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1. Introduction

The changing and unchanging terminology was first suggested by Harary [3]. It is useful to partition the vertex set or
the edge set of a graph into sets according to how their addition or removal affects the domination number. This concept
of changing and unchanging invariant of graphs is also studied in [1, 2, 4, 6, 8]. In this paper, a study of changing and

unchanging of complementary tree domination number in connected graphs is initiated.

2. Prior Results

Definition 2.1. A dominating set D C V of a connected graph G = (V, E) is said to be a complementary tree dominat-
ing set of a connected graph G, if the induced subgraph <V — D > is a tree. The minimum cardinality of a complementary
tree dominating set is called the complementary tree domination number of G and is denoted by Yeta(G). A set
corresponding to the complementary tree dominating number is called Yetqa-set of G. A complementary tree dominating set
is denoted as a ctd-set in brief.

Here, it is assumed as K1, the complete graph on a single vertex is connected. Therefore, a complementary tree dominating
set can have atmost (p — 1) vertices and hence, vera(G) < p — 1 and ~yerq-set exists for all connected graphs. Since every

ctd-set is a dominating set, v(G) < veta(G).
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A complementary tree dominating set D of G is said to be minimal, if no proper subset of D is a complementary tree

dominating set of G.

Theorem 2.2. A ctd-set D of a connected graph G = (V, E) is minimal if and only if for each vertex v in D, one of the

following conditions hold.

(i) v is an isolated vertex of D.

(i1) there exists a vertex u in V — D for which N(u) N D = {v}.
(i) N(v)N(V — D) = ¢.

(iv) The subgraph < (V — D) U {v} > induced by (V — D) U {v},

either contains a cycle or disconnected.

Proof. Suppose D is a minimal ctd-set. On the contrary, if there exists a vertex v € D, such that v does not satisfy any
of the given conditions. Then by (i) and (ii), D' = D — {v} is a dominating set of G, by (iii), < V — D’ > is connected and
by (iv), < V — D’ > is a tree. This implies that D’ is a complementary tree dominating set of G, which is a contradiction.
Therefore, for each v € D, one of the conditions (i)-(iv) holds.

Conversely, suppose D is a ctd-set and for each vertex v in D, one of the four stated conditions holds. Now, D is a minimal
ctd-set is to be proved. Suppose, D is not a minimal ctd-set, then there exists a vertex v in D, such that D — {v} is a ctd-set.
Thus, v is adjacent to atleast one vertex in D — {v}. Therefore, condition (i) does not hold. Also if D — {v} is a dominating
set, then any vertex in V — (D — {v}) is adjacent to atleast one vertex in D — {v}. Therefore, for v, the condition (ii) does
not hold. Since D — {v} is a ctd-set, < V — (D — {v}) > is a tree, which contradicts the conditions (iii) and (iv). Therefore,
there exists a vertex v in D such that v does not satisfy conditions (i), (ii), (iii) and (iv), a contradiction to the assumption.

Hence, D is a minimal ctd-set. O
In the following, complementary tree domination number of some standard classes of graphs are given.

Observation 2.3.

(a) For any path P, with n vertices, Yeta(Pn) =n—2, n > 4.

(b) For any cycle Cr, with n vertices, Yeta(Cn) =n — 2, n > 3. Let u,v be any two adjacent vertices of degree 2 in P, (or
Crn). Then V(P,) — {u,v} (or V(Cy) —{u,v}) is a vyeta-set of Pn (or Cy).

(¢) For any complete graph K, with n vertices, Yeta(Kn) =mn — 2, n > 3. Here, a set having any n — 2 vertices of K, is a

Yetd-set of Kn, n > 3.

(d) For any star Kin, Yeta(K1,n) =n, n > 2. Here, the set having all the vertices of K1, except the central vertex forms a

Yetd-Set.

(e) For any complete bipartite graph K, n with m,n > 2, Yera(Km,n) = min{m,n}. Let A, B be a bipartition of K n
(m,n > 2 and m < n) with |A| = m and |B| = n. Then, the set containing (m — 1) vertices of A and a vertez of B

forms a ctd-set of Km n.

