International Journal of Mathematics And its Applications

More Results on Complementary Tree Domination Number of Graphs

Research Article

S.Muthammai ${ }^{1}$ and P.Vidhya ${ }^{2 *}$
1 Government Arts College for Women (Autonomous), Pudukkottai, Tamilnadu, India.
2 S.D.N.B. Vaishnav College for Women (Autonomous), Chennai, Tamilnadu, India.

Abstract

A set D of a graph $G=(V, E)$ is a dominating set if every vertex in $V-D$ is adjacent to some vertex in D. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set. A dominating set D is called a complementary tree dominating set if the induced subgraph $\langle V-D\rangle$ is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of G and is denoted by $\gamma_{c t d}(G)$. In this paper, some results on complementary tree domination established.

\section*{MSC: 05C69.}

Keywords: Domination number, graph.

(c) JS Publication.

1. Introduction

Graphs discussed in this paper are undirected and simple graph $G(V, E)$. The graph $C_{n}^{(t)}$ is the one point union of t cycles of length n. If $n=3$, it is called the Dutch t-windmill or friendship graph. The corona $G_{1} \odot G_{2}$ of two graphs G_{1} and G_{2} are defined as the graph G obtained by taking one copy of G_{1} of order p_{1} and p_{1} copies of G_{2} and then joining the $i^{\text {th }}$ vertex of G_{1} to every vertex in the $i^{t h}$ copy of G_{2}. The corona has $p_{1}\left(1+p_{2}\right)$ vertices and $q_{1}+p_{1} q_{2}+p_{1} p_{2}$ edges. A set of vertices in G is independent, if no two of them are adjacent. The largest number of vertices in such a set is called the independence number of G and is denoted by $\beta_{0}(G)$. Any undefined terms in this paper may be found in Harary [1].

The concept of domination in graphs was introduced by Ore [2]. A set $D \subseteq V(G)$ is said to be a dominating set of G. If every vertex in $V-D$ is adjacent to some vertex in $D . D$ is said to be a minimal dominating set if $D-\{u\}$ is not a dominating set, for any $u \in D$. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set.

In this paper, more results on complementary tree domination number of graphs are found.

2. Prior Results

Definition 2.1 ([1]). A set $D \subseteq V(G)$ is said to be a complementary tree dominating set (ctd-set) if the induced subgraph $<V(G)-D>$ is a tree. The minimum cardinality of a ctd-set is called the complementary tree domination number of G and is denoted by $\gamma_{c t d}(G)$.

[^0]
Observation 2.2 ([1]).

(a). For any connected graph $G, \gamma(G) \leq \gamma_{c t d}(G)$.
(b). For any spanning subgraph H of $G, \gamma_{c t d}(G) \leq \gamma_{c t d}(H)$.

Theorem 2.3. A ctd-set D of G is minimal if and only if for each vertex v in D one of the following conditions hold.
(a). v is an isolated vertex of D.
(b). there exists a vertex u in $V-D$ for which $N(u) \cap D=\{v\}$.
(c). $N(v) \cap(V-D)=\phi$
(d). The subgraph $<(V-D) \cup\{v\}>$ induced by $(V-D) \cup\{v\}$, either contains a cycle or disconnected.

Proposition 2.4. Let $C_{n}^{(t)}, t \geq 2$ be the one point union of t cycles of length $n(n \geq 3)$. Then

$$
\gamma_{c t d}\left(C_{n}^{(t)}\right)= \begin{cases}t, & n=3 \\ (n-3) t+1, & n \geq 4\end{cases}
$$

Proof. Let $G=C_{n}^{(t)}$ and u be the point of union of t cycles of length n. G has $t(n-1)+1$ vertices. Let the vertex set of $k^{t h}$ cycle in $C_{n}^{(t)}$ be $V_{k}=\left\{u, u_{k 1}, u_{k 2}, \ldots, u_{k, n-1}\right\}, k=1,2, \ldots, t$.

Case 1. $n=3$
Let $D_{k}=\left\{u_{k 1}\right\}, k=1, \ldots, t$ and $D=\bigcup_{k=1}^{t} D_{k} \subseteq V(G)$. Then $<V-D>\cong K_{1, t}$. Let $v \in D$. Then $<V-(D-\{v\})>$ either contains a cycle or is disconnected and hence, D is a minimum ctd-set of G and $\gamma_{c t d}(G)=|D|=t$.

