International Journal of Mathematics And its Applications

Changing and Unchanging of Complementary Tree Domination Number in Graphs

S.Muthammai ${ }^{1}$ and P.Vidhya ${ }^{2 *}$
1 Government Arts College for Women (Autonomous), Pudukkottai, Tamilnadu, India.
2 S.D.N.B. Vaishnav College for Women (Autonomous), Chennai, Tamilnadu, India

Abstract

A set D of a graph $G=(V, E)$ is a dominating set if every vertex in $V-D$ is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set. A dominating set D is called a complementary tree dominating set if the induced subgraph $\langle V-D>$ is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of G and is denoted by $\gamma_{c t d}(G)$. The concept of complementary tree domination number in graphs is studied in [?]. In this paper, we have studied the changing and unchanging of complementary tree domination number in graphs.

MSC: 05C69.

Keywords: Domination number, complementary tree dominating set, complementary tree domination number.
(C) JS Publication.

1. Introduction

The changing and unchanging terminology was first suggested by Harary [3]. It is useful to partition the vertex set or the edge set of a graph into sets according to how their addition or removal affects the domination number. This concept of changing and unchanging invariant of graphs is also studied in $[1,2,4,6,8]$. In this paper, a study of changing and unchanging of complementary tree domination number in connected graphs is initiated.

2. Prior Results

Definition 2.1. A dominating set $D \subseteq V$ of a connected graph $G=(V, E)$ is said to be a complementary tree dominating set of a connected graph G, if the induced subgraph $<V-D>$ is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of G and is denoted by $\gamma_{c t d}(G)$. A set corresponding to the complementary tree dominating number is called $\gamma_{c t d}$-set of G. A complementary tree dominating set is denoted as a ctd-set in brief.

Here, it is assumed as K_{1}, the complete graph on a single vertex is connected. Therefore, a complementary tree dominating set can have atmost $(p-1)$ vertices and hence, $\gamma_{c t d}(G) \leq p-1$ and $\gamma_{c t d}$-set exists for all connected graphs. Since every ctd-set is a dominating set, $\gamma(G) \leq \gamma_{c t d}(G)$.

[^0]A complementary tree dominating set D of G is said to be minimal, if no proper subset of D is a complementary tree dominating set of G.

Theorem 2.2. A ctd-set D of a connected graph $G=(V, E)$ is minimal if and only if for each vertex v in D, one of the following conditions hold.
(i) v is an isolated vertex of D.
(ii) there exists a vertex u in $V-D$ for which $N(u) \cap D=\{v\}$.
(iii) $N(v) \cap(V-D)=\phi$.
(iv) The subgraph $<(V-D) \cup\{v\}>$ induced by $(V-D) \cup\{v\}$,
either contains a cycle or disconnected.
Proof. Suppose D is a minimal ctd-set. On the contrary, if there exists a vertex $v \in D$, such that v does not satisfy any of the given conditions. Then by (i) and (ii), $D^{\prime}=D-\{v\}$ is a dominating set of G, by (iii), $<V-D^{\prime}>$ is connected and by (iv), $\left\langle V-D^{\prime}\right\rangle$ is a tree. This implies that D^{\prime} is a complementary tree dominating set of G, which is a contradiction. Therefore, for each $v \in D$, one of the conditions (i)-(iv) holds.

Conversely, suppose D is a ctd-set and for each vertex v in D, one of the four stated conditions holds. Now, D is a minimal ctd-set is to be proved. Suppose, D is not a minimal ctd-set, then there exists a vertex v in D, such that $D-\{v\}$ is a ctd-set. Thus, v is adjacent to atleast one vertex in $D-\{v\}$. Therefore, condition (i) does not hold. Also if $D-\{v\}$ is a dominating set, then any vertex in $V-(D-\{v\})$ is adjacent to atleast one vertex in $D-\{v\}$. Therefore, for v, the condition (ii) does not hold. Since $D-\{v\}$ is a ctd-set, $\langle V-(D-\{v\})>$ is a tree, which contradicts the conditions (iii) and (iv). Therefore, there exists a vertex v in D such that v does not satisfy conditions (i), (ii), (iii) and (iv), a contradiction to the assumption. Hence, D is a minimal ctd-set.

In the following, complementary tree domination number of some standard classes of graphs are given.

Observation 2.3.

