Volume 4, Issue 1-D (2016), 47-57.

ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Intuitionistic Fuzzy "q-Closed Sets

Research Article

N.Seenivasagan¹, O.Ravi^{2*}, A.D.Ramesh Babu³ and M.Rajakalaivanan²

- 1 Department of Mathematics, Government Arts College, Kumbakonam, Tamil Nadu, India.
- 2 Department of Mathematics, P.M.Thevar College, Usilampatti, Madurai, Tamil Nadu, India.
- 3 Department of Mathematics, Sree Sowdambika College of Engineering, Aruppukottai, Tamil Nadu, India.

 $\textbf{Abstract:} \quad \text{In this paper, we introduce the concepts of intuitionistic fuzzy } \ddot{g}\text{-closed sets and intuitionistic fuzzy } \ddot{g}\text{-open sets. Further,}$

we study some of their properties.

MSC: 54A40, 03F55.

Keywords: Intuitionistic fuzzy topology, Intuitionistic fuzzy \ddot{g} -closed set, Intuitionistic fuzzy \ddot{g} -open set.

© JS Publication.

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [17] and later Atanassov [1] generalized this idea to intuitionistic fuzzy sets using the notion of fuzzy sets. On the other hand Coker [3] introduced intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. The concept of generalized closed sets in topological spaces was introduced by Levine [8]. In this paper we introduce intuitionistic fuzzy \ddot{g} -closed sets and intuitionistic fuzzy \ddot{g} -open sets. The relations between intuitionistic fuzzy \ddot{g} -closed sets and other generalizations of intuitionistic fuzzy closed sets are given.

2. Preliminaries

Definition 2.1 ([1]). Let X be a non empty set. An intuitionistic fuzzy set (IFS in short) A in X can be described in the form

$$A = \{\langle, \mu_A(x), \nu_A(x)\rangle | x \in X\}$$

where the function $\mu_A: X \to [0, 1]$ is called the membership function and $\mu_A(x)$ denotes the degree to which $x \in A$ and the function $\nu_A: X \to [0, 1]$ is called the non-membership function and $\nu_A(x)$ denotes the degree to which $x \notin A$ and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. Denote IFS(X), the set of all intuitionistic fuzzy sets in X. Throughout the paper, X denotes a non empty set.

Definition 2.2 ([1]). Let A and B be any two IFSs of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X\}$ and $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle \mid x \in X\}$. Then

^{*} E-mail: siingam@yahoo.com

- (1). $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$,
- (2). A = B if and only if $A \subseteq B$ and $B \subseteq A$,
- (3). $A^c = \{ \langle x, \nu_A(x), \mu_A(x) \rangle \mid x \in X \},$
- (4). $A \cap B = \{ \langle x, \mu_A(x) \wedge \mu_B(x), \nu_A(x) \vee \nu_B(x) \rangle \mid x \in X \},$
- (5). $A \cup B = \{ \langle x, \mu_A(x) \vee \mu_B(x), \nu_A(x) \wedge \nu_B(x) \rangle \mid x \in X \}.$

Definition 2.3 ([1]). The intuitionistic fuzzy sets $\theta_{\sim} = \{\langle x, \theta, 1 \rangle \mid x \in X\}$ and $1_{\sim} = \{\langle x, 1, \theta \rangle \mid x \in X\}$ are called the empty set and the whole set of X respectively.

Definition 2.4 ([1]). Let A and B be any two IFSs of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X\}$ and $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle \mid x \in X\}$. Then

- (1). $A \subseteq B$ and $A \subseteq C \Rightarrow A \subseteq B \cap C$,
- (2). $A \subseteq C$ and $B \subseteq C \Rightarrow A \cup B \subseteq C$,
- (3). $A \subseteq B$ and $B \subseteq C \Rightarrow A \subseteq C$,
- (4). $(A \cup B)^c = A^c \cap B^c \text{ and } (A \cap B)^c = A^c \cup B^c$,
- (5). $((A)^c)^c = A$,
- (6). $(1_{\sim})^c = 0_{\sim} \text{ and } (0_{\sim})^c = 1_{\sim}.$

Definition 2.5 ([3]). An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms:

- (1). $0_{\sim}, 1_{\sim} \in \tau$,
- (2). $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$,
- (3). \cup $G_i \in \tau$ for any family $\{G_i \mid i \in J\} \subseteq \tau$.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set(IFOS in short) in X. The complement A^c of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

Definition 2.6 ([3]). Let (X, τ) be an IFTS and $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X\}$ be an IFS in X. Then the intuitionistic fuzzy interior and the intuitionistic fuzzy closure are defined as follows:

$$int(A) = \bigcup \{G \mid G \text{ is an IFOS in } X \text{ and } G \subseteq A\},$$

$$cl(A) = \bigcap \{K \mid K \text{ is an IFCS in } X \text{ and } A \subseteq K\}.$$

