International Journal of Mathematics And its Applications

Stability of Quintic Functional Equation in 2-Banach Space

Research Article

R.Murali ${ }^{1 *}$, M.Boobalan ${ }^{1}$ and A.Antony Raj ${ }^{1}$

1 Department of Mathematics, Sacred Heart College, Tirupattur, TamilNadu, India.

Abstract: In this paper, we investigate the Hyers-Ulam stability of the functional equation

$$
\begin{equation*}
2 g(2 x+y)+2 g(2 x-y)+g(x+2 y)+g(x-2 y)=20[g(x+y)+g(x-y)]+90 g(x) \tag{1}
\end{equation*}
$$

in 2-Banach space.
MSC: $39 \mathrm{~B} 82,46 \mathrm{~B} 86,17 \mathrm{C} 65$.
Keywords: Hyers-Ulam stability, 2-Banach space, Quintic functional equation.
(C) JS Publication.

1. Introduction

The stability problem of functional equations originated from a question of Ulam [8] concerning the stability of group homomorphisms. Hyers [4] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyer's theorem was generalized by Aoki [1] for additive mappings and by Rassias [5] for linear mappings by considering an unbounded Cauchy difference. The paper of Rassias has provided a lot of influence in the development of what we call Hyers-UlamRassias stability of functional equations. In 1990, Rassias [6] asked whether such a theorem can also be proved for $p \geq 1$. In 1991,Gajda [2] gave an affirmative solution to this question when $p>1$, but it was proved by Gajda [2] and Rassias and Semrl [7] that one cannot prove an analogous theorem when $\mathrm{p}=1$. In 1994, a generalization was obtained by Gavruta [3], who replaced the bound $\epsilon\left(\|x\|^{p}+\|y\|^{p}\right)$ by a general control function $\phi(x, y)$. Beginning around 1980, the stability problems of several functional equations and approximate homomorphisms have been extensively investigated by a number of authors, and there are many interesting results concerning this problem. In the 1960s, S. Gahler and A. White [9] introduced the concept of 2-normed spaces. We introduced 2-normed space and topology on it.

Definition 1.1. Let X be a linear space over \mathbb{R} with $\operatorname{dim} X>1$ and let $\|.\|:, X \times X \rightarrow \mathbb{R}$ be a function satisfying the following properties:
(1). $\|x, y\|=0$ if and only if x and y are linearly dependent
(2). $\|x, y\|=\|y, x\|$

[^0](3). $\|\lambda x, y\|=|\lambda|\|x, y\|$
(4). $\|x, y+z\| \leq\|x, y\|+\|x, z\|$
for each $x, y, z \in X$ and $a \in \mathbb{R}$. Then the function $\|.$,$\| is called a 2-norm on X$ and $(X,\|.,\|$.$) is a called 2-normed space.$ We introduce a basic property of 2-normed spaces as follows. Let $(X,\|.,\|$.$) be a linear 2-normed space, x \in X$ and $\|x, y\|=0$ for each $y \in X$. Suppose $x \neq 0$, since $\operatorname{dim} X>1$, choose $y \in X$ such that x, y is linearly independent so we have $\|x, y\| \neq 0$, which is a contradiction. Therefore we have the following Lemma.

Lemma 1.2. Let $(X,\|.,\|$.$) be a 2-normed space. If x \in X$ and $\|x, y\|=0$, for each $y \in X$, then $x=0$.
Proof. Let $(X,\|,\|$,$) be a 2-normed space. For x, z \in X$, let $p_{z}(x)=\|x, z\|, x \in X$. Then for each $z \in X, p_{z}$ is a real-valued function on X such that $p_{z}(x)=\|x, z\| \geq 0, p_{z}(\alpha x)=|\alpha|\|x, z\|$ and $p_{z}(x+y)=\|x+y, z\|=\|z, x+y\| \leq$ $\|z, x\|+\|z, y\|=\|x, z\|+\|y, z\|=p_{z}(x)+p_{z}(y)$, for each $\alpha \in \mathbb{R}$ and all $x, y \in X$. Thus p_{z} is a semi-norm for each $z \in X$. For $x \in X$, let $\|x, z\|=0$ for each $z \in X$. By Lemma $1.2, x=0$. Thus for $0 \neq x \in X$, there is $z \in X$ such that $P_{z}(x)=\|x, z\| \neq 0$. Hence the family $\left\{p_{z}(x): z \in X\right\}$ is a separating family of semi-norms. Let $x_{0} \in X$, for $\epsilon>0, z \in X$, let $U_{z, \epsilon}\left(x_{0}\right):=\left\{x \in X: p_{z}\left(x-x_{0}\right)<\epsilon\right\}=\left\{x \in X:\left\|x-x_{0}, z\right\|<\epsilon\right\}$. Let

$$
S\left(x_{0}\right):=\left\{U_{z, \epsilon}\left(x_{0}\right): \epsilon>0, z \in X\right\}
$$

and

$$
\beta\left(x_{0}\right):=\left\{\mathcal{F}: \mathcal{F} \text { is a finite subcollection of } S\left(x_{0}\right)\right\} .
$$