(a) For any path P_{n} with n vertices, $\gamma_{c t d}\left(P_{n}\right)=n-2, n \geq 4$.
(b) For any cycle C_{n} with n vertices, $\gamma_{c t d}\left(C_{n}\right)=n-2, n \geq 3$. Let u, v be any two adjacent vertices of degree 2 in P_{n} (or C_{n}). Then $V\left(P_{n}\right)-\{u, v\}\left(\right.$ or $\left.V\left(C_{n}\right)-\{u, v\}\right)$ is a $\gamma_{c t d}$-set of $P_{n}\left(\right.$ or $\left.C_{n}\right)$.
(c) For any complete graph K_{n} with n vertices, $\gamma_{c t d}\left(K_{n}\right)=n-2, n \geq 3$. Here, a set having any $n-2$ vertices of K_{n} is a $\gamma_{c t d}$-set of $K_{n}, n \geq 3$.
(d) For any star $K_{1, n}, \gamma_{c t d}\left(K_{1, n}\right)=n, n \geq 2$. Here, the set having all the vertices of $K_{1, n}$ except the central vertex forms a $\gamma_{c t d}$-set.
(e) For any complete bipartite graph $K_{m, n}$ with $m, n \geq 2, \gamma_{c t d}\left(K_{m, n}\right)=\min \{m, n\}$. Let A, B be a bipartition of $K_{m, n}$ ($m, n \geq 2$ and $m \leq n$) with $|A|=m$ and $|B|=n$. Then, the set containing $(m-1)$ vertices of A and a vertex of B forms a ctd-set of $K_{m, n}$.
(f) $\gamma_{c t d}\left(C_{n} \circ K_{1}\right)=n+1, n \geq 3$, where $C_{n} \circ K_{1}$ is the Corona of C_{n} and K_{1}. Here, all the n-pendant vertices and a vertex of C_{n} forms a $\gamma_{c t d}$-set.
(g) For any wheel W_{n} with n vertices, $\gamma_{c t d}\left(W_{n}\right)=2, n \geq 4$. Here, the central vertex and a vertex of C_{n-1} forms a $\gamma_{c t d}$-set.
(h) Let G be a subdivision of a star $K_{1, n}, n \geq 2$. Then $\gamma_{c t d}(G)=n+1$. Here, all the n-pendant vertices and a vertex of degree 2 (other than the central vertex) forms a $\gamma_{c t d}$-set.

In the following, the graphs G for which $\gamma_{c t d}(G)=1,2, p-1$ and $p-2$ are found.

Proposition 2.4. $\gamma_{c t d}(G)=1$ if and only if $G \cong T+K_{1}$, where T is a tree.

Proof. Assume $G \cong T+K_{1}$ and $V\left(K_{1}\right)=\{v\}$. Then, the set $\{v\}$ is a complementary tree dominating set of G. Conversely, if $\gamma_{c t d}(G)=1$, then there exists a complementary tree dominating set D of G with $|D|=1$ such that $<V-D>$ is a tree. Since, each vertex in $V-D$ is adjacent to the vertex in $D, G \cong T+K_{1}$, where $T=<V-D>$.

Theorem 2.5. Let G be a connected graph with $p \geq 4$. Then $\gamma_{c t d}(G)=p-1$ if and only if G is a star on p vertices.

Proof. If $G \cong K_{1, p-1}$, then the set of all pendant vertices of $K_{1, p-1}$ forms a minimum complementary tree dominating set for G. Hence, $\gamma_{c t d}(G)=p-1$.

Conversely, assume $\gamma_{c t d}(G)=p-1$. Then, there exists a complementary tree dominating set D containing $p-1$ vertices. Let $V-D=\{v\}$. Since D is a dominating set of G, v is adjacent to atleast one of the vertices in D, say u. If u is adjacent to any of the vertices in D, then the vertex u must be in $V-D$. Since D is minimum, u is adjacent to none of the vertices in D. Hence, $G \cong K_{1, p-1}$.

Theorem 2.6. Let G be a connected graph containing a cycle. Then, $\gamma_{c t d}(G)=p-2(p \geq 5)$ if and only if G is isomorphic to one of the following graphs. C_{p}, K_{p} or G is the graph obtained from a complete graph by attaching pendant edges at atleast one of the vertices of the complete graph.

Proof. For all graphs given in the theorem, $\gamma_{c t d}(G)=p-2(p \geq 5)$.
Conversely, let G be a connected graph with $\gamma_{c t d}(G)=p-2$ and G contains a cycle. Let D be a complementary tree dominating set of G such that $|D|=p-2$ and $V-D=\left\{w_{1}, w_{2}\right\}$ and $<V-D>\cong K_{2}$.

Case 1. $\delta(G)=1$
By Proposition 2.4, all vertices of degree 1 are in D and any vertex of degree 1 in D is adjacent to atmost one vertex in $V-D$ since $<V-D>\cong K_{2}$. Also each vertex in $V-D$ is adjacent to atleast one vertex in D.

Let $D^{\prime}=D-\{$ pendant vertices $\}$. Then, $\left\{w_{1}, w_{2}\right\} \cup D^{\prime}$ will be a complete graph. Otherwise, there exists a vertex $u \in D^{\prime}$, such that u is not adjacent to atleast one of the vertices of $D^{\prime}-\{u\}$ and hence, $D-\{u\}$ is a complementary tree dominating set. Therefore, G is the graph obtained from a complete graph by attaching pendant edges at atleast one of the vertices.

