

International Journal of Mathematics And its Applications

# More Results on Complementary Tree Domination Number of Graphs

**Research Article** 

#### S.Muthammai<sup>1</sup> and P.Vidhya<sup>2\*</sup>

1 Government Arts College for Women (Autonomous), Pudukkottai, Tamilnadu, India.

2 S.D.N.B. Vaishnav College for Women (Autonomous), Chennai, Tamilnadu, India.

# Abstract: A set D of a graph G = (V, E) is a dominating set if every vertex in V - D is adjacent to some vertex in D. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set. A dominating set D is called a complementary tree dominating set if the induced subgraph $\langle V - D \rangle$ is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of G and is denoted by $\gamma_{ctd}(G)$ . In this paper, some results on complementary tree domination established.

MSC: 05C69.

Keywords: Domination number, graph. © JS Publication.

## 1. Introduction

Graphs discussed in this paper are undirected and simple graph G(V, E). The graph  $C_n^{(t)}$  is the one point union of t cycles of length n. If n = 3, it is called the Dutch t-windmill or friendship graph. The corona  $G_1 \odot G_2$  of two graphs  $G_1$  and  $G_2$ are defined as the graph G obtained by taking one copy of  $G_1$  of order  $p_1$  and  $p_1$  copies of  $G_2$  and then joining the  $i^{th}$  vertex of  $G_1$  to every vertex in the  $i^{th}$  copy of  $G_2$ . The corona has  $p_1(1 + p_2)$  vertices and  $q_1 + p_1q_2 + p_1p_2$  edges. A set of vertices in G is independent, if no two of them are adjacent. The largest number of vertices in such a set is called the independence number of G and is denoted by  $\beta_0(G)$ . Any undefined terms in this paper may be found in Harary [1].

The concept of domination in graphs was introduced by Ore [2]. A set  $D \subseteq V(G)$  is said to be a dominating set of G. If every vertex in V - D is adjacent to some vertex in D. D is said to be a minimal dominating set if  $D - \{u\}$  is not a dominating set, for any  $u \in D$ . The domination number  $\gamma(G)$  of G is the minimum cardinality of a dominating set.

In this paper, more results on complementary tree domination number of graphs are found.

## 2. Prior Results

**Definition 2.1** ([1]). A set  $D \subseteq V(G)$  is said to be a complementary tree dominating set (ctd-set) if the induced subgraph  $\langle V(G) - D \rangle$  is a tree. The minimum cardinality of a ctd-set is called the complementary tree domination number of G and is denoted by  $\gamma_{ctd}(G)$ .

 $<sup>^*</sup>$  E-mail: vidhya\_lec@yahoo.co.in

#### Observation 2.2 ([1]).

- (a). For any connected graph G,  $\gamma(G) \leq \gamma_{ctd}(G)$ .
- (b). For any spanning subgraph H of G,  $\gamma_{ctd}(G) \leq \gamma_{ctd}(H)$ .

**Theorem 2.3.** A ctd-set D of G is minimal if and only if for each vertex v in D one of the following conditions hold.

- (a). v is an isolated vertex of D.
- (b). there exists a vertex u in V D for which  $N(u) \cap D = \{v\}$ .
- (c).  $N(v) \cap (V D) = \phi$
- (d). The subgraph  $\langle (V-D) \cup \{v\} \rangle$  induced by  $(V-D) \cup \{v\}$ , either contains a cycle or disconnected.

**Proposition 2.4.** Let  $C_n^{(t)}$ ,  $t \ge 2$  be the one point union of t cycles of length  $n \ (n \ge 3)$ . Then

$$\gamma_{ctd}(C_n^{(t)}) = \begin{cases} t, & n = 3\\ (n-3)t+1, & n \ge 4 \end{cases}$$

*Proof.* Let  $G = C_n^{(t)}$  and u be the point of union of t cycles of length n. G has t(n-1) + 1 vertices. Let the vertex set of  $k^{th}$  cycle in  $C_n^{(t)}$  be  $V_k = \{u, u_{k1}, u_{k2}, ..., u_{k,n-1}\}, k = 1, 2, ..., t$ .

**Case 1.** n = 3

Let  $D_k = \{u_{k1}\}, k = 1, ..., t \text{ and } D = \bigcup_{k=1}^{t} D_k \subseteq V(G)$ . Then  $\langle V - D \rangle \cong K_{1,t}$ . Let  $v \in D$ . Then  $\langle V - (D - \{v\}) \rangle$  either contains a cycle or is disconnected and hence, D is a minimum ctd-set of G and  $\gamma_{ctd}(G) = |D| = t$ .

