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Abstract

Let G be a second countable locally compact abelian group and H a countable closed discrete

subgroup of G such that the quotient group G/H is compact. A simple proof of characterization

of frame generated by a function ϕ ∈ L2(G) and its translates by elements of H in terms of the

boundedness of the periodization of its Fourier transform ϕ̂ is given.
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1. Introduction

If we consider a vector space then each element in the space has an easy unique representation with

the help of a basis of a vector space. Frames are nothing but, a generalization of a basis in vector

space. So, the first natural question arises in the mind : Why do we need frames if we already have a

representation in terms of the basis? Is there something special or extra that we get from frames? The

answer for above question is affirmative. Yes, frames are something different. The uniqueness of the

representation of elements no more bother us. In other words, we are not bound to choose coefficients

uniquely and if some of the coefficients are lost, still we can recover the signals or functions in the

space.

John J. Bendetto and Shidong Li in [2] have given necessary and sufficient conditions for integer

translates of a function in L2(R) to generate a frame. M. Bownik in [10] extended this result in L2(Rn)

using Helson’s [11] ideas on range functions. Using similar techniques this has been extended in [3]

for locally compact abelian groups. Using the techniques of John J. Benedetto and Shidong Li [2], we

give a simple proof of this result for locally compact abelian groups. Let G denotes a second countable

locally compact abelian group and H a discrete countable subgroup of G such that the quotient group

G/H is compact. H1 = {γ ∈ Ĝ : ⟨h, γ⟩ = 1 f or all h ∈ H}. Then H1 ∼= (G/H). Hence, H1 is discrete
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and We consider the shift-invariant subspaces of L2(G) of the following form:

V =

{
∑

h∈H
chϕ(. − h) : {ch} ∈ ℓ2(H)

}
.

2. Fourier Analysis on the Space L2(Ĥ)

For f ∈ L2 (Ĥ
)
, the Fourier coefficients of f are defined by

Fλ( f ) :=
∫
Ĥ

f (γ) ⟨λ,−γ⟩ dγ;

where λ ∈ H. The Fourier series of f is defined as ∑
λ∈H

Fλ( f ) ⟨λ, γ⟩.

For a finite subset E of H and f ∈ L2 (Ĥ
)
, SE f denotes the partial sum of Fourier series of f defined

by SE f := ∑
k∈E

Fk( f ) ⟨k⟩. By a trigonometric polynomial we mean the functions of the form LS defined

by LS (γ) = ∑
λ∈S

cλ ⟨λ, γ⟩, where S is a finite subset of H and cλ ∈ C. PE
(

Ĥ
)

denotes the set of all

trigonometric polynomials of the form LA such that A ⊆ E ⊆ H.

Lemma 2.1. Given f ∈ L2 (Ĥ
)

and finite subsets A and E of H with A ⊆ E, ( f − SEF) is orthogonal to all

trigonometric polynomials LA.

Proof. It suffices to show that ( f − SEF) is orthogonal to the characters of the form g (γ) = ⟨k, γ⟩ for

every k ∈ A. Now,

⟨ f − SE f , g⟩ = ⟨ f , g⟩ − ∑
h∈E

Fh( f ) ⟨⟨h, .⟩ , ⟨k, .⟩⟩

= Fk( f )− Fk( f ) = 0.

Lemma 2.2. ∥SE f ∥2
L2(Ĥ) = ∑

k∈E
|(Fk ( f ))|2 for every finite subset E of H and f ∈ L2 (Ĥ

)
.

Proof. It can be easily proved. For f ∈ L2 (Ĥ
)

and A ⊆ E ⊆ H, the following hold:

(1) For every trigonometric polynomial LA ∈ PE
(

Ĥ
)
,

∥ f − SE f ∥L2(Ĥ) ≤ ∥ f − LA∥L2(Ĥ) .

(2) Equality holds in the above inequality if and only if LA = SE f .