Case 2. $\delta(G)=2$
Let w be vertex of degree atleast 3 in G and $w \in V-D$ and $w=w_{1}$. Let each vertex of D be adjacent to both w_{1} and w_{2}. If $<D>$ is complete, then G is complete. Assume $<D>$ is not complete. Then, there exists atleast one pair of nonadjacent vertices in D, say $u, v \in D$ and $V-\left\{u, v, w_{1}\right\}$ is a complementary tree dominating set of G containing ($p-3$) vertices, which is a contradiction. Therefore, there exists a vertex in D which is adjacent to exactly one of w_{1} and w_{2} and again a complementary tree dominating set having $(p-3)$ vertices is obtained and hence, $w \in D$. Since deg $(w) \geq 3$, there exists atleast one vertex, say $v \in D$, adjacent to w. Then, either $V-\left\{v, w, w_{1}\right\}$ or $V-\left\{v, w, w_{2}\right\}$ will be a complementary tree dominating set of G. Therefore, there exists no vertex of degree atleast 3 in G and hence, each vertex in G is of degree 2 and G is a cycle.

Case 3. $\delta(G) \geq 3$.
Let u, v be any two nonadjacent vertices in $<D>$. Then, either $V-\left\{u, v, w_{1}\right\}$ or $V-\left\{u, v, w_{2}\right\}$ will be a complementary tree dominating set, which is a contradiction. Therefore $<D \cup\left\{w_{1}, w_{2}\right\}>$ is complete. Hence, $G \cong K_{p}$.

3. Main Results

Observation 3.1.

(a) If G is a cycle or a complete graph on atleast three vertices, then, $V(G)=V D^{-}$. Let $G \cong C_{n}$ or $K_{n}, n \geq 3$. By Observation 2.3(b) and 2.3(c) $\gamma_{c t d}(G)=n-2$. Let $v \in V(G)$. Then $G-v \cong P_{n-1}$ or K_{n-1} and $\gamma_{c t d}(G-v)=n-3<$ $\gamma_{c t d}(G)$. Therefore, $v \in V D^{-}$and hence, $V(G)=V D^{-}$.
(b) If G is a path on atleast four vertices and if v is a pendant vertex of G, then $v \in V D^{-}$. Let $G \cong P_{n}, n \geq 4$. By Observation 2.3(a), $\gamma_{c t d}\left(P_{n}\right)=n-2$. Let v be a pendant vertex in P_{n}. Then, $G-v \cong P_{n-1}$ and $\gamma_{c t d}(G-v)=n-3<\gamma_{c t d}(G)$. Therefore, $v \in V D^{-}$.
(c) If G is a complete bipartite graph $K_{m, n}(m, n \geq 3)$, then, $V(G)=V D^{-} \cup V D^{0}$ and if G is $K_{2, n}(n \geq 3)$, then $V(G)=V D^{0} \cup V D^{+}$. Let G be a complete bipartite graph $K_{m, n}$, where $m \geq 2, n \geq 3$. Without loss of generality, let $m<n$. Therefore, $\gamma_{c t d}(G)=\min (m, n)=m$ (by Observation 2.3(e)). Let $v \in V(G)$. If $G \cong K_{m, n}(m, n \geq 3)$. Then, $G-v \cong K_{m-1, n}$ or $K_{m, n-1}$. Therefore, $\gamma_{c t d}(G-v)=m-1$ or m. Therefore, $v \in V D^{-} \cup V D^{0}$. Hence, $V(G)=V D^{-} \cup V D^{0}$. Similarly if $G \cong K_{2, n}(n \geq 3)$, then $G-v \cong K_{1, n}$ or $K_{2, n-1}$. Therefore, $\gamma_{c t d}(G-v)=n$ or 2 . Hence, $v \in V D^{+} \cup V D^{0}$ and $V(G)=V D^{+} \cup V D^{0}$.
(d) If G is a Corona $C_{n} \circ K_{1}(n \geq 3)$ and if v is a pendant vertex of G, then $v \in V D^{-}$. Let G be the corona $C_{n} \circ K_{1}$ and let v be the pendant vertex of G. Then, $G-v$ is a graph obtained by attaching exactly one pendant edge at each of $(n-1)$ vertices of C_{n}. Then a minimum ctd-set of $G-v$ contains all the $(n-1)$ pendant vertices and a vertex of C_{n} and hence, $\gamma_{c t d}(G-v)=n$. But, $\gamma_{c t d}(G)=n+1>\gamma_{c t d}(G-v)$. Therefore, $v \in V D^{-}$.
(e) If G is a wheel W_{n} on $n(n \geq 6)$ vertices, then $V(G)=V D^{-} \cup V D^{+}$. If $G \cong W_{5}$, then $V(G)=V D^{0} \cup V D^{+}$. If $G \cong W_{4}$, then $V(G)=V D^{-}$. Let G be a wheel W_{n} on $n(n \geq 6)$ vertices, where $W_{n}=C_{n-1}+K_{1}$. Then, $\gamma_{c t d}\left(W_{n}\right)=2(b y$ Observation 2.3(g)). Let v be a vertex of W_{n}.

Case 1. $v \in V\left(C_{n-1}\right)$. Then, $G-v \cong K_{1}+P_{n-2}$ and $\gamma_{c t d}(G-v)=1<\gamma_{c t d}(G)$. Hence, $v \in V D^{-}$.
Case 2. $v \in V\left(K_{1}\right)$. Then, $G-v \cong C_{n-1}$ and $\gamma_{c t d}(G-v)=n-3>\gamma_{c t d}(G)$. Hence, $v \in V D^{+}$. Therefore, $V(G)=V D^{-} \cup V D^{+}$.