Case 2. $n \geq 4$
Let $D_{k}=\left\{u_{k 2}, u_{k 3}, \ldots, u_{k, n-2}\right\}, k=1, \ldots, t$ and $D=\bigcup_{k=1}^{t} D_{k} \cup\left\{u_{11}\right\} \subseteq V(G)$. Then $<V-D>\cong K_{1,2 t-1}$. As in Case 1, D is a minimum ctd-set of G and hence, $\gamma_{c t d}(G)=|D|=(n-3) t+1$.

In the following, upper bound of $\gamma_{c t d}\left(G_{1} \circ G_{2}\right)$ is given.
Theorem 2.5. Let $G_{1}\left(p_{1}, q_{1}\right)$ and $G_{2}\left(p_{2}, q_{2}\right)$ be two connected graphs of order atleast two. Let T be an induced subgraph of G_{1} having maximum number of vertices such that T is a tree. If β_{0} is the independence number of G_{2}, then $\gamma_{c t d}\left(G_{1} \circ G_{2}\right) \leq$ $p_{1}\left(p_{2}+1\right)-t\left(1+\beta_{0}\right)$, where $t=|T|$.

Proof. Let T be an induced subgraph of G_{1} having maximum number of vertices such that T is a tree. Let $|T|=t$. Let S be a maximum independent set of G_{2} such that $|S|=\beta_{0}$. Let D^{\prime} be the set of vertices of S in copies of G_{2} which are adjacent to vertices of T. Then $\left|D^{\prime}\right|=t \beta_{0}$. Let $D=V\left(G_{1} \circ G_{2}\right)-\left(V(T) \cup D^{\prime}\right)$. Then $V\left(G_{1} \circ G_{2}\right)-D=V(T) \cup D^{\prime}$ and each vertex in $V(T)$ is adjacent to $\left(p_{2}-\beta_{0}\right)$ vertices in a copy of G_{2}. Also, each vertex in D^{\prime} is adjacent to atleast one of $\left(p_{2}-\beta_{0}\right)$ vertices in a copy of G_{2}. Therefore, D is a dominating set of $G_{1} \circ G_{2}$ and $<V\left(G_{1} \circ G_{2}\right)-D>$ is the tree obtained from T by attaching β_{0} pendant edges at each vertex of T. Therefore, D is a ctd-set of $G_{1} \circ G_{2}$.

$$
\begin{aligned}
\gamma_{c t d}\left(G_{1} \circ G_{2}\right) & \leq|D| \\
& =\left|V\left(G_{1} \circ G_{2}\right)-\left(V(T) \cup D^{\prime}\right)\right| \\
& =p_{1}+p_{1} p_{2}-\left(t+t \beta_{0}\right) \\
& =p_{1}\left(1+p_{2}\right)-t\left(1+\beta_{0}\right)
\end{aligned}
$$

Equality holds, if $G_{1} \circ G_{2} \cong C_{n} \circ C_{3}, n \geq 4$.

Replacing t by p_{1} in Theorem 2.5, the corollary follows.

Corollary 2.6. Let $G_{1}\left(p_{1}, q_{1}\right)$ and $G_{2}\left(p_{2}, q_{2}\right)$ be two connected graphs of order atleast two. If G_{1} is a tree and if β_{0} is the independence number of G_{2}, then $\gamma_{c t d}(G) \leq p_{1}\left(p_{2}-\beta_{0}\right)$.

Equality holds, if $G_{1} \circ G_{2} \cong T \circ K_{n}, n \geq 3$, where T is any tree.
Theorem 2.7. Let T_{1} and T_{2} be two trees with orders p_{1} and p_{2}, respectively. Then $\gamma_{c t d}\left(T_{1} \circ T_{2}\right) \leq p_{1}\left(p_{2}-1\right)$.

Proof. Let $S \subseteq V\left(T_{1} \circ T_{2}\right)$ be the set containing vertices of T_{1} and one vertex from each copy of T_{2}. Let $D=V\left(T_{1} \circ T_{2}\right)-S$. Then D is a dominating set of $T_{1} \circ T_{2}$ and $\left\langle V\left(T_{1} \circ T_{2}\right)-D\right\rangle=\langle S\rangle=T_{1} \circ K_{1}$. Therefore, D is a ctd-set of $T_{1} \circ T_{2}$ and $|D|=\left|V\left(T_{1} \circ T_{2}\right)\right|-2\left|T_{1}\right|=p_{1}+p_{1} p_{2}-2 p_{1}=p_{1}\left(p_{2}-1\right)$. Hence, $\gamma_{c t d}\left(T_{1} \circ T_{2}\right) \leq|D|=p_{1}\left(p_{2}-1\right)$. Equality holds, if $T_{1} \cong P_{4}$, $T_{2} \cong K_{2}$.