Proposition 2.7 ([3]). For any IFSs A and B in (X, τ) , we have

- (1). $int(A) \subseteq A$,
- (2). $A \subseteq cl(A)$,
- (3). A is an IFCS in $X \Leftrightarrow cl(A) = A$,

- (4). A is an IFOS in $X \Leftrightarrow int(A) = A$,
- (5). $A \subseteq B \Rightarrow int(A) \subseteq int(B)$ and $cl(A) \subseteq cl(B)$,
- (6). int(int(A)) = int(A),
- (7). cl(cl(A)) = cl(A),
- (8). $cl(A \cup B) = cl(A) \cup cl(B)$,
- (9). $int(A \cap B) = int(A) \cap int(B)$.

Proposition 2.8 ([3]). For any IFS A in (X, τ) , we have

- (1). $int(0_{\sim}) = 0_{\sim} \text{ and } cl(0_{\sim}) = 0_{\sim},$
- (2). $int(1_{\sim}) = 1_{\sim} \text{ and } cl(1_{\sim}) = 1_{\sim},$
- (3). $(int(A))^c = cl(A^c)$,
- (4). $(cl(A))^c = int(A^c)$.

Proposition 2.9 ([3]). If A is an IFCS in (X, τ) then cl(A) = A and if A is an IFOS in (X, τ) then int(A) = A. The arbitrary union of IFCSs is an IFCS in (X, τ) .

Definition 2.10. An IFS A in an IFTS (X, τ) is said to be an

- (1). intuitionistic fuzzy α -closed set (IF α CS in short) if $cl(int(cl(A))) \subseteq A$, [5]
- (2). intuitionistic fuzzy semi closed set (IFSCS in short) if $int(cl(A)) \subseteq A$, [2]
- (3). intuitionistic fuzzy semi pre closed set (IFSPCS in short) if $int(cl(int(A))) \subseteq A$. [16]

Definition 2.11. An IFS A in an IFTS (X, τ) is said to be an

- (1). intuitionistic fuzzy α -open set (IF α OS in short) if $A \subseteq int(cl(int(A)))$, [5]
- (2). intuitionistic fuzzy semi open set (IFSOS in short) if $A \subseteq cl(int(A))$, [4]
- (3). intuitionistic fuzzy semi pre open set (IFSPOS in short) if $A \subseteq cl(int(cl(A)))$. [16]

Remark 2.12 ([7]). We have the following implications.

$$IFCS \rightarrow IF\alpha CS \rightarrow IFSCS \rightarrow IFSPCS$$

None of the above implications are reversible.

Definition 2.13 ([12]). Let A be an IFS in an IFTS (X, τ) . Then the α -interior of A $(\alpha int(A) in short)$ and the α -closure of A $(\alpha cl(A) in short)$ are defined as

$$\alpha int(A) = \bigcup \{G \mid G \text{ is an } IF\alpha OS \text{ in } (X, \tau) \text{ and } G \subseteq A\},$$
$$\alpha cl(A) = \bigcap \{K \mid K \text{ is an } IF\alpha CS \text{ in } (X, \tau) \text{ and } A \subseteq K\}.$$

sint(A), scl(A), spint(A) and spcl(A) are similarly defined. For any IFS A in (X, τ) , we have $\alpha cl(A^c) = (\alpha int(A))^c$ and $\alpha int(A^c) = (\alpha cl(A))^c$.

Remark 2.14 ([12]). Let A be an IFS in an IFTS (X, τ) . Then

- (1). $\alpha cl(A) = A \cup cl(int(cl(A))),$
- (2). $\alpha int(A) = A \cap int(cl(int(A))).$

Definition 2.15. An IFS A in (X, τ) is said to be an

- (1). intuitionistic fuzzy generalized closed set (IFGCS in short) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in (X, τ) , [14]
- (2). intuitionistic fuzzy generalized semi closed set (IFGSCS in short) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in (X, τ) , [11]
- (3). intuitionistic fuzzy semi generalized closed set (IFSGCS in short) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFSOS in (X, τ) , [13]
- (4). intuitionistic fuzzy α generalized closed set (IF α GCS in short) if α cl(A) \subseteq U whenever $A \subseteq$ U and U is an IFOS in (X, τ) , [12]
- (5). intuitionistic fuzzy α generalized semi closed set (IF α GSCS in short) if α cl(A) \subseteq U whenever $A \subseteq$ U and U is an IFSOS in (X, τ) , [6]
- (6). intuitionistic fuzzy ω closed set (IF ω CS in short) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFSOS in (X, τ) , [13]
- (7). intuitionistic fuzzy generalized semi pre closed set (IFGSPCS in short) if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in (X, τ) . [10]

The complements of the above mentioned intuitionistic fuzzy closed sets are called their respective intuitionistic fuzzy open sets.