Proposition 3.2. Let G be a connected graph with $p(p \geq 4)$ vertices. If $\gamma_{c t d}(G)=1$, then $V(G)=V D^{0} \cup V D^{+}$.
Proof. Assume $\gamma_{c t d}(G)=1$. Then by the Proposition 2.4, $G \cong K_{1}+T$, where T is a tree on $(p-1)$ vertices. Let $v \in V(G)$.
Case 1. T is a star. Then, $G \cong K_{2}+(p-2) K_{1}$. If $v \in V\left(K_{1}\right)$, then $G-v \cong K_{2}+(p-3) K_{1}$ and $\gamma_{c t d}(G-v)=1=\gamma_{c t d}(G)$. Therefore, $v \in V D^{0}$. If $v \in V\left(K_{2}\right)$, then $G-v \cong K_{1, p-2}$ and $\gamma_{c t d}(G-v)=p-2>\gamma_{c t d}(G)$ and hence $v \in V D^{+}$

Case 2. T is not a star
Subcase 2.1. $v \in V\left(K_{1}\right)$. Then, $G-v \cong T$ and $\gamma_{c t d}(G-v)>1=\gamma_{c t d}(G)$. Hence, $v \in V D^{+}$.
Subcase 2.2. $v \in V(T)$ is such that $\operatorname{deg}_{T}(v)=1$. Then $G-v \cong K_{1}+T^{\prime}$, where $T^{\prime}=T-v$ is a tree on $(p-2)$ vertices. Hence, $\gamma_{c t d}(G-v)=1=\gamma_{c t d}(G)$ and $v \in V D^{0}$.
Subcase 2.3. $v \in V(T)$ is such that $\operatorname{deg}_{T}(v) \geq 2$. Then, $T-v$ is disconnected such that each component of $T-v$ is either a tree or an isolated vertex and $G-v \cong K_{1}+(T-v)$. Hence, $\gamma_{c t d}(G-v)>1=\gamma_{c t d}(G)$ and $v \in V D^{+}$. From the above cases, it can be concluded that $v \in V D^{0} \cup V D^{+}$, for all $v \in V(G)$ and hence, $V(G)=V D^{0} \cup V D^{+}$.

Proposition 3.3. Let T be any tree. If G is a graph with atleast four vertices obtained from $K_{1}+T$ with one pendant edge
attached at the vertex of K_{1}, then $V(G)=V D^{-} \cup V D^{0} \cup V D^{+}$, where

$$
\begin{aligned}
V D^{-} & =\left\{v \in V(G) / \operatorname{deg}_{G}(v)=1\right\} \\
V D^{0} & =\left\{v \in V(G) / v \in V(T) \text { and } \operatorname{deg}_{T}(v)=1\right\} \\
V D^{+} & =\left\{v \in V(G) / v \in V(T) \text { and } \operatorname{deg}_{T}(v) \geq 2\right\}
\end{aligned}
$$

Proof. Let G be a graph given above. Then by Theorem ??, $\gamma_{c t d}(G)=2$.
Case 1. $v \in V(G)$ is such that $\operatorname{deg}_{G}(v)=1$. Then, $G-v \cong K_{1}+T$ and by Proposition 2.4, $\gamma_{c t d}(G-v)=1$ and hence $v \in V D^{-}$.
Case 2. $v \in V(G) \cap V(T)$ is such that $\operatorname{deg}_{T}(v)=1$. Then, the set containing the pendant vertex of G and the vertex of K_{1} forms a $\gamma_{c t d}$-set of $G-v$ and hence $\gamma_{c t d}(G-v)=2=\gamma_{c t d}(G)$. Therefore, $v \in V D^{0}$.

Case 3. $v \in V(G) \cap V(T)$ is such that $\operatorname{deg}_{T}(v) \geq 2$. If v is a support of T, then $G-v$ has atleast two pendant vertices and the set containing pendant vertices of $G-v$ and the vertex of K_{1} forms a $\gamma_{c t d}$-set of $G-v$. Hence, $\gamma_{c t d}(G-v) \geq 3$ and therefore, $v \in V D^{+}$. Let v be not a support of T and $\operatorname{deg}_{T}(v) \geq 2$. Let $T_{1}, T_{2}, \ldots, T_{n}(n \geq 2)$ be the components of $T-v$ and let T_{i} be a component of $T-v$ with maximum number of vertices. Then, $V(G)-V\left(T_{i}\right)$ is a ctd-set of $G-v$ having atleast three vertices. Choose a vertex from each component $T_{1}, T_{2}, \ldots, T_{n}(n \geq 3)$. Let D be the set of these n vertices together with the vertex of K_{1}. Then, $\left\langle D>\cong K_{1, n}(n \geq 3)\right.$ and $V-D$ has atleast three vertices and is a ctd-set of $G-v$. Then, $\gamma_{c t d}(G-v)=\min \left\{\left|V(G)-V\left(T_{i}\right)\right|,|V-D|\right\}$ and $\gamma_{c t d}(G-v) \geq 3$. Therefore, $v \in V D^{+}$. From the above cases, $V(G)=V D^{-} \cup V D^{0} \cup V D^{+}$.