(f) Yeta(Crno K1) =n+1, n > 3, where Cp o K1 is the Corona of C,, and K. Here, all the n-pendant vertices and a vertex

of C\, forms a ~ycqa-set.

(g) For any wheel W,, with n vertices, yeta(Wn) = 2, n > 4. Here, the central vertex and a vertex of Cn—1 forms a vcta-set.
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(h) Let G be a subdivision of a star Ki1n, n > 2. Then ve:a(G) = n+ 1. Here, all the n-pendant vertices and a vertex of

degree 2 (other than the central vertex) forms a vctqa-set.
In the following, the graphs G for which v.tq(G) = 1,2,p — 1 and p — 2 are found.
Proposition 2.4. v.q(G) =1 if and only if G 2 T + K1, where T is a tree.

Proof. Assume G =2 T+ K; and V(K1) = {v}. Then, the set {v} is a complementary tree dominating set of G. Conversely,
if vcta(G) = 1, then there exists a complementary tree dominating set D of G with |D| = 1 such that <V — D > is a tree.

Since, each vertex in V — D is adjacent to the vertex in D, G =2 T + K, where T =<V — D >. O
Theorem 2.5. Let G be a connected graph with p > 4. Then vera(G) = p — 1 if and only if G is a star on p vertices.

Proof. 1f G = Ky ,-1, then the set of all pendant vertices of K ,_1 forms a minimum complementary tree dominating
set for G. Hence, Vcta(G) =p — 1.

Conversely, assume 7ctq(G) = p — 1. Then, there exists a complementary tree dominating set D containing p — 1 vertices.
Let V — D = {v}. Since D is a dominating set of G, v is adjacent to atleast one of the vertices in D, say u. If u is adjacent
to any of the vertices in D, then the vertex u must be in V — D. Since D is minimum, u is adjacent to none of the vertices

in D. Hence, G = K; p_1. O

Theorem 2.6. Let G be a connected graph containing a cycle. Then, vcta(G) =p—2 (p > 5) if and only if G is isomorphic
to one of the following graphs. Cp, K, or G is the graph obtained from a complete graph by attaching pendant edges at atleast

one of the vertices of the complete graph.

Proof.  For all graphs given in the theorem, vo:a(G) =p — 2 (p > 5).

Conversely, let G be a connected graph with v.q(G) = p — 2 and G contains a cycle. Let D be a complementary tree
dominating set of G such that |[D|=p—2and V — D = {w1, w2} and <V — D >~ Kj.

Case 1. §(G) =1

By Proposition 2.4, all vertices of degree 1 are in D and any vertex of degree 1 in D is adjacent to atmost one vertex in
V — D since <V — D > K,. Also each vertex in V — D is adjacent to atleast one vertex in D.

Let D' = D — {pendant vertices}. Then, {w1, w2} U D’ will be a complete graph. Otherwise, there exists a vertex u € D',
such that u is not adjacent to atleast one of the vertices of D' — {u} and hence, D —{u} is a complementary tree dominating
set. Therefore, G is the graph obtained from a complete graph by attaching pendant edges at atleast one of the vertices.
Case 2. §(G) =2

Let w be vertex of degree atleast 3 in G and w € V — D and w = w1. Let each vertex of D be adjacent to both w; and
wy. If < D > is complete, then G is complete. Assume < D > is not complete. Then, there exists atleast one pair of
nonadjacent vertices in D, say u,v € D and V — {u, v, w1} is a complementary tree dominating set of G containing (p — 3)
vertices, which is a contradiction. Therefore, there exists a vertex in D which is adjacent to exactly one of w1 and we and
again a complementary tree dominating set having (p — 3) vertices is obtained and hence, w € D. Since deg(w) > 3, there
exists atleast one vertex, say v € D, adjacent to w. Then, either V — {v,w, w1} or V — {v, w, w2} will be a complementary
tree dominating set of G. Therefore, there exists no vertex of degree atleast 3 in G and hence, each vertex in G is of degree
2 and G is a cycle.

Case 3. §(G) > 3.