Remark 2.16 ([13]).

- (1). Every IFOS is an IFSGOS,
- (2). Every IFSOS is an IFSGOS.

Definition 2.17 ([15]). Two IFSs A and B are said to be q-coincident (AqB in short) if and only if there exists an element $x \in X$ such that $\mu_A(x) > \nu_B(x)$ or $\nu_A(x) < \mu_B(x)$. For any two IFS A and B of (X, τ) , $A\bar{q}B$ if and only if $A \subseteq B^c$.

3. Intuitionistic Fuzzy ÿ-closed Sets

In this section we introduce intuitionistic fuzzy \ddot{g} -closed sets and study some of their properties.

Definition 3.1. An IFS A in an IFTS (X, τ) is said to be an intuitionistic fuzzy \ddot{g} -closed set $(IF\ddot{G}CS \text{ in short})$ if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFSGOS in (X, τ) . The collection of all intuitionistic fuzzy \ddot{g} -closed sets in X is denoted by $IF\ddot{G}C(X)$.

Example 3.2. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. We have $\mu_G(a) = 0.3$, $\mu_G(b) = 0.4$, $\nu_G(a) = 0.6$ and $\nu_G(b) = 0.5$. Consider an IFS $A = \langle x, (0.6, 0.5), (0.3, 0.4) \rangle$. Then A is an IFGCS.

Example 3.3. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. We have $\mu_G(a) = 0.3$, $\mu_G(b) = 0.4$, $\nu_G(a) = 0.6$ and $\nu_G(b) = 0.5$. Consider an IFS $A = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. Then A is not an IFGCS.

Theorem 3.4. Every IFCS in an IFTS (X, τ) is an IFGCS, but not conversely.

Proof. Let A be an IFCS in (X, τ) . Let U be an IFSGOS such that $A \subseteq U$. Since A is IFCS, cl(A) = A. Thus we have $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFSGOS in (X, τ) . Therefore A is an IF \ddot{G} CS in (X, τ) . Hence every IFCS is an IF \ddot{G} CS.

Example 3.5. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.6, 0.7), (0.3, 0.2) \rangle$. Consider an IFS $A = \langle x, (0.2, 0.1), (0.7, 0.8) \rangle$. Here the IFSGOS = $\langle x, (l_1, m_1), (l_2, m_2) \rangle$ where $l_1 \in [0.6, 1], m_1 \in [0.7, 1], l_2 \in [0, 0.3]$ and $m_2 \in [0, 0.2]$. Then the IFS A is an IFGCS but not an IFCS in (X, τ) .

Theorem 3.6. Every IF $\ddot{G}CS$ in an IFTS (X, τ) is an IFGSPCS, but not conversely.

Proof. Let $A \subseteq U$ where U is an IFOS in (X, τ) . Since A is an IF \ddot{G} CS in (X, τ) , we have $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFSGOS in (X, τ) . Since $spcl(A) \subseteq cl(A)$, we have $spcl(A) \subseteq U$. Therefore A is an IFGSPCS in (X, τ) . Hence every IF \ddot{G} CS is an IFGSPCS.

Example 3.7. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. Consider an IFS $A = \langle x, (0.4, 0.5), (0.5, 0.4) \rangle$. Then A is an IFGSPCS but not an IFGCS in (X, τ) .

Theorem 3.8. Every IF $\ddot{G}CS$ in an IFTS (X, τ) is an IF ωCS , but not conversely.

Proof. Let $A \subseteq U$ where U is an IFSOS in (X, τ) . Since A is an IF \ddot{G} CS in (X, τ) , we have $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFSGOS in (X, τ) . Therefore A is an IF ω CS in (X, τ) . Hence every IF \ddot{G} CS is an IF ω CS.

Example 3.9. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.4, 0.3), (0.5, 0.6) \rangle$. Consider an IFS $A = \langle x, (0.6, 0.7), (0.3, 0.2) \rangle$. Then A is an IF ω CS but not an IF \ddot{G} CS in (X, τ) .

Theorem 3.10. Every IF $\ddot{G}CS$ in an IFTS (X, τ) is an IFGCS, but not conversely.

Proof. Let $A \subseteq U$ where U is an IFOS in (X, τ) . Since A is an IF \ddot{G} CS in (X, τ) , we have $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFSGOS in (X, τ) . Therefore A is an IFGCS in (X, τ) . Hence every IF \ddot{G} CS is an IFGCS.

Example 3.11. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.6, 0.5), (0.3, 0.4) \rangle$. Consider an IFS $A = \langle x, (0.7, 0.6), (0.2, 0.3) \rangle$. Then A is an IFGCS but not an IFGCS in (X, τ) .