Proposition 3.4. Let G be a connected graph with $p(p \geq 4)$ vertices. If $\gamma_{c t d}(G)=p-1$, then $V D^{-}=\left\{v \in V(G) / \operatorname{deg}_{G}(v)=\right.$ $1\}$.

Proof. Let $v \in V(G)$. Assume $\gamma_{c t d}(G)=p-1$. Then, $G \cong K_{1, p-1}$. If $\operatorname{deg}_{G}(v)=p-1$, then $G-v$ is totally disconnected. If $\operatorname{deg}_{G}(v)=1$, then $G-v \cong K_{1, p-2}$ and $\gamma_{c t d}(G-v)=p-2<\gamma_{c t d}(G)$. Hence, $v \in V D^{-}$and therefore, $V D^{-}=\left\{v \in V(G) / \operatorname{deg}_{G}(v)=1\right\}$.

Proposition 3.5. Let G be a connected graph with $p(p \geq 5)$ vertices. If $\gamma_{c t d}(G)=p-2$ and if S be the set of cutvertices of G, then $V D^{-}=V(G)-S$.

Proof. By Theorems 2.6 and ??, $\gamma_{c t d}(G)=p-2(p \geq 5)$ if and only if G is one of the following graphs
(i) G is a cycle on p vertices
(ii) G is a complete graph on p vertices
(iii) G is a graph obtained from a complete graph by attaching pendant edges at atleast one of the vertices of the complete graph
(iv) G is a path on p vertices
(v) G is a tree obtained from a path by attaching pendant edges at atleast one of the end vertices of the path

Let $v \in V(G)$.
Case 1. G is a cycle on p vertices. Then, $G-v \cong P_{p-1}$ and $\gamma_{c t d}(G-v)=p-3<\gamma_{c t d}(G)$. Therefore, $v \in V D^{-}$
Case 2. G is a complete graph on p vertices. Then, $G-v \cong K_{p-1}$ and $\gamma_{c t d}(G-v)=p-3<\gamma_{c t d}(G)$. Therefore, $v \in V D^{-}$
Case 3. G is a graph obtained from a complete graph by attaching pendant edges at atleast one of the vertices of the complete graph.
(a) If $\operatorname{deg}_{G}(v)=1$ and if v is the only vertex of degree 1 in G, then $G-v \cong K_{p-1}$ and $\gamma_{c t d}(G-v)=p-3<\gamma_{c t d}(G)$. Hence, $v \in V D^{-}$.
(b) Let $\operatorname{deg}_{G}(v)=1$ and let there exists $t(t \geq 2)$ vertices of degree 1 in G. Then, $G-v$ is a graph with $(p-1)$ vertices obtained from a complete graph by attaching $(t-1)$ pendant edges at atleast one of the vertices of the complete graph. Then, $\gamma_{c t d}(G-v)=(p-1)-2=p-3<\gamma_{c t d}(G)$. Hence, $v \in V D^{-}$.
(c) Let v be a vertex of the complete graph and be not a support of G. Then, $\operatorname{deg}_{G}(v)=n-1$, where $n(n<p)$ is the number of vertices of the complete graph and $G-v$ is the graph obtained by attaching pendant edges at atleast one of the vertices of the complete graph K_{n-1}. Since $G-v$ has $(p-1)$ vertices, $\gamma_{c t d}(G-v)=p-3$ and hence, $v \in V D^{-}$.
(d) If v is a support of G, then $G-v$ is disconnected.

Case 4. G is a path on p vertices (or) G is a tree obtained from a path by attaching pendant edges at atleast one of the vertices of the path. If v is a pendant vertex of G, then $\gamma_{c t d}(G-v)=p-3<\gamma_{c t d}(G)$. Hence, $v \in V D^{-}$. If v is not a pendant vertex of G, then $G-v$ is disconnected. From Case 1-4, it can be seen that $v \in V D^{-}$and therefore, $V(G)=V D^{-}$.

Theorem 3.6. Let G be a connected graph and let $v \in V(G)$ and D be a $\gamma_{c t d}$-set of G. Then, $v \in V D^{-}$if either
(i) vertices of $V-D$ adjacent to $v \in D$ are adjacent to atleast one vertex in D other than v (or)
(ii) v is a pendant vertex in $V-D$ and there exists a vertex $u \in N(v) \cap D$ such that $N(u) \cap D \neq \phi$ and u is adjacent to exactly one vertex, say w in $(V(G)-D)-\{v\}$ such that $N(w) \cap(D-\{u\}) \neq \phi$.