Let u,v be any two nonadjacent vertices in < D >. Then, either V — {u,v, w1} or V — {u, v, w2} will be a complementary

tree dominating set, which is a contradiction. Therefore < D U {w1, w2} > is complete. Hence, G & K. O
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3. Main Results

Observation 3.1.

(a) If G is a cycle or a complete graph on atleast three vertices, then, V(G) = VD™. Let G =2 Cy, or K, n > 3. By
Observation 2.3(b) and 2.3(c) veta(G) =n —2. Let v € V(G). Then G —v = Py_1 or Kn—1 and Yeta(G—v) =n—3 <
Yetd(G). Therefore, v € VD™ and hence, V(G) =V D~.

(b) If G is a path on atleast four vertices and if v is a pendant vertex of G, thenv € VD™. Let G 2 P,, n > 4. By Observation
2.8(a), Yeta(Pn) = n — 2. Let v be a pendant vertex in P,. Then, G —v = Pp_1 and Yeta(G — v) = n — 3 < verd(G).
Therefore, v € VD™ .

(c) If G is a complete bipartite graph Km.n (m,n > 3), then, V(G) = VD~ UVD® and if G is K2, (n > 3), then
V(G) = VD UVDT. Let G be a complete bipartite graph Ko, ., where m > 2,n > 3. Without loss of generality,
let m < n. Therefore, veta(G) = min(m,n) = m (by Observation 2.3(e)). Let v € V(G). If G = K (m,n > 3).
Then, G —v =& Kpm—1,n or Kmn-1. Therefore, veta(G —v) = m — 1 or m. Therefore, v € VD~ U VDO, Hence,
V(G)=VD~ U VDC. Similarly if G = Kopn (n>3), then G —v = K15 or Ko pn_1. Therefore, veta(G —v) =n or 2.
Hence, v € VDT UVD® and V(G) = VDT uVDO.

(d) If G is a Corona Cp oK1 (n > 3) and if v is a pendant vertex of G, thenv € VD™ . Let G be the corona Cp o K1 and let
v be the pendant vertex of G. Then, G — v is a graph obtained by attaching exactly one pendant edge at each of (n — 1)
vertices of Crn. Then a minimum ctd-set of G —v contains all the (n — 1) pendant vertices and a vertex of Cy, and hence,

Yetd(G —v) = n. But, veta(G) =n 41 > vera(G — v). Therefore, v € VD™

(e) If G is a wheel Wy, onn (n > 6) vertices, then V(G) = VD~ UVDT. If G = Ws, then V(G) = VDUV D™T. If G = Wy,
then V(G) = VD™. Let G be a wheel Wy, on n (n > 6) vertices, where W,, = Cri—1 + K1. Then, vyeea(Wn) = 2 (by
Observation 2.3(g)). Let v be a vertex of Wy
Case 1. v € V(Cpn—1). Then, G —v 2 K1 + P2 and Yeta(G — v) = 1 < vea(G). Hence, v € VD™,

Case 2. v € V(Ki). Then, G —v = Chr_1 and veta(G —v) = n — 3 > vea(G). Hence, v € VDT. Therefore,
V(G)=VD uVDT'.

Proposition 3.2. Let G be a connected graph with p (p > 4) vertices. If vera(G) = 1, then V(G) = VDUV D™,

Proof.  Assume 7ctq(G) = 1. Then by the Proposition 2.4, G & K1+ 7T, where T is a tree on (p—1) vertices. Let v € V(G).
Case 1. T'is a star. Then, G 2 Ko+ (p—2)K;. If v € V(K1), then G—v 2 Ko+ (p—3) K1 and Yeta(G —v) = 1 = yera(G).
Therefore, v € VD, If v € V(K3), then G —v = K1 52 and Yeta(G — v) = p — 2 > Yeta(G) and hence v € VDT

Case 2. T is not a star

Subcase 2.1. v € V(K1). Then, G — v 2 T and veta(G — v) > 1 = vea(G). Hence, v € VDT,

Subcase 2.2. v € V(T) is such that degr(v) = 1. Then G —v = K; +T’, where T’ =T — v is a tree on (p — 2) vertices.
Hence, Yeta(G — v) = 1 = yea(G) and v € VDO,