Theorem 3.12. Every IF $\ddot{G}CS$ in an IFTS (X, τ) is an IF αGCS , but not conversely.

Proof. Let $A \subseteq U$ where U is an IFOS in (X, τ) . Since A is an IF \ddot{G} CS in (X, τ) , we have $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFSGOS in (X, τ) . Since $acl(A) \subseteq cl(A)$, we have $acl(A) \subseteq U$. Therefore A is an IFaGCS in (X, τ) . Hence every IF \ddot{G} CS is an IFaGCS.

Example 3.13. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.5, 0.6), (0.4, 0.3) \rangle$. Consider an IFS $A = \langle x, (0.6, 0.7), (0.3, 0.2) \rangle$. Then A is an IF α GCS but not an IF \ddot{G} CS in (X, τ) .

Theorem 3.14. Every IFGCS in an IFTS (X, τ) is an IFGSCS, but not conversely.

Proof. Let $A \subseteq U$ where U is an IFOS in (X, τ) . Since A is an IF \ddot{G} CS in (X, τ) , we have $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFSGOS in (X, τ) . Since $scl(A) \subseteq cl(A)$, we have $scl(A) \subseteq U$. Therefore A is an IFGSCS in (X, τ) . Hence every IF \ddot{G} CS is an IFGSCS.

Example 3.15. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.2, 0.4), (0.7, 0.5) \rangle$. Consider an IFS $A = \langle x, (0.6, 0.7), (0.3, 0.2) \rangle$. Then A is an IFGSCS but not an IFGCS in (X, τ) .

Definition 3.16. An IFS A in an IFTS (X, τ) is said to be an intuitionistic fuzzy ψ -closed set (IF ψ CS in short) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFSGOS in (X, τ) . The complement of intuitionistic fuzzy ψ -closed set is called intuitionistic fuzzy ψ -open set (IF ψ OS in short).

Theorem 3.17. Every IF $\ddot{G}CS$ in an IFTS (X, τ) is an IF ψCS , but not conversely.

Proof. Let $A \subseteq U$ where U is an IFSGOS in (X, τ) . Since A is an IF \ddot{G} CS in (X, τ) , we have $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFSGOS in (X, τ) . Since $scl(A) \subseteq cl(A)$, we have $scl(A) \subseteq U$. Therefore A is an IF ψ CS in (X, τ) . Hence every IF \ddot{G} CS is an IF ψ CS.

Example 3.18. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.3, 0.2), (0.6, 0.7) \rangle$. Consider an IFS $A = \langle x, (0.4, 0.3), (0.5, 0.6) \rangle$. Then A is an IF ψ CS but not an IF \ddot{G} CS in (X, τ) .

Theorem 3.19. Every IF $\ddot{G}CS$ in an IFTS (X, τ) is an IF $\alpha GSCS$, but not conversely.

Proof. Let $A \subseteq U$ where U is an IFSOS in (X, τ) . Since A is an IF \ddot{G} CS in (X, τ) , we have $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFSGOS in (X, τ) . Since $\alpha cl(A) \subseteq cl(A)$, we have $\alpha cl(A) \subseteq U$. Therefore A is an IF α GSCS in (X, τ) . Hence every IF \ddot{G} CS is an IF α GSCS.

Example 3.20. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. Consider an IFS $A = \langle x, (0.7, 0.6), (0.2, 0.3) \rangle$. Then A is an IF α GSCS but not an IF $\ddot{\alpha}$ GSCS in (X, τ) .

Definition 3.21. An IFS A in an IFTS (X, τ) is said to be an intuitionistic fuzzy \ddot{g}_{α} -closed set (IF $\ddot{G}_{\alpha}CS$ in short) if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFSGOS in (X, τ) . The complement of intuitionistic fuzzy \ddot{g}_{α} -closed set is called an intuitionistic fuzzy \ddot{g}_{α} -open set (IF $\ddot{G}_{\alpha}OS$ in short).

Theorem 3.22. Every IF $\ddot{G}CS$ in an IFTS (X, τ) is an IF $\ddot{G}_{\alpha}CS$, but not conversely.

Proof. Let A be an IF \ddot{G} CS in (X, τ) . Then we have $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFSGOS in (X, τ) . Since $\alpha cl(A) \subseteq cl(A)$, we have $\alpha cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFSGOS in (X, τ) . Therefore A is an IF \ddot{G}_{α} CS in (X, τ) . Hence every IF \ddot{G} CS is an IF \ddot{G}_{α} CS.

Example 3.23. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.3, 0.7), (0.6, 0.2) \rangle$. Consider an IFS $A = \langle x, (0.3, 0.2), (0.6, 0.7) \rangle$. Then A is an IF \ddot{G}_{α} CS but not an IF \ddot{G} CS in (X, τ) .

Remark 3.24. IF αCS and IF $\ddot{G}CS$ are independent.

