

International Journal of Mathematics And its Applications

Stability of Quintic Functional Equation in 2-Banach Space

Research Article

R.Murali^{1*}, M.Boobalan¹ and A.Antony Raj¹

1 Department of Mathematics, Sacred Heart College, Tirupattur, TamilNadu, India.

Abstract: In this paper, we investigate the Hyers-Ulam stability of the functional equation

2g(2x+y) + 2g(2x-y) + g(x+2y) + g(x-2y) = 20[g(x+y) + g(x-y)] + 90g(x)(1)

in 2-Banach space.

MSC: 39B82, 46B86, 17C65.

Keywords: Hyers-Ulam stability, 2-Banach space, Quintic functional equation. © JS Publication.

1. Introduction

The stability problem of functional equations originated from a question of Ulam [8] concerning the stability of group homomorphisms. Hyers [4] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyer's theorem was generalized by Aoki [1] for additive mappings and by Rassias [5] for linear mappings by considering an unbounded Cauchy difference. The paper of Rassias has provided a lot of influence in the development of what we call Hyers-Ulam-Rassias stability of functional equations. In 1990, Rassias [6] asked whether such a theorem can also be proved for $p \ge 1$. In 1991,Gajda [2] gave an affirmative solution to this question when p > 1, but it was proved by Gajda [2] and Rassias and Semrl [7] that one cannot prove an analogous theorem when p=1. In 1994, a generalization was obtained by Gavruta [3], who replaced the bound $\epsilon (||x||^p + ||y||^p)$ by a general control function $\phi(x, y)$. Beginning around 1980, the stability problems of several functional equations and approximate homomorphisms have been extensively investigated by a number of authors, and there are many interesting results concerning this problem. In the 1960s, S. Gahler and A. White [9] introduced the concept of 2-normed spaces. We introduced 2-normed space and topology on it.

Definition 1.1. Let X be a linear space over \mathbb{R} with $\dim X > 1$ and let $\|.,.\| : X \times X \to \mathbb{R}$ be a function satisfying the following properties:

- (1). ||x, y|| = 0 if and only if x and y are linearly dependent
- (2). ||x,y|| = ||y,x||

^{*} E-mail: @mail.com

(3). $\|\lambda x, y\| = |\lambda| \|x, y\|$

(4). $||x, y + z|| \le ||x, y|| + ||x, z||$

for each $x, y, z \in X$ and $a \in \mathbb{R}$. Then the function $\|., \|$ is called a 2-norm on X and $(X, \|., \|)$ is a called 2-normed space. We introduce a basic property of 2-normed spaces as follows. Let $(X, \|., \|)$ be a linear 2-normed space, $x \in X$ and $\|x, y\| = 0$ for each $y \in X$. Suppose $x \neq 0$, since dimX > 1, choose $y \in X$ such that x, y is linearly independent so we have $\|x, y\| \neq 0$, which is a contradiction. Therefore we have the following Lemma.

Lemma 1.2. Let $(X, \|., .\|)$ be a 2-normed space. If $x \in X$ and $\|x, y\| = 0$, for each $y \in X$, then x = 0.

Proof. Let $(X, \|., \|)$ be a 2-normed space. For $x, z \in X$, let $p_z(x) = \|x, z\|$, $x \in X$. Then for each $z \in X$, p_z is a real-valued function on X such that $p_z(x) = \|x, z\| \ge 0$, $p_z(\alpha x) = |\alpha| \|x, z\|$ and $p_z(x + y) = \|x + y, z\| = \|z, x + y\| \le \|z, x\| + \|z, y\| = \|x, z\| + \|y, z\| = p_z(x) + p_z(y)$, for each $\alpha \in \mathbb{R}$ and all $x, y \in X$. Thus p_z is a semi-norm for each $z \in X$. For $x \in X$, let $\|x, z\| = 0$ for each $z \in X$. By Lemma 1.2, x = 0. Thus for $0 \ne x \in X$, there is $z \in X$ such that $P_z(x) = \|x, z\| \ne 0$. Hence the family $\{p_z(x) : z \in X\}$ is a separating family of semi-norms. Let $x_0 \in X$, for $\epsilon > 0$, $z \in X$, let $U_{z,\epsilon}(x_0) := \{x \in X : p_z(x - x_0) < \epsilon\} = \{x \in X : \|x - x_0, z\| < \epsilon\}$. Let

$$S(x_0) := \{ U_{z,\epsilon}(x_0) : \epsilon > 0, z \in X \}$$

and

 $\beta(x_0) := \{ \mathcal{F} : \mathcal{F} \text{is a finite subcollection of } S(x_0) \}.$

Define a topology τ on X by saying that a set U is open if for every $x \in U$, there is some $N \in \beta(x)$ such that $N \subset U$. That is, τ is the topology on X that has subbase $\{U_{z,\epsilon}(x_0) : \epsilon > 0, x_0 \in X, z \in X\}$. The topology τ on X makes X a topological vector space. Since for $x \in X$, collection $\beta(x)$ is a local base whose members are convex, X is locally convex.