Subcase 2.3. v € V(T) is such that degr(v) > 2. Then, T — v is disconnected such that each component of T'— v is either
a tree or an isolated vertex and G — v 2 K1 + (T — v). Hence, veta(G —v) > 1 = v:4(G) and v € VD™T. From the above

cases, it can be concluded that v € VD° U VD™, for all v € V(G) and hence, V(G) = VD° UV DT. O

Proposition 3.3. Let T be any tree. If G is a graph with atleast four vertices obtained from K1+ T with one pendant edge
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attached at the vertex of K1, then V(G) = VD~ UVD°UVDT, where

VD™ ={v e V(G)/dega(v) = 1}
VD’ ={veV(GQ)/veV(T) and degr(v) =1}

VDt ={v e V(G)/ve V(T) and degr(v)> 2}

Proof. Let G be a graph given above. Then by Theorem ?7?, vctqa(G) = 2.

Case 1. v € V(G) is such that degg(v) = 1. Then, G —v = K; + T and by Proposition 2.4, v.:q¢(G — v) = 1 and hence
veVD™.

Case 2. v € V(G)NV(T) is such that degr(v) = 1. Then, the set containing the pendant vertex of G and the vertex of K,
forms a 7eta-set of G — v and hence veta(G — v) = 2 = Yeta(G). Therefore, v € VDP.

Case 3. v € V(G) N V(T) is such that degr(v) > 2. If v is a support of T, then G — v has atleast two pendant vertices
and the set containing pendant vertices of G — v and the vertex of K; forms a 7y.:q-set of G — v. Hence, 7Yeta(G — v) > 3
and therefore, v € VDT, Let v be not a support of 7' and degr(v) > 2. Let T1,Ts,...,T, (n > 2) be the components of
T — v and let T; be a component of T' — v with maximum number of vertices. Then, V(G) — V(T3) is a ctd-set of G — v
having atleast three vertices. Choose a vertex from each component T41,75,...,T, (n > 3). Let D be the set of these n
vertices together with the vertex of K. Then, < D > K, (n > 3) and V — D has atleast three vertices and is a ctd-set
of G —v. Then, yea(G —v) = min{|V(G) — V(T3)|,|V — D|} and ~yeta(G — v) > 3. Therefore, v € VDT. From the above
cases, V(G) =VD~uUVD°UVDT. a
Proposition 3.4. Let G be a connected graph with p (p > 4) vertices. If yeta(G) = p—1, then VD™ = {v € V(G)/dega(v) =
1}.

Proof. Let v € V(G). Assume voa(G) = p— 1. Then, G = Kip-1. If dege(v) = p — 1, then G — v is totally

disconnected. If degg(v) = 1, then G — v = K p—2 and veta(G — v) = p — 2 < Yea(G). Hence, v € VD™ and therefore,
VD™ ={v € V(G)/degc(v) = 1}. O

Proposition 3.5. Let G be a connected graph with p (p > 5) vertices. If yeta(G) = p — 2 and if S be the set of cutvertices
of G, then VD™ =V(G) — S.
Proof. By Theorems 2.6 and ??, v.ta(G) =p — 2 (p > 5) if and only if G is one of the following graphs
(i) G is a cycle on p vertices
(ii) G is a complete graph on p vertices
(iii) G is a graph obtained from a complete graph by attaching pendant edges at atleast one of the vertices of the complete
graph
(iv) G is a path on p vertices
(v) G is a tree obtained from a path by attaching pendant edges at atleast one of the end vertices of the path

Let v € V(G).

Case 1. G is a cycle on p vertices. Then, G — v = P,_1 and Yeta(G — v) = p — 3 < Yeta(G). Therefore, v € VD™

Case 2. G is a complete graph on p vertices. Then, G —v = K,_1 and 7¢td(G —v) = p — 3 < Yetd(G). Therefore, v € VD™
Case 3. @ is a graph obtained from a complete graph by attaching pendant edges at atleast one of the vertices of the

complete graph.
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(a) If dege(v) = 1 and if v is the only vertex of degree 1 in G, then G — v = Kp_1 and vetd(G —v) = p — 3 < Yeta(G).
Hence, v e VD™.