#### Case 2. $n \ge 4$

 $\sum_{k=1}^{t} D_{k} = \{u_{k2}, u_{k3}, \dots, u_{k,n-2}\}, \ k = 1, \dots, t \text{ and } D = \bigcup_{k=1}^{t} D_{k} \cup \{u_{11}\} \subseteq V(G). \text{ Then } \langle V - D \rangle \cong K_{1,2t-1}. \text{ As in Case 1, } D \text{ is a minimum ctd-set of } G \text{ and hence, } \gamma_{ctd}(G) = |D| = (n-3)t+1.$ 

In the following, upper bound of  $\gamma_{ctd}(G_1 \circ G_2)$  is given.

**Theorem 2.5.** Let  $G_1(p_1, q_1)$  and  $G_2(p_2, q_2)$  be two connected graphs of order atleast two. Let T be an induced subgraph of  $G_1$  having maximum number of vertices such that T is a tree. If  $\beta_0$  is the independence number of  $G_2$ , then  $\gamma_{ctd}(G_1 \circ G_2) \leq p_1(p_2+1) - t(1+\beta_0)$ , where t = |T|.

Proof. Let T be an induced subgraph of  $G_1$  having maximum number of vertices such that T is a tree. Let |T| = t. Let S be a maximum independent set of  $G_2$  such that  $|S| = \beta_0$ . Let D' be the set of vertices of S in copies of  $G_2$  which are adjacent to vertices of T. Then  $|D'| = t\beta_0$ . Let  $D = V(G_1 \circ G_2) - (V(T) \cup D')$ . Then  $V(G_1 \circ G_2) - D = V(T) \cup D'$  and each vertex in V(T) is adjacent to  $(p_2 - \beta_0)$  vertices in a copy of  $G_2$ . Also, each vertex in D' is adjacent to atleast one of  $(p_2 - \beta_0)$  vertices in a copy of  $G_2$ . Therefore, D is a dominating set of  $G_1 \circ G_2$  and  $\langle V(G_1 \circ G_2) - D \rangle$  is the tree obtained from T by attaching  $\beta_0$  pendant edges at each vertex of T. Therefore, D is a ctd-set of  $G_1 \circ G_2$ .

$$\gamma_{ctd}(G_1 \circ G_2) \le |D|$$
  
= |V(G\_1 \circ G\_2) - (V(T) \circ D')  
= p\_1 + p\_1 p\_2 - (t + t\beta\_0)  
= p\_1(1 + p\_2) - t(1 + \beta\_0)

Equality holds, if  $G_1 \circ G_2 \cong C_n \circ C_3$ ,  $n \ge 4$ .

Replacing t by  $p_1$  in Theorem 2.5, the corollary follows.

**Corollary 2.6.** Let  $G_1(p_1, q_1)$  and  $G_2(p_2, q_2)$  be two connected graphs of order atleast two. If  $G_1$  is a tree and if  $\beta_0$  is the independence number of  $G_2$ , then  $\gamma_{ctd}(G) \leq p_1(p_2 - \beta_0)$ . Equality holds, if  $G_1 \circ G_2 \cong T \circ K_n$ ,  $n \geq 3$ , where T is any tree.

**Theorem 2.7.** Let  $T_1$  and  $T_2$  be two trees with orders  $p_1$  and  $p_2$ , respectively. Then  $\gamma_{ctd}(T_1 \circ T_2) \leq p_1(p_2 - 1)$ .

*Proof.* Let  $S \subseteq V(T_1 \circ T_2)$  be the set containing vertices of  $T_1$  and one vertex from each copy of  $T_2$ . Let  $D = V(T_1 \circ T_2) - S$ . Then D is a dominating set of  $T_1 \circ T_2$  and  $\langle V(T_1 \circ T_2) - D \rangle = \langle S \rangle = T_1 \circ K_1$ . Therefore, D is a ctd-set of  $T_1 \circ T_2$  and  $|D| = |V(T_1 \circ T_2)| - 2|T_1| = p_1 + p_1 p_2 - 2p_1 = p_1(p_2 - 1)$ . Hence,  $\gamma_{ctd}(T_1 \circ T_2) \leq |D| = p_1(p_2 - 1)$ . Equality holds, if  $T_1 \cong P_4$ ,  $T_2 \cong K_2$ .

#### Notation 2.8.

- (a). By attaching a pendant edge at a vertex v of a graph G, it is meant that merging a vertex of the pendant edge with v.
- (b). By attaching a graph H at a vertex v of a graph G, it is meant that merging a vertex of H to v.