Proof. Let D be a $\gamma_{c t d}$-set of G and $v \in V(G)$. Assume (i).
Let $v \in D$ and let $D^{\prime}=D-\{v\}, V-D^{\prime}=V-(D-\{v\})$ and $D^{\prime} \subseteq V-\{v\}$. Since $<V-D>$ is a tree and $v \in D$, $<V(G-v)-D^{\prime}>$ is also a tree. Also, each vertex in $V(G-v)-D^{\prime}$ is adjacent to atleast one vertex in D^{\prime} and hence, $D^{\prime}=D-\{v\}$ is a ctd-set of $G-v$. Therefore,

$$
\begin{aligned}
\gamma_{c t d}(G-v) & \leq|D-\{v\}| \\
& =\gamma_{c t d}(G)-1<\gamma_{v t d}(G)
\end{aligned}
$$

Hence, $v \in V D^{-}$. Assume (ii).
Let $v \in V-D$ and be a pendant vertex in $V-D, u \in N(v) \cap D$ be such that $N(u) \cap D \neq \phi$ and u be adjacent to exactly one vertex w in $(V-D)-\{v\}$ such that $N(w) \cap(D-\{u\}) \neq \phi$. Let $D^{\prime}=D-\{u\}$. Then, $u \in V-D^{\prime}, N(u) \cap D \neq \phi$ implies that u is adjacent to atleast one vertex in D^{\prime}.

Similarly, $N(w) \cap(D-\{u\}) \neq \phi$ implies that w is also adjacent to atleast one vertex in D^{\prime}. Since D is a dominating set of G, all the remaining vertices in $V-D^{\prime}$ are adjacent to atleast one vertex in D^{\prime}. Therefore, D^{\prime} is a dominating set of $G-v$. Since $\left\langle V-D>\right.$ is a tree and u is adjacent to exactly one vertex in $(V-D)-\{v\},<V-D^{\prime}>$ is also a tree. Hence, D^{\prime} is a ctd-set of $G-v$ and $\gamma_{c t d}(G-v) \leq\left|D^{\prime}\right|=|D|-1=\gamma_{c t d}(G)-1<\gamma_{c t d}(G)$. Therefore, $v \in V D^{-}$.

Theorem 3.7. Let G be a connected graph and let D be a $\gamma_{c t d}$-set of G. If $v \in V(G)$ is a pendant vertex in $V-D$ and for every $u \in D,<V-D) \cup\{u\}>$ either contains a cycle or is disconnected, then $v \in V D^{0} \cup V D^{-}$.

Proof. Let D be a $\gamma_{c t d}$-set of G and let v be a pendant vertex in $V-D$. If v satisfies the conditions given in the theorem, then D is also a ctd-set of $G-v$. Therefore, $\gamma_{c t d}(G-v) \leq|D|=\gamma_{c t d}(G)$ and hence $v \in V D^{0} \cup V D^{-}$.

Observation 3.8. Let G be a connected graph and let $v \in V(G)$
(i) Let $G-v$ be a connected graph such that each vertex of degree atleast two is a support. Let t be the number of pendant vertices of G. Then,
(a) $v \in V D^{0}$, if $t=\gamma_{c t d}(G)$
(b) $v \in V D^{-}$, if $t<\gamma_{c t d}(G)$
(c) $v \in V D^{+}$, if $t>\gamma_{c t d}(G)$
(ii) If $G-v$ is a connected graph with $\gamma_{c t d}(G)$ pendant vertices and if there exists atleast one nonsupport vertex of degree atleast two, then $v \in V D^{+}$.
(iii) Let $G-v$ be a complete graph, a cycle or a path on n vertices, then
(a) $v \in V D^{0}$, if $\gamma_{c t d}(G)=n-2$
(b) $v \in V D^{-}$, if $\gamma_{c t d}(G)>n-2$
(c) $v \in V D^{+}$, if $\gamma_{c t d}(G)<n-2$
(iv) Let $G-v$ be a graph which is the one point union of triangles. Then
(a) $v \in V D^{0}$, if $t=\gamma_{c t d}(G)$
(b) $v \in V D^{-}$, if $t<\gamma_{c t d}(G)$
(c) $v \in V D^{+}$, if $t>\gamma_{c t d}(G)$

Proposition 3.9. If G is a connected graph having atleast four vertices with $\gamma_{c t d}(G)=1$, then $E(G)=E D^{+}$.
Proof. Let G be a connected graph with $p(p \geq 4)$ vertices. $\gamma_{c t d}(G)=1$ implies that $G \cong K_{1}+T$, where T is a tree on ($p-1$) vertices (by Proposition 2.4). Let $e=(u, v) \in E(G)$ and let D be a $\gamma_{c t d}$-set of G. Therefore, $|D|=1$.
Case 1. $u \in D$ and $v \in V-D$. Then, $u \in V\left(K_{1}\right)$ and $v \in V(T)$.
Subcase 1.1. v is a pendant vertex in T, then $G-e$ is a graph obtained by attaching a pendant edge at a vertex of the graph $K_{1}+T^{\prime}$, where T^{\prime} is a tree on $(p-2)$ vertices. $\gamma_{c t d}(G-e)=\gamma_{c t d}\left(K_{1}+T^{\prime}\right)=2>\gamma_{c t d}(G)$. Hence, $e \in E D^{+}$.
Subcase 1.2. v is a vertex of degree atleast two in T. Then, $G-e$ is not isomorphic to $K_{1}+T^{\prime \prime}$, for any tree $T^{\prime \prime}$. Therefore, $\gamma_{c t d}(G-e) \geq 2>\gamma_{c t d}(G)$. Hence, $e \in E D^{+}$.