(b) Let dege(v) = 1 and let there exists ¢ (t > 2) vertices of degree 1 in G. Then, G — v is a graph with (p — 1) vertices
obtained from a complete graph by attaching (¢ — 1) pendant edges at atleast one of the vertices of the complete graph.
Then, Yeta(G —v) = (p—1) =2 =p — 3 < Yeta(G). Hence, v € VD™.

(c) Let v be a vertex of the complete graph and be not a support of G. Then, dega(v) = n — 1, where n (n < p) is the
number of vertices of the complete graph and G — v is the graph obtained by attaching pendant edges at atleast one of

the vertices of the complete graph K,_1. Since G — v has (p — 1) vertices, veta(G — v) = p — 3 and hence, v € VD™
(d) If v is a support of G, then G — v is disconnected.

Case 4. G is a path on p vertices (or) G is a tree obtained from a path by attaching pendant edges at atleast one of the
vertices of the path. If v is a pendant vertex of G, then Yeta(G—v) = p—3 < Yeta(G). Hence, v € VD™ . If v is not a pendant

vertex of G, then G — v is disconnected. From Case 1-4, it can be seen that v € VD™ and therefore, V(G) = VD~. O
Theorem 3.6. Let G be a connected graph and let v € V(G) and D be a Yerq-set of G. Then, v € VD™ if either
(i) vertices of V. — D adjacent to v € D are adjacent to atleast one vertez in D other than v (or)

(i) v is a pendant vertezr in V — D and there ezists a vertex w € N(v) N D such that N(u) N D # ¢ and u is adjacent to

ezactly one vertez, say w in (V(G) — D) — {v} such that N(w) N (D — {u}) # ¢.

Proof. Let D be a ~ya-set of G and v € V(G). Assume (i).
Letve Dandlet D' =D —{v},V-D =V —(D—{v}) and D' CV — {v}. Since <V — D > is a tree and v € D,
< V(G —v)— D' > is also a tree. Also, each vertex in V(G —v) — D’ is adjacent to atleast one vertex in D’ and hence,

D' =D —{v} is a ctd-set of G — v. Therefore,

Yetd(G —v) < |D — {v}|

= Yeta(G) — 1 < Yu1a(G)

Hence, v € VD™. Assume (ii).

Let v € V — D and be a pendant vertex in V — D, u € N(v) N D be such that N(u) N D # ¢ and u be adjacent to exactly
one vertex w in (V — D) — {v} such that N(w) N (D — {u}) # ¢. Let D’ = D — {u}. Then, u € V- D', N(u)ND # ¢
implies that u is adjacent to atleast one vertex in D’.

Similarly, N(w) N (D — {u}) # ¢ implies that w is also adjacent to atleast one vertex in D’. Since D is a dominating set of
G, all the remaining vertices in V — D’ are adjacent to atleast one vertex in D’. Therefore, D’ is a dominating set of G — v.
Since < V — D > is a tree and u is adjacent to exactly one vertex in (V — D) — {v}, <V — D’ > is also a tree. Hence, D’

is a ctd-set of G — v and Vet (G —v) < |D'| = |D| — 1 = Yeta(G) — 1 < veta(G). Therefore, v € VD™, O O

Theorem 3.7. Let G be a connected graph and let D be a Yera-set of G. If v € V(G) is a pendant vertex in V — D and for

everyu € D, <V — D) U {u} > either contains a cycle or is disconnected, then v € VD° UV D™,

Proof. Let D be a ~yctq-set of G and let v be a pendant vertex in V — D. If v satisfies the conditions given in the theorem,

then D is also a ctd-set of G — v. Therefore, Yeta(G — v) < |D| = vcta(G) and hence v € vD°uVvD~. O
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Observation 3.8. Let G be a connected graph and let v € V(G)

(i) Let G — v be a connected graph such that each vertex of degree atleast two is a support. Let t be the number of pendant

vertices of G. Then,

(a) v € VD, if t = yera(G)
(b) v € VD™, if t < vera(G)
(c) v € VDT, if t > vera(G)