Notation 2.8.

(a). By attaching a pendant edge at a vertex v of a graph G, it is meant that merging a vertex of the pendant edge with v.
(b). By attaching a graph H at a vertex v of a graph G, it is meant that merging a vertex of H to v.

Theorem 2.9. Let G be a connected graph. Then $\gamma_{c t d}(G)=2$ if and only if G is one of the following graphs
(i) G is the graph obtained from $K_{1}+T$ with one pendant edge attached at the vertex of K_{1}, where T is any tree.
(ii) G is the graph obtained from a tree by joining each of the vertices of the tree to the vertices of K_{2} such that deg $g_{G} \geq 2$, for all $v \in V\left(K_{2}\right)$.
(iii) G is the graph obtained from a tree by joining each of the vertices of the tree to the vertices of $2 K_{1}$ such that deg $g_{G} v 1$, for all $v \in V\left(2 K_{1}\right)$.

Proof. Let G be one of the graph mentioned in (i), (ii) and (iii). Since G is not isomorphic to $K_{1}+T$, for any tree T, $\gamma_{c t d}(G) \geq 2$. If G is the graph as in (i), the subset of $V(G)$ consisting of the vertex of K_{1} and the pendant vertex of G forms a ctd-set of G. Therefore, $\gamma_{c t d}(G) \leq 2$ and hence $\gamma_{c t d}(G)=2$.
Conversely, assume $\gamma_{c t d}(G)=2$. Then, there exists a ctd-set D such that $|D|=2$.
Case 1. Let $D=\{u, v\}$.
(a) If u or v is a pendant vertex in G, then all the vertices of $V-D$ are adjacent to v or u. Therefore, G is the graph mentioned in (i).
(b) Let $\operatorname{deg}_{G}(u) \geq 2$ and $\operatorname{deg}_{G}(v) \geq 2$. Since $\langle V-D>$ is a tree and D is a dominating set of G, each vertex in $V-D$ is adjacent to atleast one vertex in D. Hence, G is the graph as in (ii).

Case $2\langle D\rangle \cong 2 K_{1}$.
Then G is the graph mentioned in (iii).
Theorem 2.10. Let $p(p \geq 4)$ be an integer. For each k satisfying
$2 \leq k \leq p-2$, there is a connected graph G with $\gamma_{c t d}(G)=k$.

Proof. Let G be a graph obtained from $K_{1}+T$ either (i) by attaching a complete graph on $k(k \geq 2)$ vertices at the vertex of K_{1} or (ii) by attaching $k-1$ pendant edges at the vertex of K_{1}, then the set containing either vertices of the complete graph on k vertices or $(k-1)$ pendant vertices with the vertex of K_{1} forms a $\gamma_{c t d}$-set and hence, $\gamma_{c t d}(G)=k$.

Example 2.11. Let $T \cong P_{5}$ and $k=4$. Then, G is atleast one of G_{1} and G_{2} given in Figure 1 and $\gamma_{c t d}\left(G_{1}\right)=\gamma_{c t d}\left(G_{2}\right)=4$.

Figure 1.

Theorem 2.12. Given two integers a and b with $2 \leq a \leq b$, there exists a graph G with $a+b+1$ vertices, such that $\gamma(G)=a$ and $\gamma_{c t d}(G)=b$.

Figure 2.

Proof. In the cycle $C_{a+2}(a \geq 2)$ of length $a+2$, consider a path P of length a. In this path, attach $(b-a)$ pendant edges at exactly one vertex and attach one pendant edge at each of the remaining $(a-1)$ vertices. Let the graph thus obtained be denoted by G and G has $a+b+1$ vertices. The set of supports of the graph G forms a minimum dominating set of G and the set consisting of all the pendant vertices of G and a vertex of degree 2 in G, forms a minimum ctd-set of G. Therefore, $\gamma(G)=a$ and $\gamma_{c t d}(G)=b-a+a-1+1=b$. Hence, there exists a graph G with $\gamma(G)=a, \gamma_{c t d}(G)=b$.

References

[1] F.Harary, Graph Theory, Addison Wesley, Reading Mass, (1969).
[2] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New York, (1998).
[3] S.Muthammai, M.Bhanumathi and P.Vidhya, Complementary tree domination in graphs, International Mathematical Forum, 6(26)(2011), 1273-1283.
[4] O.Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ., 38(1962).

[^0]: * E-mail: vidhya_lec@yahoo.co.in