Example 3.25. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.3, 0.2), (0.7, 0.8) \rangle$. Consider an IFS $A = \langle x, (0.2, 0.4), (0.8, 0.6) \rangle$. Then A is an IF α CS but not an IF \ddot{G} CS in (X, τ) .

Example 3.26. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ be an IFT on X, where $G_1 = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$ and $G_2 = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. Consider an IFS $A = \langle x, (0.75, 0.65), (0.15, 0.25) \rangle$. Then A is an IFGCS but not an IF α CS in (X, τ) .

Remark 3.27. IFSCS and IFGCS are independent.

Example 3.28. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$. Consider an IFS $A = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. Then A is an IFSCS but not an IFGCS in (X, τ) .

Example 3.29. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G_1, G_2 \ 1_{\sim}\}$ be an IFT on X, where $G_1 = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$ and $G_2 = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. Consider an IFS $A = \langle x, (0.8, 0.7), (0.1, 0.2) \rangle$. Then A is an IFGCS but not an IFSCS in (X, τ) .

Theorem 3.30. If A and B are IFGCSs in an IFTS (X, τ) , then $A \cup B$ is also an IFGCS in (X, τ) .

Proof. If $A \cup B \subseteq G$ and G is IFSGOS, then $A \subseteq G$ and $B \subseteq G$. Since A and B are IF \ddot{G} CSs, $cl(A) \subseteq G$ and $cl(B) \subseteq G$ and hence $cl(A) \cup cl(B) = cl(A \cup B) \subseteq G$. Thus $A \cup B$ is IF \ddot{G} CS in (X, τ) .

Remark 3.31. The intersection of two IF \ddot{G} CSs in an IFTS (X, τ) need not be an IF \ddot{G} CS in (X, τ) .

Example 3.32. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G_1, G_2 \ 1_{\sim}\}$ be an IFT on X, where $G_1 = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$ and $G_2 = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. Consider the two IFSs $A = \langle x, (0.1, 0.7), (0.8, 0.2) \rangle$ and $B = \langle x, (0.8, 0.2), (0.1, 0.7) \rangle$. Then A and B are IFGCSs. But $A \cap B = \langle x, (0.1, 0.2), (0.8, 0.7) \rangle$ is not an IFGCS in (X, τ) .

Theorem 3.33. If A is an IFGCS in an IFTS (X, τ) and $A \subseteq B \subseteq cl(A)$, then B is an IFGCS in (X, τ) .

Proof. Let $B \subseteq U$ where U is an IFSGOS in (X, τ) . Since $A \subseteq B$, $A \subseteq U$. Since A is an IF \ddot{G} CS in (X, τ) , $cl(A) \subseteq U$. Since $B \subseteq cl(A)$, $cl(B) \subseteq cl(A) \subseteq U$. Therefore B is an IF \ddot{G} CS in (X, τ) .

Theorem 3.34. Let A be an IFS in an IFTS (X, τ) . Then A is an IF \ddot{G} CS if and only if $A\bar{q}F$ implies $cl(A)\bar{q}F$ for every IFSGCS F in (X, τ) .

Proof. Necessary Part: Let F be an IFSGCS in (X, τ) and let $A\bar{q}F$. Then $A \subseteq F^c$, where F^c is an IFSGOS in (X, τ) . Therefore by hypothesis $cl(A) \subseteq F^c$. Hence $cl(A)\bar{q}F$.

Sufficient Part: Let F be an IFSGCS in (X, τ) and let A be an IFS in (X, τ) . By hypothesis, $A\bar{q}F$ implies $cl(A)\bar{q}F$. Then $cl(A) \subseteq F^c$ whenever $A \subseteq F^c$ and F^c is an IFSGOS in (X, τ) . Hence A is an IF $\ddot{G}CS$ in (X, τ) .

Theorem 3.35. Let (X, τ) be an IFTS. Then IFC $(X) = IF\ddot{G}C(X)$ if every IFS in (X, τ) is an IFSGOS in X, where IFC(X) denotes the collection of IFCSs of an IFTS (X, τ) .

Proof. Suppose that every IFS in (X, τ) is an IFSGOS in X. Let $A \in IF\ddot{G}C(X)$. Then $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFSGOS in X. Since every IFS is an IFSGOS, A is also an IFSGOS and $A \subseteq A$. Therefore $cl(A) \subseteq A$. Hence cl(A) = A. Therefore $A \in IFC(X)$. Hence $IF\ddot{G}C(X) \subseteq IFC(X) \to (i)$. Let $A \in IFC(X)$. Then by Theorem 3.4, $A \in IF\ddot{G}C(X)$. Hence $IFC(X) \subseteq IF\ddot{G}C(X) \to (ii)$. From (i) and (ii), we have $IFC(X) = IF\ddot{G}C(X)$. □

Proposition 3.36. If A is an IFSGOS and IFGCS in an IFTS (X, τ) , then A is an IFCS in (X, τ) .