Define a topology τ on X by saying that a set U is open if for every $x \in U$, there is some $N \in \beta(x)$ such that $N \subset U$. That is, τ is the topology on X that has subbase $\left\{U_{z, \epsilon}\left(x_{0}\right): \epsilon>0, x_{0} \in X, z \in X\right\}$. The topology τ on X makes X a topological vector space. Since for $x \in X$, collection $\beta(x)$ is a local base whose members are convex, X is locally convex.

In the 1960 s , S . Gahler and A. White [9] introduced the concept of 2-Banach spaces.
Definition 1.3. A sequence $\left\{x_{n}\right\}$ in a 2-Banach space X is called a 2-Cauchy sequence if $\lim _{m, n \rightarrow \infty}\left\|x_{n}-x_{m}, x\right\|=0$ for each $x \in X$.

Definition 1.4. A sequence $\left\{x_{n}\right\}$ in a 2-normed space X is called a 2-convergent sequence if there is an $x \in X$ such that $\lim _{x \rightarrow x_{0}}\left\|x_{n}-x, y\right\|=0$ for each $y \in X$. If $\left\{x_{n}\right\}$ converges to x, we write $\lim _{n \rightarrow \infty} x_{n}=x$.

Definition 1.5. We say that a 2-normed space $(X,\|.\|$,$) is a 2-Banach space if every 2-Cauchy sequence in X$ is 2-convergent in X. By using (2) and (4) of definition (1.1) one can see that $\|.,$.$\| is continuous in each component. For a convergent$ sequence x_{n} in a 2-normed space $X, \lim _{x \rightarrow x_{0}}\left\|x_{n}, y\right\|=\left\|\lim _{n \rightarrow \infty} x_{n}, y\right\|$ for each $y \in X$.

2. Stability of a Functional Equation for Functions $g:(X,\|\|.) \rightarrow$ ($X,\|.,$.$\|)$

Throughout this section, consider X a real normed linear space. We also consider that there is a 2 -norm on X which makes $(X,\|.\|$,$) a 2-Banach space. For a function g:(X,\|\|.) \rightarrow(X,\|.,\|$.$) , define D_{g}: X \times X \rightarrow X$ by

$$
D_{g}(x, y)=2 g(2 x+y)+2 g(2 x-y)+g(x+2 y)+g(x-2 y)-20[g(x+y)+g(x-y)]-90 g(x)
$$

for each $x, y \in X$.

Theorem 2.1. Let $\theta \geq 0, u>0,0<s, t<5$. If $g: X \rightarrow X$ is a function such that

$$
\begin{equation*}
\left\|D_{g}(x, y), z\right\| \leq \theta\left(\|x\|^{s}+\|y\|^{t}\right)\|z\|^{u} \tag{2}
\end{equation*}
$$

for each $x, y, z \in X$. Then there exists a unique quintic function $Q: X \rightarrow X$ satisfying (1) and

$$
\begin{equation*}
\|Q(x)-g(x), z\| \leq \frac{\theta\|x\|^{s}\|z\|^{u}}{4\left(32-2^{s}\right)} \tag{3}
\end{equation*}
$$

for each $x, z \in X$.

Proof. Let $\mathrm{x}=\mathrm{y}=0$ in (2), we have $\|124 g(0), z\|=0$ for each $z \in X$, so we have $\mathrm{g}(0)=0$. Put $\mathrm{y}=0$ in (2), we have

$$
\begin{equation*}
\left\|\frac{g(2 x)}{32}-g(x), z\right\| \leq \frac{\theta}{128}\|x\|^{s}\|z\|^{u} \tag{4}
\end{equation*}
$$

for each $x, z \in X$. Replacing x by 2 x and dividing by 32 in (4), we get

$$
\begin{equation*}
\left\|\frac{g(4 x)}{32^{2}}-\frac{g(2 x)}{32}, z\right\| \leq \frac{1}{32} \frac{\theta}{128} 2^{s}\|x\|^{s}\|z\|^{u} \tag{5}
\end{equation*}
$$