Case 2. $u, v \in V-D$. Then, $G-e$ is a graph $K_{1}+\left(T_{1} \cup T_{2}\right)$, where T_{1} and T_{2} are any two disjoint trees and the number of vertices in $T_{1} \cup T_{2}$ is $p-1$. $\gamma_{c t d}(G-e)=1+\min \left(\left|T_{1}\right|,\left|T_{2}\right|\right)>\gamma_{c t d}(G)$ and hence, $e \in E D^{+}$. From Case 1 and Case 2 , it can be concluded that $E(G)=E D^{+}$.

Proposition 3.10. Let T be any tree. Let G be the graph with atleast four vertices, obtained from $K_{1}+T$ with one pendant edge attached at the vertex of K_{1}. If e is not a pendant edge of G, then $e \in E D^{0} \cup E D^{+}$.

Proof. Let G be the graph with atleast four vertices obtained from $K_{1}+T$ with one pendant edge attached at the vertex of K_{1}, where T is any tree. Let D be a $\gamma_{c t d}$-set of G. D contains the vertices of the pendant edge. By Theorem ??, $\gamma_{c t d}(G)=2$. Let $e=(u, v) \in E(G)$.

Case 1. $u, v \in D$. Then, $e=(u, v)$ is the pendant edge and $G-e$ is disconnected with one isolated vertex.
Case 2. $u \in D, v \in V-D$ and $\operatorname{deg}_{G}(v)=2$. Then, v is a pendant vertex in T and $G-e$ has two pendant vertices.
Therefore, $\gamma_{c t d}(G-e) \geq 2=\gamma_{c t d}(G)$. Hence, $e \in E D^{0} \cup E D^{+}$.

Case 3. $u \in D, v \in V-D$ and $\operatorname{deg}_{G}(v)>2$. If T is a path on three vertices, then $\gamma_{c t d}(G-e)=\gamma_{c t d}(G)=2$. Therefore, $e \in E D^{0}$. Let T be not a path on three vertices. If v is a support of T, then the set $\{u, w, x\}$ is a $\gamma_{c t d}$-set of $G-e$, where w is the pendant vertex of G and $x \in N(v)$ is a pendant vertex of T. Therefore, $\gamma_{c t d}(G-e)=3>\gamma_{c t d}(G)$ and hence, $e \in E D^{+}$. If v is not a support of T, then the set containing u, pendant vertex of T and atleast two vertices of T forms a $\gamma_{c t d}$-set of $G-e$. Therefore, $e \in E D^{+}$.
Case 4. $u, v \in V-D$.
Subcase 4.1. $\operatorname{deg}_{G}(u)=2$ and $\operatorname{deg}_{G}(v) \geq 2$. Then, u is a pendant vertex of T and v is a support of T adjacent to u in T, and $G-e$ contains two pendant vertices. Since $\operatorname{deg}_{G}(v) \geq 2, T$ contains atleast three vertices and hence, $\gamma_{c t d}(G-e) \geq 3>\gamma_{c t d}(G)$. Therefore, $e \in E D^{+}$.

Subcase 4.2. $\operatorname{deg}_{G}(u) \geq 2$ and $\operatorname{deg}_{G}(v) \geq 2$. Then, $G-e$ is a graph $K_{1}+\left(T_{1} \cup T_{2}\right)$ with a pendant edge attached at the vertex of K_{1}, where T_{1} and T_{2} are any two trees. Therefore, $\gamma_{c t d}$-set of $G-e$ contains a pendant vertex and atleast one vertex from each of T_{1} and T_{2}. Hence, $\gamma_{c t d}(G-e) \geq 3$ and $e \in E D^{+}$. From the above cases, it can be concluded that $e \in E D^{+}$, if e is not a pendant edge of G.

Proposition 3.11. Let G be a connected graph obtained from a tree by joining each of the vertices of the tree to the vertices of K_{2} such that for all $v \in V\left(K_{2}\right), \operatorname{deg}_{G}(v) \geq 2$ and let $e=(u, v) \in E(G)$. If D is a $\gamma_{c t d}$-set of G and if atleast one of u and v is an element of D, then $e \in E D^{0} \cup E D^{+}$.

Proof. Let G be a connected graph as given in the proposition. Then by Theorem ??, $\gamma_{c t d}(G)=2$. Let $e=(u, v) \in E(G)$ and let D be a $\gamma_{c t d}$-set of G. Assume $u \in D$.
Case 1. $v \in D$. Then $G-e$ is a graph obtained from a tree by joining each of the vertices of the tree to the vertices of $2 K_{1}$ such that $\operatorname{deg}_{G}(w) \geq 1$, for all $w \in V\left(2 K_{1}\right)$. By Theorem ??, $\gamma_{c t d}(G-e)=2$. Therefore, $\gamma_{c t d}(G-e)=\gamma_{c t d}(G)$ and hence, $e \in E D^{0}$.