(i) If G — v is a connected graph with Yeta(G) pendant vertices and if there exists atleast one nonsupport vertex of degree

atleast two, then v € VD™,
(i1) Let G — v be a complete graph, a cycle or a path on n vertices, then

(a) v € VDO, if yera(G) =n — 2
(b) ve VD™, if vera(G) >n — 2

(c) vEVDT, if vera(G) < n—2
(w) Let G — v be a graph which is the one point union of t triangles. Then

(a) v € VD, if t = vera(G)
(b) v e VD™, if t <vera(G)

(c) ve VDT, ift > vea(G)
Proposition 3.9. If G is a connected graph having atleast four vertices with Yeta(G) = 1, then E(G) = EDY.

Proof. Let G be a connected graph with p (p > 4) vertices. ~vctqa(G) = 1 implies that G = K; + T, where T is a tree on
(p — 1) vertices (by Proposition 2.4). Let e = (u,v) € E(G) and let D be a 7ycta-set of G. Therefore, |[D| = 1.

Case 1. u€ Dand v €V — D. Then, u € V(K;) and v € V(T).

Subcase 1.1. v is a pendant vertex in T, then G — e is a graph obtained by attaching a pendant edge at a vertex of the
graph K + T’, where T” is a tree on (p — 2) vertices. Yeta(G — €) = Yeta(K1 +T') = 2 > v.1a(G). Hence, e € ED™T.
Subcase 1.2. v is a vertex of degree atleast two in T'. Then, G — e is not isomorphic to K1 +T", for any tree T". Therefore,
Yetd(G — €) > 2 > v0:a(G). Hence, e € ED™.

Case 2. u,v € V — D. Then, G — e is a graph K; + (T1 UT»), where T1 and T% are any two disjoint trees and the number
of vertices in Ty UT5 is p — 1. yepa(G — €) = 1+ min(|T1|,|T2|) > vVeta(G) and hence, e € ED. From Case 1 and Case 2, it
can be concluded that E(G) = ED*. O

Proposition 3.10. Let T be any tree. Let G be the graph with atleast four vertices, obtained from K1+ T with one pendant
edge attached at the vertex of K1. If e is not a pendant edge of G, then e € ED° U EDT.

Proof. Let G be the graph with atleast four vertices obtained from Kj + T with one pendant edge attached at the vertex
of K1, where T is any tree. Let D be a 7cq-set of G. D contains the vertices of the pendant edge. By Theorem ?7,
Yeta(G) = 2. Let e = (u,v) € E(G).

Case 1. u,v € D. Then, e = (u,v) is the pendant edge and G — e is disconnected with one isolated vertex.

Case 2. u € D, v € V— D and degg(v) = 2. Then, v is a pendant vertex in 7" and G — e has two pendant vertices.
Therefore, Vera(G — €) > 2 = vea(G). Hence, e € ED°UEDT.
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Case 3. u € D, v € V — D and degg(v) > 2. If T is a path on three vertices, then vcta(G — €) = Yeta(G) = 2. Therefore,
e € ED°. Let T be not a path on three vertices. If v is a support of T, then the set {u,w,z} is a yera-set of G — e, where
w is the pendant vertex of G and x € N(v) is a pendant vertex of T. Therefore, Vcta(G — €) = 3 > 7ca(G) and hence,
e € EDY. If v is not a support of T, then the set containing u, pendant vertex of T' and atleast two vertices of T' forms a
Yeta-set of G — e. Therefore, e € EDT.

Case 4. u,v € V — D.

Subcase 4.1. dege(u) = 2 and degg(v) > 2. Then, u is a pendant vertex of T' and v is a support of T adjacent to v in T, and
G —e contains two pendant vertices. Since dega(v) > 2, T contains atleast three vertices and hence, Yeta(G—e€) > 3 > vera(G).
Therefore, e € ED™.