Let LA ∈ PE
(

Ĥ
)
. Then there exist complex numbers ck such that LA (γ) = ∑

k∈A
ck ⟨k, γ⟩. Then by taking

ck = 0 for k ∈ E/A, we can write

f − LA = f − ∑
k∈E

ck ⟨k, .⟩ − SE f + SE f ,
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where SE f (γ) = ∑
k∈E

Fk( f ) ⟨k, γ⟩. We can also see that

f − LA = ( f − SE f ) +

(
∑
k∈E

(Fk ( f )− ck) ⟨k, .⟩
)

.

As a consequence of Lemma 2.1,

∥ f − LA∥2
L2(Ĥ) = ∥ f − SE f ∥2

L2(Ĥ) +

∥∥∥∥∥∑
k∈E

(Fk ( f )− ck) ⟨k, .⟩
∥∥∥∥∥

2

L2(Ĥ)

(1)

Therefore,

∥ f − LA∥2
L2(Ĥ) ≥ ∥ f − SE f ∥2

L2(Ĥ) .

Also equality holds if and only if the second summand on the right hand side of equation (1) is equal

to 0 and hence if and only if FK( f ) = ck for all k ∈ E and so LA = SE f as required.

Lemma 2.3. There exists a sequence {Ki}∞
0 of finite subsets of H with distinct elements and H1 periodic

functions FKi satisfying the following:

(1). Ki ⊆ Ki+1 for every i and
∞⋃

i=0
Ki = H.

(2).
∫̂
H
|FKi (γ)| dγ = 1 and there exists M > 0 such that

∫̂
H
|FKi (γ)| dγ ≤ M for all i.

(3). FKi ∗ f = σKi f , where σKi f = 1
|Ki |

i=1
∑

j=0
SKj( f ).

(4). For every neighbourhood N0 of identity,
∫

Ĥ/N0

|FKi (γ)| dγ → 0 as i → ∞.

We may use the fact that H ∼= Zd × F for some finite abelian group F. When H is isomorphic to Z, the

Dirichlet’s kernel and Fejer kernel take the following forms:

DKi (γ) = ∑
|j|≤i

〈
xj, γ

〉
=

[⟨xi+1, γ⟩ − ⟨x−i, γ⟩]
[⟨x1, γ⟩ − ⟨x0, γ⟩]

and

FKi (γ) =
DK0 (γ) + DK1 (γ) + ... + DKi−1 (γ)

|Ki|

= − 1

|Ki| |⟨x1, γ⟩ − 1|2
2 Re

[
⟨x1, γ⟩i − 1

]
,

where, j 7→ xj is an isomorphism between Z and H. Moreover,
∫̂
H
|FKi (γ)| dγ = 1 and

∫̂
H
|FKi (γ)| dγ ≤ M

for some M > 0. Also for every neighbourhood N0 of the identity in Ĥ,
∫

Ĥ/N0

|FKi (γ)| dγ → 0 as i → ∞,

since on Ĥ/N0,

|FKi (γ)| =

∣∣∣∣∣∣ 1
|Ki|

Re
[
1 − ⟨x1, γ⟩i

]
Re [1 − ⟨x1, γ⟩]

∣∣∣∣∣∣ ≤ 2
|Ki|C

,
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where C = Re[1− ⟨x1, γ⟩]. When H is isomorphic to Zd we define the Dirichlet kernel and Fejer kernel

to be

DK (γ) =
d

∏
j=1

DKj

(
γj
)

and FK (γ) =
d

∏
j=1

FKj

(
γj
)

,

where K = (K1, K2, . . . , Kd). When H is isomorphic to Zd × F, we define FN (γ) =
d

∏
j=1

FNj

(
γj
)

Dn0 (γ0),

n0 = |F| and γ = (γ0, γ1, ..., γd). Then FN ∗ f = σN f and
∫̂
H
|FN (γ)| dγ = 1 and

∫̂
H
|FN (γ)| dγ ≤ M

and
∫

Ĥ|N0

|FN (γ)| dγ → 0. If f : Ĝ → C is continuous and periodic with period H1, then σN f → f

uniformly on Ĥ. Let ε > 0. As Ĥ is compact, f is uniformly continuous on Ĥ. Hence, there is exists

a neighbourehood N0 of 0 (identity in Ĥ) such that | f (γ1)− f (γ2)| < ε
2 whenever γ1, γ2 ∈ Ĥ and

