(G) = 2$. Otherwise, G - e contains a cycle with two pendant vertices and hence, $\gamma_{ctd}(G - e) \ge 3 > \gamma_{ctd}(G)$. Therefore, $e \in ED^+$.

Subcase 2.2. $deg_G(u) \ge 3$. If $deg_G(u) = 3$, and $w \in N(u) \cap D$ is adjacent to all the vertices of the tree, then $\{w\}$ is a ctd-set of G - e and hence, $\gamma_{ctd}(G - e) = 1 < \gamma_{ctd}(G)$. Therefore, $e \in ED^0$. If $deg_G(u) \ge 3$ and if G - e is a graph obtained from a tree by joining each of the vertices of the tree to the vertices of $2K_2$ such that $deg_{G-e}(x) \ge 2$, for all $x \in V(2K_2)$, then $\gamma_{ctd}(G - e) = 2$. Otherwise, $\gamma_{ctd}(G - e) \ge 2$. Hence, $e \in ED^0 \cup ED^+$. From the above cases, $e \in ED^0 \cup ED^+$.

In analogous to Proposition ??, the following proposition is stated without proof.

Proposition 3.12. Let G be a connected graph obtained from a tree by joining each of the vertices of the tree to the vertices of $2K_1$ such that $deg_G(v) \ge 1$ for all $v \in V(2K_1)$ and let $e = (u, v) \in E(G)$. If G is a γ_{ctd} -set of G and if atleast one of u and v is a member of V - D, then $e \in ED^- \cup ED^0 \cup ED^+$.

Proposition 3.13. Let G be a connected graph with $p \ (p \ge 5)$ vertices and let $\gamma_{ctd}(G) = p - 2$. If e is not a cut edge of G, then $e \in ED^0 \cup ED^-$.

Proof. By Theorem 2.6 and Theorem ??, $\gamma_{ctd}(G) = p - 2$ if and only if G is one of the following graphs

- (i) G is a cycle on p vertices.
- (ii) G is a complete graph on p vertices.

- (iii) G is a graph obtained from a complete graph by attaching pendant edges at atleast one of the vertics of the complete graph.
- (iv) G is a path on p vertices.
- (v) G is a tree obtained from a path by attaching pendant edges at atleast one of the end vertices of the path.

If G is a graph as in (i) or (ii), then $e \in ED^0$ or $e \in ED^-$. If G is a graph as in (iv) and (v), then each edge of G is a cut edge. Let G be a graph given as in (iii). Let the complete graph be K_n , where n < p. Since e is not a cut edge of G, $e \in E(K_n)$. Then G - e is a graph obtained from $K_n - e$ by attaching pendant edges at atleast one of the vertices of $K_n - e$. Therefore, $\gamma_{ctd}(G - e) = p - 3 and <math>e \in ED^-$. Hence, $e \in ED^0 \cup ED^-$.

Observation 3.14. Let G be a connected graph and let $e = (u, v) \in E(G)$. Let D be a γ_{ctd} -set of G, then

- i) $e \in ED^0$, if either
 - (a) both $u, v \in D$ (or)
 - (b) $u \in D$, $v \in V D$ and v is adjacent to atleast two vertices in D

ii) $e \in ED^-$, if $u, v \in V - D$ and there exists a vertex $w \in D$ such that $N(w) \cap D \neq \phi$ and $N(w) \cap (V - D) = \{u, v\}$

- iii) $e \in ED^0 \cup ED^+$, if either
 - (a) $u, v \in V D$ (or)
 - (b) $u \in D$, $v \in V D$ and v is adjacent to exactly one vertex in D

References

- J.R.Carrington, F.Harary and T.W.Haynes, Changing and unchanging the domination number of a graph, J. Combin. Math. Combin. Computing, 9(1991), 57-63.
- [2] E.J.Cockayne and S.T.Hedetniemi, Towards a theory of domination in graphs, Networks, 7(1977), 247-261.
- [3] F.Harary, Graph Theory, Addison Wesley, Reading Mass, (1969).
- [4] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Domination in graphs: Advanced Topics, Marcel Dekker Inc., New York, (1998).
- [5] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New York, (1998).
- [6] T.N.Janakiraman, P.J.A.Alphonse and V.Sangeetha, Changing and unchanging of distance closed domination number in graphs, Intl. J. of Engg. Sci., Advanced Computing and Bio-Technology, 3(2)(2012), 67-84.
- [7] S.Muthammai, M.Bhanumathi and P.Vidhya, Complementary tree domination in graphs, International Mathematical Forum, 6(26)(2011), 1273-1283.
- [8] Teresa W.Haynes, Changing and unchanging domination, a classification, Discrete Math., 272(2003), 65-79.