In the 1960 s, S. Gahler and A. White [9] introduced the concept of 2-Banach spaces.

Definition 1.3. A sequence $\{x_n\}$ in a 2-Banach space X is called a 2-Cauchy sequence if $\lim_{m,n\to\infty} ||x_n - x_m, x|| = 0$ for each $x \in X$.

Definition 1.4. A sequence $\{x_n\}$ in a 2-normed space X is called a 2-convergent sequence if there is an $x \in X$ such that $\lim_{x \to x_0} ||x_n - x, y|| = 0 \text{ for each } y \in X. \text{ If } \{x_n\} \text{ converges to } x, \text{ we write } \lim_{n \to \infty} x_n = x.$

Definition 1.5. We say that a 2-normed space $(X, \|., \|)$ is a 2-Banach space if every 2-Cauchy sequence in X is 2-convergent in X. By using (2) and (4) of definition (1.1) one can see that $\|., \|$ is continuous in each component. For a convergent sequence x_n in a 2-normed space X, $\lim_{x \to x_0} \|x_n, y\| = \left\|\lim_{n \to \infty} x_n, y\right\|$ for each $y \in X$.

2. Stability of a Functional Equation for Functions $g : (X, \|.\|) \rightarrow (X, \|.,.\|)$

Throughout this section, consider X a real normed linear space. We also consider that there is a 2-norm on X which makes $(X, \|., .\|)$ a 2-Banach space. For a function $g: (X, \|., .\|) \to (X, \|., .\|)$, define $D_g: X \times X \to X$ by

$$D_g(x,y) = 2g(2x+y) + 2g(2x-y) + g(x+2y) + g(x-2y) - 20[g(x+y) + g(x-y)] - 90g(x)$$

for each $x, y \in X$.

Theorem 2.1. Let $\theta \ge 0, u > 0, 0 < s, t < 5$. If $g : X \to X$ is a function such that

$$||D_g(x,y),z|| \le \theta(||x||^s + ||y||^t) ||z||^u$$
(2)

for each $x, y, z \in X$. Then there exists a unique quintic function $Q: X \to X$ satisfying (1) and

$$\|Q(x) - g(x), z\| \le \frac{\theta \|x\|^s \|z\|^u}{4(32 - 2^s)}$$
(3)

for each $x, z \in X$.

Proof. Let x=y=0 in (2), we have ||124g(0), z|| = 0 for each $z \in X$, so we have g(0)=0. Put y=0 in (2), we have

$$\left\|\frac{g(2x)}{32} - g(x), z\right\| \le \frac{\theta}{128} \|x\|^s \|z\|^u$$
(4)

for each $x, z \in X$. Replacing x by 2x and dividing by 32 in (4), we get

$$\left\|\frac{g(4x)}{32^2} - \frac{g(2x)}{32}, z\right\| \le \frac{1}{32} \frac{\theta}{128} 2^s \left\|x\right\|^s \left\|z\right\|^u \tag{5}$$

for each $x, z \in X$. Combine (4) and (5), we get

$$\left\|\frac{g(4x)}{32^2} - g(x), z\right\| \leq \frac{\theta}{128} \|x\|^s \|z\|^u + \frac{\theta}{128} \frac{2^s}{32} \|x\|^s \|z\|^u \leq \frac{\theta}{128} \|x\|^s \|z\|^u \left[1 + \frac{2^s}{32}\right]$$
(6)

for each $x, z \in X$. By using induction on n, we can show that

$$\left\| \frac{g(2^{n}x)}{32^{n}} - g(x), z \right\| = \frac{\theta}{128} \|x\|^{s} \|z\|^{u} \sum_{j=0}^{n-1} 2^{(s-5)j} \\ \leq \frac{\theta}{128} \|x\|^{s} \|z\|^{u} \left(\frac{1-2^{(s-5)n}}{1-2^{s-5}}\right)$$
(7)

for each $x, z \in X$. Dividing by 32^m and replacing x by $2^m x$ in (7), we get

$$\begin{split} \left\| \frac{g(2^{m+n}x)}{32^{m+n}} - \frac{g(2^mx)}{32^m}, z \right\| &\leq \quad \frac{1}{32^m} \frac{\theta}{128} \, \|2^m x\|^s \, \|z\|^u \sum_{j=0}^{n-1} 2^{(s-5)j} \\ &\leq \quad \frac{\theta}{128} \, \|x\|^s \, \|z\|^u \left(\frac{2^{(s-5)m}(1-2^{(s-5)n})}{1-2^{(s-5)}} \right) \\ &\longrightarrow \quad 0 \ as \ m, n \to \infty. \end{split}$$