γ1 − γ2 ∈ N0. In view of Lemma 2.3 we can find i0 such that
∫

Ĥ/N0

∣∣Fki (γ)
∣∣ dγ < ε

2 for all i ≥ i0 and also

we obtain

|σKi ( f , γ)− f (γ)| =

∣∣∣∣∣∣
∫
Ĥ

[ f (γ − u)− f (γ)] FKi(u)du

∣∣∣∣∣∣
≤
∫
N0

| f (γ − u)− f (γ)| |FKi(u)| du +
∫

Ĥ/N0

| f (γ − u)− f (γ)| |FKi(u)| du

≤
∫
N0

ε

2
|FKi(u)| du + M1

ε

2

< M
ε

2
+ M1

ε

2

for sufficiently large i. For f ∈ L2 (Ĥ
)
, lim

i→∞
∥ f − SKi ( f )∥L2

(
Ĥ
)
= 0. Let ε > 0. As continuous functions

on Ĥ are dense in L2 (Ĥ
)
, there exist a continuous function g on Ĥ such that ∥ f − g∥L2(Ĥ) ≤ ε

2 . By

Theorem 2, lim
i→∞

∥g − SKi g∥L2(Ĥ) = 0. Now,

∥ f − SKi f ∥L2(Ĥ) ≤ ∥ f − SKi g∥L2(Ĥ) ≤ ∥ f − g∥L2(Ĥ) + ∥g − SKi g∥L2(Ĥ) .

The proof follows from the above inequality.

3. Frames Formed by Translates

We give a characterization for translates of ϕ by elements of H to generate a frame in terms of

boundedness condition of the H1-periodic function Gϕ (γ). This extends the result of [2] for locally

compact abelian groups.

Lemma 3.1. Let ϕ ∈ L2(G) and that V = span {TKϕ : k ∈ H}. Then the frame condition

A ∥ f ∥2 ≤ ∑
k∈H

|⟨ f , TKϕ⟩|2 ≤ B ∥ f ∥2 (2)
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is valid for each f ∈ V if and only if (2) is valid for f ∈ span {TKϕ}.

If (2) is valid for each f ∈ V, then (2) is trivially true for f ∈ span {TKϕ}. Suppose that (2) is valid for

f ∈ span {TKϕ} and let f ∈ V. Choose fn ∈ span {TKϕ} such that lim
n→∞

∥ f − fn∥2 = 0. Since

∣∣∣|⟨ fn, TKϕ⟩|2 − |⟨ f , TKϕ⟩|2
∣∣∣ ≤ ∥ϕ∥2

2 (∥ fn∥2 + ∥ f ∥2) ∥ fn − f ∥2 ,

we get

lim
n→∞

|⟨ fn, TKϕ⟩|2 = |⟨ f , TKϕ⟩|2 (3)

Now, as a consequence of equation (3) and Fatou’s Lemma applied to sums, we have by the right side

of (2) for span {TKϕ} that

∑
k∈H

|⟨ f , TKϕ⟩|2 ≤ lim inf
n→∞ ∑

k∈H
|⟨ fn, TKϕ⟩|2 ≤ Blim inf

n→∞
∥ fn∥2

2 = B ∥ f ∥2
2 (4)

Thus, the right side of (2) is valid for V. By using the triangle inequality,

(
∑

k∈H
|⟨ f , TKϕ⟩|2

) 1
2

≥
(

∑
k∈H

|⟨ fn, TKϕ⟩|2
) 1

2

−
(

∑
k∈H

|⟨ fn − f , TKϕ⟩|2
) 1

2

is true for any n. First inequality of (2) for f can be obtained easily since the lower bound in (2) holds

in span {TKϕ} and hence holds for fn. Also by inequality (4) the upper bound holds for all f ∈ V.