for each $x, z \in X$. Combine (4) and (5), we get

$$
\begin{align*}
\left\|\frac{g(4 x)}{32^{2}}-g(x), z\right\| & \leq \frac{\theta}{128}\|x\|^{s}\|z\|^{u}+\frac{\theta}{128} \frac{2^{s}}{32}\|x\|^{s}\|z\|^{u} \\
& \leq \frac{\theta}{128}\|x\|^{s}\|z\|^{u}\left[1+\frac{2^{s}}{32}\right] \tag{6}
\end{align*}
$$

for each $x, z \in X$. By using induction on n , we can show that

$$
\begin{align*}
\left\|\frac{g\left(2^{n} x\right)}{32^{n}}-g(x), z\right\| & =\frac{\theta}{128}\|x\|^{s}\|z\|^{u} \sum_{j=0}^{n-1} 2^{(s-5) j} \\
& \leq \frac{\theta}{128}\|x\|^{s}\|z\|^{u}\left(\frac{1-2^{(s-5) n}}{1-2^{s-5}}\right) \tag{7}
\end{align*}
$$

for each $x, z \in X$. Dividing by 32^{m} and replacing x by $2^{m} x$ in (7), we get

$$
\begin{aligned}
\left\|\frac{g\left(2^{m+n} x\right)}{32^{m+n}}-\frac{g\left(2^{m} x\right)}{32^{m}}, z\right\| & \leq \frac{1}{32^{m}} \frac{\theta}{128}\left\|2^{m} x\right\|^{s}\|z\|^{u} \sum_{j=0}^{n-1} 2^{(s-5) j} \\
& \leq \frac{\theta}{128}\|x\|^{s}\|z\|^{u}\left(\frac{2^{(s-5) m}\left(1-2^{(s-5) n}\right)}{1-2^{(s-5)}}\right) \\
& \longrightarrow 0 \text { as } m, n \rightarrow \infty
\end{aligned}
$$

for each $z \in X$. This shows that $\left\{\frac{g\left(2^{n} x\right)}{32^{n}}\right\}$ is a 2 -Cauchy sequence in X , for each $x \in X$. Since X is a 2 -Banach space, the sequence $\left\{\frac{g\left(2^{n} x\right)}{32^{n}}\right\}$ 2-converges in X , for each $x \in X$. Define $Q: X \rightarrow X$ as

$$
Q(x)=\lim _{n \rightarrow \infty} \frac{g\left(2^{n} x\right)}{32^{n}}
$$

for each $z \in X$. By (7), we have

$$
\lim _{n \rightarrow \infty}\left\|\frac{g\left(2^{n} x\right)}{32^{n}}-g(x), z\right\|=\frac{\theta}{128}\|x\|^{s}\|z\|^{u}\left(\frac{1}{1-2^{s-5}}\right)
$$

$$
\begin{aligned}
\|Q(x)-g(x), z\| & \leq \frac{\theta}{128}\|x\|^{s}\|z\|^{u}\left(\frac{1}{1-\frac{2^{s}}{2^{5}}}\right) \\
& =\frac{\theta\|x\|^{s}\|z\|^{u}}{4\left(32-2^{s}\right)}
\end{aligned}
$$

for each $x, z \in X$. Next we show that Q satisfies (1). For $x \in X$

$$
\begin{aligned}
\left\|D_{Q}(x, y), z\right\| & =\lim _{n \rightarrow \infty} \frac{1}{32^{n}}\left\|D_{g}\left(2^{n} x, 2^{n} y\right), z\right\| \\
& \leq \lim _{n \rightarrow \infty} \theta\left[2^{(s-5) n}\|x\|^{s}+2^{(t-5) n}\|y\|^{t}\right]\|z\|^{u} \\
& =0
\end{aligned}
$$

for each $x, z \in X$. Therefore $D_{Q}(x, y)=0$ for each $x, y \in X$. To show that Q is unique. Suppose there exists another quintic function $Q^{\prime}: X \rightarrow X$ which satisfies (1) and (3). Since Q and Q^{\prime} are quintic. $Q\left(2^{n} x\right)=32^{n} Q(x), Q^{\prime}\left(2^{n} x\right)=32^{n} Q^{\prime}(x)$ for each $x \in X$. It follows that