**Theorem 2.9.** Let G be a connected graph. Then  $\gamma_{ctd}(G) = 2$  if and only if G is one of the following graphs

- (i) G is the graph obtained from  $K_1 + T$  with one pendant edge attached at the vertex of  $K_1$ , where T is any tree.
- (ii) G is the graph obtained from a tree by joining each of the vertices of the tree to the vertices of  $K_2$  such that  $\deg_G v \ge 2$ , for all  $v \in V(K_2)$ .
- (iii) G is the graph obtained from a tree by joining each of the vertices of the tree to the vertices of  $2K_1$  such that  $deg_G v \ge 1$ , for all  $v \in V(2K_1)$ .

*Proof.* Let G be one of the graph mentioned in (i), (ii) and (iii). Since G is not isomorphic to  $K_1 + T$ , for any tree T,  $\gamma_{ctd}(G) \ge 2$ . If G is the graph as in (i), the subset of V(G) consisting of the vertex of  $K_1$  and the pendant vertex of G forms a ctd-set of G. Therefore,  $\gamma_{ctd}(G) \le 2$  and hence  $\gamma_{ctd}(G) = 2$ .

Conversely, assume  $\gamma_{ctd}(G) = 2$ . Then, there exists a ctd-set D such that |D| = 2.

**Case 1.** Let  $D = \{u, v\}$ .

(a) If u or v is a pendant vertex in G, then all the vertices of V - D are adjacent to v or u. Therefore, G is the graph mentioned in (i).

(b) Let  $deg_G(u) \ge 2$  and  $deg_G(v) \ge 2$ . Since  $\langle V - D \rangle$  is a tree and D is a dominating set of G, each vertex in V - D is adjacent to atleast one vertex in D. Hence, G is the graph as in (ii).

Case 
$$2 < D \ge 2K_1$$
.

Then G is the graph mentioned in (iii).

**Theorem 2.10.** Let  $p \ (p \ge 4)$  be an integer. For each k satisfying  $2 \le k \le p-2$ , there is a connected graph G with  $\gamma_{ctd}(G) = k$ .

*Proof.* Let G be a graph obtained from  $K_1 + T$  either (i) by attaching a complete graph on k ( $k \ge 2$ ) vertices at the vertex of  $K_1$  or (ii) by attaching k - 1 pendant edges at the vertex of  $K_1$ , then the set containing either vertices of the complete graph on k vertices or (k - 1) pendant vertices with the vertex of  $K_1$  forms a  $\gamma_{ctd}$ -set and hence,  $\gamma_{ctd}(G) = k$ .

**Example 2.11.** Let  $T \cong P_5$  and k = 4. Then, G is atleast one of  $G_1$  and  $G_2$  given in Figure 1 and  $\gamma_{ctd}(G_1) = \gamma_{ctd}(G_2) = 4$ .

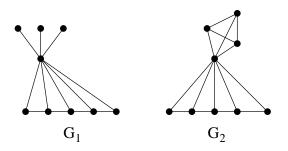
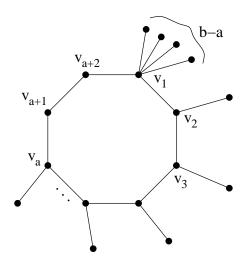


Figure 1.

**Theorem 2.12.** Given two integers a and b with  $2 \le a \le b$ , there exists a graph G with a+b+1 vertices, such that  $\gamma(G) = a$  and  $\gamma_{ctd}(G) = b$ .



#### Figure 2.

*Proof.* In the cycle  $C_{a+2}$   $(a \ge 2)$  of length a+2, consider a path P of length a. In this path, attach (b-a) pendant edges at exactly one vertex and attach one pendant edge at each of the remaining (a-1) vertices. Let the graph thus obtained be denoted by G and G has a+b+1 vertices. The set of supports of the graph G forms a minimum dominating set of G and the set consisting of all the pendant vertices of G and a vertex of degree 2 in G, forms a minimum ctd-set of G. Therefore,  $\gamma(G) = a$  and  $\gamma_{ctd}(G) = b - a + a - 1 + 1 = b$ . Hence, there exists a graph G with  $\gamma(G) = a$ ,  $\gamma_{ctd}(G) = b$ .

#### References

- [1] F.Harary, Graph Theory, Addison Wesley, Reading Mass, (1969).
- [2] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New York, (1998).
- [3] S.Muthammai, M.Bhanumathi and P.Vidhya, Complementary tree domination in graphs, International Mathematical Forum, 6(26)(2011), 1273–1283.
- [4] O.Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ., 38(1962).