Subcase 4.2. degg(u) > 2 and degg(v) > 2. Then, G — e is a graph K; + (71 U T>) with a pendant edge attached at
the vertex of K1, where T7 and T> are any two trees. Therefore, v.t4-set of G — e contains a pendant vertex and atleast
one vertex from each of Th and T». Hence, vcta(G —€) > 3 and e € ED™. From the above cases, it can be concluded that

e € ED™, if e is not a pendant edge of G. O

Proposition 3.11. Let G be a connected graph obtained from a tree by joining each of the vertices of the tree to the vertices
of K2 such that for all v € V(K2), dega(v) > 2 and let e = (u,v) € E(G). If D is a Yeta-set of G and if atleast one of u

and v is an element of D, then e € ED° U ED™.

Proof. Let G be a connected graph as given in the proposition. Then by Theorem ??, v.:4(G) = 2. Let e = (u,v) € E(G)
and let D be a 7ctqa-set of G. Assume u € D.

Case 1. v € D. Then G — e is a graph obtained from a tree by joining each of the vertices of the tree to the vertices of
2K, such that degg(w) > 1, for all w € V(2K1). By Theorem ??, vcta(G — €) = 2. Therefore, vera(G — €) = vera(G) and
hence, e € ED°.

Case 2. veV —D.

Subcase 2.1. degg(u) = degg(v) = 2. Then, G — e is a graph with two pendant vertices. If |D| = |V — D| = 2, then G is
a path on four vertices. Therefore, veta(G — €) = Yeta(G) = 2. Otherwise, G — e contains a cycle with two pendant vertices
and hence, Yeta(G — €) > 3 > Yera(G). Therefore, e € ED™.

Subcase 2.2. dega(u) > 3. If dega(u) = 3, and w € N(u) N D is adjacent to all the vertices of the tree, then {w} is a
ctd-set of G — e and hence, Veta(G — €) = 1 < Yeta(G). Therefore, e € ED°. If dego (u) > 3 and if G — e is a graph obtained
from a tree by joining each of the vertices of the tree to the vertices of 2K> such that degg—_.(z) > 2, for all z € V(2K3),

then yetq(G — €) = 2. Otherwise, veta(G — €) > 2. Hence, e € ED° U ED*. From the above cases, e €¢ ED° U ED™. O
In analogous to Proposition 7?7, the following proposition is stated without proof.

Proposition 3.12. Let G be a connected graph obtained from a tree by joining each of the vertices of the tree to the vertices
of 2K such that dega(v) > 1 for allv € V(2K1) and let e = (u,v) € E(G). If G is a Yera-set of G and if atleast one of u

and v is a member of V — D, then e € ED~ UED°U ED™.

Proposition 3.13. Let G be a connected graph with p (p > 5) vertices and let veta(G) = p — 2. If e is not a cut edge of G,
then e € ED° UED™ .

Proof. By Theorem 2.6 and Theorem ??, v.:a(G) = p — 2 if and only if G is one of the following graphs
(i) G is a cycle on p vertices.

(ii) G is a complete graph on p vertices.
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(iii) G is a graph obtained from a complete graph by attaching pendant edges at atleast one of the vertics of the complete

graph.
(iv) G is a path on p vertices.
(v) G is a tree obtained from a path by attaching pendant edges at atleast one of the end vertices of the path.

If G is a graph as in (i) or (ii), then e € ED® or e € ED™. If G is a graph as in (iv) and (v), then each edge of G is a
cut edge. Let G be a graph given as in (iii). Let the complete graph be K,, where n < p. Since e is not a cut edge of G,
e € E(Ky). Then G — e is a graph obtained from K, — e by attaching pendant edges at atleast one of the vertices of K, —e.

Therefore, Yeta(G —€) =p—3 < p—2=7.a(G) and e € ED™. Hence, e € ED° UED"™. O O
Observation 3.14. Let G be a connected graph and let e = (u,v) € E(G). Let D be a yeia-set of G, then
i) e € ED°, if either

(a) both w,v € D (or)

(b)) ue D, veV —D and v is adjacent to atleast two vertices in D
it) e € ED™, ifu,v € V — D and there exists a vertex w € D such that N(w) N D # ¢ and N(w) N (V — D) = {u,v}
i) e € ED° U ED™, if either

(a) u,v €V —D (or)

(b) ue D, veV —D and v is adjacent to exactly one vertex in D
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