$$
\begin{align*}
\left\|Q^{\prime}(x)-Q(x), z\right\| & =\frac{1}{32^{n}}\left\|Q^{\prime}\left(2^{n} x\right)-Q\left(2^{n} x\right), z\right\| \\
& \leq \frac{1}{32^{n}}\left[\left\|Q^{\prime}\left(2^{n} x\right)-g\left(2^{n} x\right), z\right\|+\left\|g\left(2^{n} x\right)-Q\left(2^{n} x\right), z\right\|\right] \\
& \leq \frac{1}{32^{n}} \frac{2 \theta}{4\left(32-2^{s}\right)}\left\|2^{n} x\right\|^{s}\|z\|^{u} \\
& =\frac{2 \theta\|x\|^{s}\|z\|^{u} 2^{(s-5) n}}{4\left(32-2^{s}\right)} \\
\left\|Q^{\prime}(x)-Q(x), z\right\| & =0 \text { as } n \rightarrow \infty \text { for each } z \in X . \tag{8}
\end{align*}
$$

Hence $Q^{\prime}(x)=Q(x)$ for each $x \in X$.
Theorem 2.2. Let $\theta \geq 0, u>0$ with $s, t>5$. If $g: X \rightarrow X$ is a function such that

$$
\begin{equation*}
\left\|D_{g}(x, y), z\right\| \leq \theta\left(\|x\|^{s}+\|y\|^{t}\right)\|z\|^{u} \tag{9}
\end{equation*}
$$

for each $x, y, z \in X$. Then there exists a unique quintic function $Q: X \rightarrow X$ satisfying (1) and

$$
\begin{equation*}
\|g(x)-Q(x), z\| \leq \frac{\theta\|x\|^{s}\|z\|^{u}}{4\left(2^{s}-32\right)} \tag{10}
\end{equation*}
$$

for each $x, z \in X$
Proof. Put $\mathrm{y}=0$ in (9), we have

$$
\begin{equation*}
\|4 g(2 x)-128 g(x), z\| \leq \theta\|x\|^{s}\|z\|^{u} \tag{11}
\end{equation*}
$$

for each $x, z \in X$. Therefore

$$
\begin{equation*}
\left\|32 g\left(\frac{x}{2}\right)-g(x), z\right\| \leq \frac{\theta 2^{-s}}{4}\|x\|^{s}\|z\|^{u} \tag{12}
\end{equation*}
$$

for each $x, z \in X$. By using induction on n , we have

$$
\begin{equation*}
\left\|32^{n} g\left(\frac{x}{2^{n}}\right)-g(x), z\right\|=\frac{\theta 2^{-s}}{4}\|x\|^{s}\|z\|^{u}\left(\frac{1-2^{(5-s) n}}{1-2^{5-s}}\right) \tag{13}
\end{equation*}
$$

for each $x, z \in X$.
We can shows that $\left\{32^{n} g\left(\frac{x}{2^{n}}\right)\right\}$ is a 2 -Cauchy sequence in X , for each $x \in X$. Since X is a 2 -Banach space, the sequence $\left\{32^{n} g\left(\frac{x}{2^{n}}\right)\right\}$ 2-converges in X , for each $x \in X$. Define $Q: X \rightarrow X$ as

$$
Q(x)=\lim _{n \rightarrow \infty} 32^{n} g\left(2^{-n} x\right)
$$

for each $x \in X$.
The rest of the proof is similar to the proof of Theorem 2.1.

3. Stability of a Functional Equation for Functions $g:(X,\|.,\|.) \rightarrow$ ($X,\|.,$.$\|)$

In this section we study problems which we have studied in section 2 for functions $g: X \rightarrow X$, where $(X,\|\cdot,\|$.$) is a 2-Banach$ space.

Theorem 3.1. Let $\theta \geq 0,0<s, t<5$. If $g: X \rightarrow X$ is a function such that

$$
\begin{equation*}
\left\|D_{g}(x, y), z\right\| \leq \theta\left(\|x, z\|^{s}+\|y, z\|^{t}\right) \tag{14}
\end{equation*}
$$

for each $x, y, z \in X$. Then there exists a unique quintic function $Q: X \rightarrow X$ satisfying (1) and

$$
\begin{equation*}
\|g(x)-Q(x), z\| \leq \frac{\theta\|x, z\|^{s}}{4\left(32-2^{s}\right)} \tag{15}
\end{equation*}
$$

for each $x, z \in X$.