Proof. Since A is an IFSGOS and IF \ddot{G} CS, $cl(A) \subseteq A$. Hence A is an IFCS in (X, τ) .

4. Intuitionistic Fuzzy ÿ-open Sets

In this section we introduce intuitionistic fuzzy \ddot{g} -open sets and study some of their properties.

Definition 4.1. An IFS A in an IFTS (X, τ) is said to be an intuitionistic fuzzy \ddot{g} -open set (IF $\ddot{G}OS$ in short) if A^c is an intuitionistic fuzzy \ddot{g} -closed set in (X, τ) . The collection of all intuitionistic fuzzy \ddot{g} -open sets in X is denoted by IF $\ddot{G}O(X)$.

Example 4.2. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. We have $\mu_G(a) = 0.3$, $\mu_G(b) = 0.4$, $\nu_G(a) = 0.6$ and $\nu_G(b) = 0.5$. Consider an IFS $A = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. Then A is an IFGOS.

Example 4.3. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. We have $\mu_G(a) = 0.3$, $\mu_G(b) = 0.4$, $\nu_G(a) = 0.6$ and $\nu_G(b) = 0.5$. Consider an IFS $A = \langle x, (0.6, 0.5), (0.3, 0.4) \rangle$. Then A is not an IFGCS.

Theorem 4.4. An IFS A in an IFTS (X, τ) is IFGOS if and only if $F \subseteq int(A)$ whenever $F \subseteq A$ and F^c is an IFSGOS.

Proof. Necessary Part: Let A be an IF \ddot{G} OS in (X, τ) . Let F^c be an IFSGOS such that $F \subseteq A$. Then $A^c \subseteq F^c$ where A^c is an IF \ddot{G} CS. Hence $cl(A^c) \subseteq F^c$. This implies $(int(A))^c \subseteq F^c$. Thus we have $F \subseteq int(A)$ whenever $F \subseteq A$ and F^c is an IFSGOS. Sufficient Part: Let $F \subseteq int(A)$ whenever $F \subseteq A$ and F^c is an IFSGOS in (X, τ) . This implies $(int(A))^c \subseteq F^c$ whenever $A^c \subseteq F^c$ and F^c is an IFSGOS. Therefore A^c is an IF \ddot{G} CS. Hence A is an IF \ddot{G} OS in (X, τ) .

Theorem 4.5. Every IFOS in an IFTS (X, τ) is an IFGOS, but not conversely.

Proof. Let A be an IFOS in (X, τ) . Therefore A^c is an IFCS in (X, τ) . Then by Theorem 3.4, A^c is an IF \ddot{G} CS in (X, τ) .

Example 4.6. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.6, 0.7), (0.3, 0.2) \rangle$. Consider an IFS $A = \langle x, (0.7, 0.8), (0.2, 0.1) \rangle$. Then A is an IFGOS but not an IFOS in (X, τ) .

Theorem 4.7. Every IF $\ddot{G}OS$ in an IFTS (X, τ) is an IFGSPOS, but not conversely.

Proof. Let A be an IFGOS in (X, τ) . Therefore A^c is an IFGCS in (X, τ) . Then by Theorem 3.6, A^c is an IFGSPCS in (X, τ) . Therefore A is an IFGSPOS in (X, τ) .

Example 4.8. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. Consider an IFS $A = \langle x, (0.5, 0.4), (0.4, 0.5) \rangle$. Then A is an IFGSPOS but not an IFGOS in (X, τ) .

Theorem 4.9. Every IFGOS in an IFTS (X, τ) is an IF ω OS, but not conversely.

Proof. Let A be an IF $\mathring{G}OS$ in (X, τ) . Therefore A^c is an IF $\mathring{G}CS$ in (X, τ) . Then by Theorem 3.8, A^c is an IF ωCS in (X, τ) .

Example 4.10. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.4, 0.3), (0.5, 0.6) \rangle$. Consider an IFS $A = \langle x, (0.3, 0.2), (0.6, 0.7) \rangle$. Then A is an IF ω OS but not an IF $\ddot{\omega}$ OS in (X, τ) .

Theorem 4.11. Every IF $\ddot{G}OS$ in an IFTS (X, τ) is an IFGOS, but not conversely.

Proof. Let A be an IF \ddot{G} OS in (X, τ) . Therefore A^c is an IF \ddot{G} CS in (X, τ) . Then by Theorem 3.10, A^c is an IFGCS in (X, τ) . Therefore A is an IFGOS in (X, τ) .

Example 4.12. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.6, 0.5), (0.3, 0.4) \rangle$. Consider an IFS $A = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$. Then A is an IFGOS but not an IFGOS in (X, τ) .