for each $z \in X$. This shows that $\left\{\frac{g(2^n x)}{32^n}\right\}$ is a 2-Cauchy sequence in X, for each $x \in X$. Since X is a 2-Banach space, the sequence $\left\{\frac{g(2^n x)}{32^n}\right\}$ 2-converges in X, for each $x \in X$. Define $Q: X \to X$ as

$$Q(x) = \lim_{n \to \infty} \frac{g(2^n x)}{32^n}$$

for each $z \in X$. By (7), we have

$$\lim_{n \to \infty} \left\| \frac{g(2^n x)}{32^n} - g(x), z \right\| = \frac{\theta}{128} \left\| x \right\|^s \left\| z \right\|^u \left(\frac{1}{1 - 2^{s-5}} \right)$$

$$\begin{aligned} \|Q(x) - g(x), z\| &\leq \frac{\theta}{128} \|x\|^s \|z\|^u \left(\frac{1}{1 - \frac{2^s}{2^5}}\right) \\ &= \frac{\theta \|x\|^s \|z\|^u}{4(32 - 2^s)} \end{aligned}$$

for each $x, z \in X$. Next we show that Q satisfies (1). For $x \in X$

$$\begin{aligned} \|D_Q(x,y),z\| &= \lim_{n \to \infty} \frac{1}{32^n} \|D_g(2^n x, 2^n y), z\| \\ &\leq \lim_{n \to \infty} \theta \left[2^{(s-5)n} \|x\|^s + 2^{(t-5)n} \|y\|^t \right] \|z\|^u \\ &= 0. \end{aligned}$$

for each $x, z \in X$. Therefore $D_Q(x, y) = 0$ for each $x, y \in X$. To show that Q is unique. Suppose there exists another quintic function $Q' : X \to X$ which satisfies (1) and (3). Since Q and Q' are quintic. $Q(2^n x) = 32^n Q(x), Q'(2^n x) = 32^n Q'(x)$ for each $x \in X$. It follows that

$$\begin{aligned} \|Q'(x) - Q(x), z\| &= \frac{1}{32^n} \|Q'(2^n x) - Q(2^n x), z\| \\ &\leq \frac{1}{32^n} \left[\|Q'(2^n x) - g(2^n x), z\| + \|g(2^n x) - Q(2^n x), z\| \right] \\ &\leq \frac{1}{32^n} \frac{2\theta}{4(32 - 2^s)} \|2^n x\|^s \|z\|^u \\ &= \frac{2\theta \|x\|^s \|z\|^u 2^{(s-5)n}}{4(32 - 2^s)} \\ \|Q'(x) - Q(x), z\| &= 0 \text{ as } n \to \infty \text{ for each } z \in X. \end{aligned}$$

$$(8)$$

Hence Q'(x) = Q(x) for each $x \in X$.

Theorem 2.2. Let $\theta \ge 0, u > 0$ with s, t > 5. If $g : X \to X$ is a function such that

$$||D_g(x,y),z|| \le \theta(||x||^s + ||y||^t) ||z||^u$$
(9)

for each $x, y, z \in X$. Then there exists a unique quintic function $Q: X \to X$ satisfying (1) and

$$||g(x) - Q(x), z|| \le \frac{\theta ||x||^s ||z||^u}{4(2^s - 32)}$$
(10)

for each $x, z \in X$

Proof. Put y=0 in (9), we have

$$||4g(2x) - 128g(x), z|| \le \theta \, ||x||^s \, ||z||^u \tag{11}$$

for each $x, z \in X$. Therefore

$$\left\| 32g\left(\frac{x}{2}\right) - g(x), z \right\| \le \frac{\theta 2^{-s}}{4} \left\| x \right\|^{s} \left\| z \right\|^{u}$$
(12)

for each $x, z \in X$. By using induction on n, we have

$$\left\| 32^{n}g\left(\frac{x}{2^{n}}\right) - g(x), z \right\| = \frac{\theta 2^{-s}}{4} \left\| x \right\|^{s} \left\| z \right\|^{u} \left(\frac{1 - 2^{(5-s)n}}{1 - 2^{5-s}}\right)$$
(13)

for each $x, z \in X$.

We can shows that $\{32^n g\left(\frac{x}{2^n}\right)\}\$ is a 2-Cauchy sequence in X, for each $x \in X$. Since X is a 2-Banach space, the sequence $\{32^n g\left(\frac{x}{2^n}\right)\}\$ 2-converges in X, for each $x \in X$. Define $Q: X \to X$ as

$$Q(x) = \lim_{n \to \infty} 32^n g(2^{-n}x)$$

for each $x \in X$.

The rest of the proof is similar to the proof of Theorem 2.1.