Proof. Let $x=y=0$ in (14), we have $\|124 g(0), z\|=0$ for each $z \in X$, so we have $g(0)=0$. Put $\mathrm{y}=0$ in (14), we have

$$
\begin{equation*}
\|4 g(2 x)-128 g(x), z\| \leq \theta\|x, z\|^{s} \tag{16}
\end{equation*}
$$

for each $x, z \in X$. By using induction on n, we can show that

$$
\begin{equation*}
\left\|\frac{g\left(2^{n} x\right)}{32^{n}}-g(x), z\right\| \leq \frac{\theta}{128}\|x, z\|^{s}\left(\frac{1-2^{(s-5) n}}{1-2^{s-5}}\right) \tag{17}
\end{equation*}
$$

for each $x, z \in X$. Dividing by 32^{m} and replacing x by $2^{m} x$ in (17), we get

$$
\begin{aligned}
\left\|\frac{g\left(2^{m+n} x\right)}{32^{m+n}}-\frac{g\left(2^{m} x\right)}{32^{m}}, z\right\| & \leq \frac{\theta}{128}\|x, z\|^{s}\left(\frac{2^{(s-5) m}\left(1-2^{(s-5) n}\right)}{1-2^{(s-5)}}\right) \\
& \longrightarrow 0 \text { as } m, n \rightarrow \infty
\end{aligned}
$$

for each $z \in X$. This shows that $\left\{\frac{g\left(2^{n} x\right)}{32^{n}}\right\}$ is a 2-Cauchy sequence in X , for each $x \in X$. Since X is a 2 -Banach space, the sequence $\left\{\frac{g\left(2^{n} x\right)}{32^{n}}\right\}$ 2-converges in X , for each $x \in X$. Define $Q: X \rightarrow X$ as

$$
Q(x)=\lim _{n \rightarrow \infty} \frac{g\left(2^{n} x\right)}{32^{n}}
$$

for each $z \in X$. The rest of the proof is similar to the proof of Theorem 2.1.

Theorem 3.2. Let $\theta \geq 0$ with $s, t>5$. If $g: X \rightarrow X$ is a function such that

$$
\begin{equation*}
\left\|D_{g}(x, y), z\right\| \leq \theta\left(\|x, z\|^{s}+\|y, z\|^{t}\right) \tag{18}
\end{equation*}
$$

for each $x, y, z \in X$. Then there exists a unique quintic function $Q: X \rightarrow X$ satisfying (1) and

$$
\begin{equation*}
\|g(x)-Q(x), z\| \leq \frac{\theta\|x, z\|^{s}}{4\left(2^{s}-32\right)} \tag{19}
\end{equation*}
$$

for each $x, z \in X$.

Proof. Put y=0 in (18), we have

$$
\begin{equation*}
\|4 g(2 x)-128 g(x), z\| \leq \theta\|x, z\|^{s} \tag{20}
\end{equation*}
$$

for each $x, z \in X$. By using induction on n , we have

$$
\begin{equation*}
\left\|32^{n} g\left(\frac{x}{2^{n}}\right)-g(x), z\right\|=\frac{\theta\|x, z\|^{s} 2^{-s}}{4}\left(\frac{1-2^{(5-s) n}}{1-2^{5-s}}\right) \tag{21}
\end{equation*}
$$

for each $x, z \in X$. We can shows that $\left\{32^{n} g\left(\frac{x}{2^{n}}\right)\right\}$ is a 2 -Cauchy sequence in X , for each $x \in X$. Since X is a 2 -Banach space, the sequence $\left\{32^{n} g\left(\frac{x}{2^{n}}\right)\right\}$ 2-converges in X , for each $x \in X$. Define $Q: X \rightarrow X$ as

$$
Q(x)=\lim _{n \rightarrow \infty} 32^{n} g\left(2^{-n} x\right)
$$

for each $x \in X$. The rest of the proof is similar to the proof of Theorem 2.1.

References

[1] T.Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Jpn., 2(1950), 64-66.
[2] Z.Gajda, On stability of additive mappings, International Journal of Mathematics and Mathematical Sciences, 14(3)(1991), 431-434.
[3] P.Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, Journal of Mathematical Analysis and Applications, 184(3)(1994), 431-436.
[4] D.H.Hyers, On the stability of the linear functional equation, Proceedings of the National Academy of Sciences of the United States of America, 27(1941), 222-224.
[5] Th.M.Rassias, On the stability of the linear mapping in Banach spaces, Proceedings of the American Mathematical Society, 72(2)(1978), 297-300.
[6] Th.M.Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, (2003).
[7] Th.M.Rassias and P.Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proceedings of the American Mathematical Society, 114(4)(1992), 989-993.
[8] S.M.Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, (1960).
[9] S.Gahler, 2-metrische Raume und ihre topologische Struktur, Math. Nachr., 26(1963), 115-148.

[^0]: * E-mail: @mail.com