Case 2. $v \in V-D$.
Subcase 2.1. $\operatorname{deg}_{G}(u)=\operatorname{deg}_{G}(v)=2$. Then, $G-e$ is a graph with two pendant vertices. If $|D|=|V-D|=2$, then G is a path on four vertices. Therefore, $\gamma_{c t d}(G-e)=\gamma_{c t d}(G)=2$. Otherwise, $G-e$ contains a cycle with two pendant vertices and hence, $\gamma_{c t d}(G-e) \geq 3>\gamma_{c t d}(G)$. Therefore, $e \in E D^{+}$.
Subcase 2.2. $\operatorname{deg}_{G}(u) \geq 3$. If $\operatorname{deg}_{G}(u)=3$, and $w \in N(u) \cap D$ is adjacent to all the vertices of the tree, then $\{w\}$ is a ctd-set of $G-e$ and hence, $\gamma_{c t d}(G-e)=1<\gamma_{c t d}(G)$. Therefore, $e \in E D^{0}$. If $\operatorname{deg}_{G}(u) \geq 3$ and if $G-e$ is a graph obtained from a tree by joining each of the vertices of the tree to the vertices of $2 K_{2}$ such that $\operatorname{deg}_{G-e}(x) \geq 2$, for all $x \in V\left(2 K_{2}\right)$, then $\gamma_{c t d}(G-e)=2$. Otherwise, $\gamma_{c t d}(G-e) \geq 2$. Hence, $e \in E D^{0} \cup E D^{+}$. From the above cases, $e \in E D^{0} \cup E D^{+}$.

In analogous to Proposition ??, the following proposition is stated without proof.
Proposition 3.12. Let G be a connected graph obtained from a tree by joining each of the vertices of the tree to the vertices of $2 K_{1}$ such that $\operatorname{deg}_{G}(v) \geq 1$ for all $v \in V\left(2 K_{1}\right)$ and let $e=(u, v) \in E(G)$. If G is a $\gamma_{c t d}$-set of G and if atleast one of u and v is a member of $V-D$, then $e \in E D^{-} \cup E D^{0} \cup E D^{+}$.

Proposition 3.13. Let G be a connected graph with $p(p \geq 5)$ vertices and let $\gamma_{c t d}(G)=p-2$. If e is not a cut edge of G, then $e \in E D^{0} \cup E D^{-}$.

Proof. By Theorem 2.6 and Theorem ??, $\gamma_{c t d}(G)=p-2$ if and only if G is one of the following graphs
(i) G is a cycle on p vertices.
(ii) G is a complete graph on p vertices.
(iii) G is a graph obtained from a complete graph by attaching pendant edges at atleast one of the vertics of the complete graph.
(iv) G is a path on p vertices.
(v) G is a tree obtained from a path by attaching pendant edges at atleast one of the end vertices of the path.

If G is a graph as in (i) or (ii), then $e \in E D^{0}$ or $e \in E D^{-}$. If G is a graph as in (iv) and (v), then each edge of G is a cut edge. Let G be a graph given as in (iii). Let the complete graph be K_{n}, where $n<p$. Since e is not a cut edge of G, $e \in E\left(K_{n}\right)$. Then $G-e$ is a graph obtained from $K_{n}-e$ by attaching pendant edges at atleast one of the vertices of $K_{n}-e$. Therefore, $\gamma_{c t d}(G-e)=p-3<p-2=\gamma_{c t d}(G)$ and $e \in E D^{-}$. Hence, $e \in E D^{0} \cup E D^{-}$.

Observation 3.14. Let G be a connected graph and let $e=(u, v) \in E(G)$. Let D be a $\gamma_{c t d}$-set of G, then
i) $e \in E D^{0}$, if either
(a) both $u, v \in D$ (or)
(b) $u \in D, v \in V-D$ and v is adjacent to atleast two vertices in D
ii) $e \in E D^{-}$, if $u, v \in V-D$ and there exists a vertex $w \in D$ such that $N(w) \cap D \neq \phi$ and $N(w) \cap(V-D)=\{u, v\}$
iii) $e \in E D^{0} \cup E D^{+}$, if either
(a) $u, v \in V-D$ (or)
(b) $u \in D, v \in V-D$ and v is adjacent to exactly one vertex in D

References

[1] J.R.Carrington, F.Harary and T.W.Haynes, Changing and unchanging the domination number of a graph, J. Combin. Math. Combin. Computing, 9(1991), 57-63.
[2] E.J.Cockayne and S.T.Hedetniemi, Towards a theory of domination in graphs, Networks, 7(1977), 247-261.
[3] F.Harary, Graph Theory, Addison Wesley, Reading Mass, (1969).
[4] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Domination in graphs: Advanced Topics, Marcel Dekker Inc., New York, (1998).
[5] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New York, (1998).
[6] T.N.Janakiraman, P.J.A.Alphonse and V.Sangeetha, Changing and unchanging of distance closed domination number in graphs, Intl. J. of Engg. Sci., Advanced Computing and Bio-Technology, 3(2)(2012), 67-84.
[7] S.Muthammai, M.Bhanumathi and P.Vidhya, Complementary tree domination in graphs, International Mathematical Forum, 6(26)(2011), 1273-1283.
[8] Teresa W.Haynes, Changing and unchanging domination, a classification, Discrete Math., 272(2003), 65-79.

[^0]: * E-mail: @mail.com