Theorem 4.13. Every IF $\ddot{G}OS$ in an IF $TS(X, \tau)$ is an IF αGOS , but not conversely.

Proof. Let A be an IF \ddot{G} OS in (X, τ) . Therefore A^c is an IF \ddot{G} CS in (X, τ) . Then by Theorem 3.12, A^c is an IF α GCS in (X, τ) . Therefore A is an IF α GOS in (X, τ) .

Example 4.14. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.5, 0.6), (0.4, 0.3) \rangle$. Consider an IFS $A = \langle x, (0.3, 0.2), (0.6, 0.7) \rangle$. Then A is an IF α GOS but not an IF \ddot{G} OS in (X, τ) .

Theorem 4.15. Every IFGOS in an IFTS (X, τ) is an IFGSOS, but not conversely.

Proof. Let A be an IF \ddot{G} OS in (X, τ) . Therefore A^c is an IF \ddot{G} CS in (X, τ) . Then by Theorem 3.14, A^c is an IFGSCS in (X, τ) . Therefore A is an IFGSOS in (X, τ) .

Example 4.16. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.2, 0.4), (0.7, 0.5) \rangle$. Consider an IFS $A = \langle x, (0.3, 0.2), (0.6, 0.7) \rangle$. Then A is an IFGSOS but not an IFGOS in (X, τ) .

Theorem 4.17. Every IFGOS in an IFTS (X, τ) is an IF ψ OS, but not conversely.

Proof. Let A be an IF \ddot{G} OS in (X, τ) . Therefore A^c is an IF \ddot{G} CS in (X, τ) . Then by Theorem 3.17, A^c is an IF ψ CS in (X, τ) . Therefore A is an IF ψ OS in (X, τ) .

Example 4.18. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.3, 0.2), (0.6, 0.7) \rangle$. Consider an IFS $A = \langle x, (0.5, 0.6), (0.4, 0.3) \rangle$. Then A is an IF ψ OS but not an IF \ddot{G} OS in (X, τ) .

Theorem 4.19. Every IF $\ddot{G}OS$ in an IFTS (X, τ) is an IF $\alpha GSOS$, but not conversely.

Proof. Let A be an IF \ddot{G} OS in (X, τ) . Therefore A^c is an IF \ddot{G} CS in (X, τ) . Then by Theorem 3.19, A^c is an IF α GSCS in (X, τ) . Therefore A is an IF α GSOS in (X, τ) .

Example 4.20. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. Consider an IFS $A = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$. Then A is an IF α GSOS but not an IF $\ddot{\alpha}$ GSOS in (X, τ) .

Theorem 4.21. Every IF $\ddot{G}OS$ in an IFTS (X, τ) is an IF $\ddot{G}_{\alpha}OS$, but not conversely.

Proof. Let A be an IF \ddot{G} OS in (X, τ) . Therefore A^c is an IF \ddot{G} CS in (X, τ) . Then by Theorem 3.22, A^c is an IF \ddot{G}_{α} CS in (X, τ) . Therefore A is an IF \ddot{G}_{α} OS in (X, τ) .

Example 4.22. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.3, 0.7), (0.6, 0.2) \rangle$. Consider an IFS $A = \langle x, (0.6, 0.7), (0.3, 0.2) \rangle$. Then A is an IF \ddot{G}_{α} OS but not an IF \ddot{G} OS in (X, τ) .

Remark 4.23. IF αOS and IF $\ddot{G}OS$ are independent.

Example 4.24. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.3, 0.2), (0.7, 0.8) \rangle$. Consider an IFS $A = \langle x, (0.8, 0.6), (0.2, 0.4) \rangle$. Then A is an IF α OS but not an IF \ddot{G} OS in (X, τ) .

Example 4.25. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ be an IFT on X, where $G_1 = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$ and $G_2 = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. Consider an IFS $A = \langle x, (0.15, 0.25), (0.75, 0.65) \rangle$. Then A is an IFGOS but not an IF α OS in (X, τ) .

Remark 4.26. IFSOS and IFGOS are independent.

Example 4.27. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$. Consider an IFS $A = \langle x, (0.6, 0.5), (0.3, 0.4) \rangle$. Then A is an IFSOS but not an IFGOS in (X, τ) .

Example 4.28. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ be an IFT on X, where $G_1 = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$ and $G_2 = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. Consider an IFS $A = \langle x, (0.1, 0.2), (0.8, 0.7) \rangle$. Then A is an IFGOS but not an IFSOS in (X, τ) .

Theorem 4.29. If A and B are IFGOSs in an IFTS (X, τ) , then $A \cap B$ is also an IFGOS in (X, τ) .