3. Stability of a Functional Equation for Functions $g : (X, \|., .\|) \rightarrow (X, \|., .\|)$

In this section we study problems which we have studied in section 2 for functions $g: X \to X$, where $(X, \|., .\|)$ is a 2-Banach space.

Theorem 3.1. Let $\theta \ge 0, 0 < s, t < 5$. If $g : X \to X$ is a function such that

$$||D_g(x,y),z|| \le \theta(||x,z||^s + ||y,z||^t)$$
(14)

for each $x, y, z \in X$. Then there exists a unique quintic function $Q: X \to X$ satisfying (1) and

$$\|g(x) - Q(x), z\| \le \frac{\theta \|x, z\|^s}{4(32 - 2^s)}$$
(15)

for each $x, z \in X$.

Proof. Let x = y = 0 in (14), we have ||124g(0), z|| = 0 for each $z \in X$, so we have g(0)=0. Put y=0 in (14), we have

$$||4g(2x) - 128g(x), z|| \le \theta ||x, z||^s$$
(16)

for each $x, z \in X$. By using induction on n, we can show that

$$\left\|\frac{g(2^n x)}{32^n} - g(x), z\right\| \le \frac{\theta}{128} \left\|x, z\right\|^s \left(\frac{1 - 2^{(s-5)n}}{1 - 2^{s-5}}\right)$$
(17)

for each $x, z \in X$. Dividing by 32^m and replacing x by $2^m x$ in (17), we get

$$\left\| \frac{g(2^{m+n}x)}{32^{m+n}} - \frac{g(2^mx)}{32^m}, z \right\| \le \frac{\theta}{128} \left\| x, z \right\|^s \left(\frac{2^{(s-5)m}(1-2^{(s-5)n})}{1-2^{(s-5)}} \right) \\ \longrightarrow 0 \ as \ m, n \to \infty.$$

for each $z \in X$. This shows that $\left\{\frac{g(2^n x)}{32^n}\right\}$ is a 2-Cauchy sequence in X, for each $x \in X$. Since X is a 2-Banach space, the sequence $\left\{\frac{g(2^n x)}{32^n}\right\}$ 2-converges in X, for each $x \in X$. Define $Q: X \to X$ as

$$Q(x) = \lim_{n \to \infty} \frac{g(2^n x)}{32^n}$$

for each $z \in X$. The rest of the proof is similar to the proof of Theorem 2.1.

Theorem 3.2. Let $\theta \ge 0$ with s, t > 5. If $g : X \to X$ is a function such that

$$||D_g(x,y),z|| \le \theta(||x,z||^s + ||y,z||^t)$$
(18)

for each $x, y, z \in X$. Then there exists a unique quintic function $Q: X \to X$ satisfying (1) and

$$\|g(x) - Q(x), z\| \le \frac{\theta \, \|x, z\|^s}{4(2^s - 32)} \tag{19}$$

for each $x, z \in X$.

48

Proof. Put y=0 in (18), we have

$$|4g(2x) - 128g(x), z|| \le \theta ||x, z||^s$$
(20)

for each $x, z \in X$. By using induction on n, we have

$$\left\| 32^{n}g\left(\frac{x}{2^{n}}\right) - g(x), z \right\| = \frac{\theta \left\| x, z \right\|^{s} 2^{-s}}{4} \left(\frac{1 - 2^{(5-s)n}}{1 - 2^{5-s}} \right)$$
(21)

for each $x, z \in X$. We can shows that $\{32^n g\left(\frac{x}{2^n}\right)\}$ is a 2-Cauchy sequence in X, for each $x \in X$. Since X is a 2-Banach space, the sequence $\{32^n g\left(\frac{x}{2^n}\right)\}$ 2-converges in X, for each $x \in X$. Define $Q: X \to X$ as

$$Q(x) = \lim_{n \to \infty} 32^n g(2^{-n}x)$$

for each $x \in X$. The rest of the proof is similar to the proof of Theorem 2.1.

References

- [1] T.Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Jpn., 2(1950), 64-66.
- [2] Z.Gajda, On stability of additive mappings, International Journal of Mathematics and Mathematical Sciences, 14(3)(1991), 431-434.
- [3] P.Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, Journal of Mathematical Analysis and Applications, 184(3)(1994), 431-436.
- [4] D.H.Hyers, On the stability of the linear functional equation, Proceedings of the National Academy of Sciences of the United States of America, 27(1941), 222-224.
- [5] Th.M.Rassias, On the stability of the linear mapping in Banach spaces, Proceedings of the American Mathematical Society, 72(2)(1978), 297-300.
- [6] Th.M.Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, (2003).
- [7] Th.M.Rassias and P.Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proceedings of the American Mathematical Society, 114(4)(1992), 989-993.
- [8] S.M.Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, (1960).
- [9] S.Gahler, 2-metrische Raume und ihre topologische Struktur, Math. Nachr., 26(1963), 115-148.