Proof. Let A and B be IF \ddot{G} OSs in (X, τ) . Therefore A^c and B^c are IF \ddot{G} CSs in (X, τ) . By Theorem 3.30, $(A^c \cup B^c)$ is an IF \ddot{G} CS in (X, τ) . Since $(A^c \cup B^c) = (A \cap B)^c$, $A \cap B$ is an IF \ddot{G} OS in (X, τ) .

Remark 4.30. The union of two IF $\ddot{G}OSs$ in an IFTS (X, τ) need not be an IF $\ddot{G}OS$ in (X, τ) .

Example 4.31. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ be an IFT on X, where $G_1 = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$ and $G_2 = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. Consider the two IFSs $A = \langle x, (0.1, 0.7), (0.8, 0.2) \rangle$ and $B = \langle x, (0.8, 0.2), (0.1, 0.7) \rangle$. Then A and B are IFGOSs. But $A \cup B = \langle x, (0.8, 0.7), (0.1, 0.2) \rangle$ is not an IFGOS in (X, τ) .

Theorem 4.32. If A is an IFGOS in an IFTS (X, τ) such that $int(A) \subseteq B \subseteq A$, then B is IFGOS in (X, τ) .

Proof. Let A be an IF \ddot{G} OS in (X, τ) such that int $(A) \subseteq B \subseteq A$. It implies $A^c \subseteq B^c \subseteq cl(A^c)$ where A^c is an IF \ddot{G} CS in (X, τ) . By Theorem 3.33, B^c is an IF \ddot{G} CS in (X, τ) . Therefore B is an IF \ddot{G} OS in (X, τ) .

Theorem 4.33. Let (X, τ) be an IFTS. Then $IFO(X) = IF\ddot{G}O(X)$ if every IFS in (X, τ) is an IFSGOS in X, where IFO(X) denotes the collection of IFOSs of an IFTS (X, τ) .

Proof. Suppose that every IFS in (X, τ) is an IFSGOS in X. Then by Theorem 3.35, we have IFC $(X) = IF\ddot{G}C(X)$. Therefore IFO $(X) = IF\ddot{G}O(X)$.

References

- [1] K.Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems, 20(1986), 87-96.
- [2] K.K.Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, Jour. Math. Anal. Appl., 82(1981), 14-32.
- [3] D.Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and Systems, 88(1997), 81-89.
- [4] H.Gurcay, D.Coker and Es.A.Haydar, On fuzzy continuity in intuitionistic fuzzy topological spaces, The J. Fuzzy Math., 5(1997), 365-378.
- [5] K.Hur and Y.B.Jun, On intuitionistic fuzzy alpha continuous mappings, Honam Math. J, 25(2003), 131-139.
- [6] M.Jeyaraman, A.Yuvarani and O.Ravi, Intuitionistic fuzzy α-generalized semi continuous and irresolute mappings, International Journal of Analysis and Applications., 3(2)(2013), 93-103.
- [7] Joung Kon Jeon, Young Bae Jun and Jin Han Park, Intuitionistic fuzzy alpha continuity and intuitionistic fuzzy pre continuity, Int. J. Mathematics and Mathematical Sciences, 19(2005), 3091-3101.
- [8] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89-96.
- [9] K.Sakthivel, Intuitionistic fuzzy alpha generalized continuous mappings and intuitionistic fuzzy alpha generalized irresolute mappings, Applied Mathematics Sciences, 4(2010), 1831-1842.
- [10] R.Santhi and D.Jayanthi, Intuitionistic fuzzy generalized semipreclosed mappings, NIFS, 16(2010), 28-39.
- [11] R.Santhi and K.Sakthivel, *Intuitionistic fuzzy generalized semi continuous mappings*, Advances in Theoretical and Applied Mathematics, 5(2009), 73-82.

- [12] R.Santhi and K.Arun Prakash, On intuitionistic fuzzy semi generalized closed sets and its applications, Int. J. Contemp. Math. Sci., 5(2010), 1677-1688.
- [13] S.S.Thakur and Jyoti Pandey Bajpai, Intuitionistic fuzzy ω -closed sets and intuitionistic fuzzy ω -continuity, International Journal of Contemporary Advanced Mathematics, 1(2010), 1-15.
- [14] S.S.Thakur and Rekha Chaturvedi, Generalized closed sets in intuitionistic fuzzy topology, The Journal of Fuzzy Mathematics, 16(2008), 559-572.
- [15] S.S.Thakur and Rekha Chaturvedi, Regular generalized closed sets in intuitionistic fuzzy topological spaces, Universitatea Din Bacau Studii Si Cercetar Stiintifice, 6(2006), 257-272.
- [16] Young Bae Jun and Seok-Zun Song, Intuitionistic fuzzy semi preopen sets and Intuitionistic semi pre continuous mappings, J. Appl. Math. & Computing, 19(2005), 467-474.
- [17] L.A.Zadeh, Fuzzy sets, Information and Control, 8(1965), 338-353.