Hence, we have (
∑

k∈H
|⟨ f , TKϕ⟩|2

) 1
2

≥ A
1
2 ∥ fn∥2 − B

1
2 ∥ fn − f ∥2 .

We obtain the lower bound of inequality (2) by taking the limit as n tending to ∞ on the right hand

side of above inequality.

Lemma 3.2. For ϕ ∈ L2(G) and a finite set S ⊂ H, define f : ∑
k∈S

ck, TKϕ and LS (γ) := ∑
k∈S

ck ⟨−k, γ⟩. Then

f ∈ L2(G), LS ∈ L∞ (Ĥ
)

and

∥ f ∥2
2 =

∫
Ĥ

|LS(γ)|2 Gϕ (γ) dγ < +∞ (5)

Proof. Using the Parseval’s identity and H1-periodicity of LS we obtain,

∥ f ∥2
2 =

〈
∑

m∈S
cmTmϕ, ∑

n∈S
cnTnϕ

〉

=

〈
∑

m∈S
cmTmϕ, ∑

n∈S
cnTnϕ

〉
=
〈

LSϕ̂, LSϕ̂
〉

=
∫
Ĝ

|LS (γ)|2
∣∣ϕ̂ (γ)

∣∣2 dγ
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=
∫
Ĥ

∑
k∈H1

|LS (γ + k)|2
∣∣ϕ̂ (γ + k)

∣∣2 dγ

=
∫
Ĥ

|LS (γ)|2 ∑
k∈H1

∣∣ϕ̂ (γ + k)
∣∣2 dγ

=
∫
Ĥ

|LS (γ)|2 Gϕdγ

Since LS ∈ L∞ (Ĥ
)

and Gϕ (γ) ∈ L1 (Ĥ
)
,

∥ f ∥2
2 =

∫
Ĥ

|LF (γ)|2 Gϕ (γ) dγ < ∞.

Lemma 3.3. For ϕ ∈ L2(G) and a finite subset S ⊂ H, define f := ∑
h∈S

ch, THϕ and LS (γ) ≡ ∑
h∈S

ch ⟨−h, γ⟩.

If Gϕ ∈ L2 (Ĥ
)
, then f ∈ L2(G), LS ∈ L∞ (Ĥ

)
and

∑
h∈H

|⟨ f , Thϕ⟩|2 =
∫
Ĥ

|LS(γ)|2 Gϕ (γ)
2 dγ < ∞ (6)

Proof. Let K be a finite subset of H. Then

∑
k∈K

|⟨ f , Tkϕ⟩|2 = ∑
k∈K

⟨ f , Tkϕ⟩ ⟨ f , Tkϕ⟩

= ∑
k∈K

〈
∑
h∈S

ch, Thϕ, Tkϕ

〉〈
∑
u∈S

cu, Tuϕ, Tkϕ

〉
= ∑

k∈K
∑
h∈S

∑
u∈S

chcu ⟨Thϕ, Tkϕ⟩ ⟨Tuϕ, Tkϕ⟩

= ∑
k∈K

∑
h∈S

∑
u∈S

chcu

∫
Ḡ

∣∣ϕ̂ (γ)
∣∣2 ⟨k − h, γ⟩ dγ

∫
Ḡ

∣∣ϕ̂ (λ)
∣∣2 ⟨u − k, λ⟩ dλ

= ∑
k∈K

∑
h∈S

∑
u∈S

chcu

∫
Ḡ

∣∣ϕ̂ (γ)
∣∣2 ⟨−h, γ⟩

∫
Ḡ

∣∣ϕ̂ (λ)
∣∣2 ⟨u, λ⟩

〈
k, γλ̄

〉
dλdγ

= ∑
h∈S

∑
u∈S

chcu

∫
Ḡ

∣∣ϕ̂ (γ)
∣∣2 ⟨−h, γ⟩

∫
Ḡ

∣∣ϕ̂ (λ)
∣∣2 ⟨u, λ⟩

(
∑
k∈K

〈
k, γλ̄

〉)
dλdγ

= ∑
h∈S

∑
u∈S

chcu

∫
Ḡ

∣∣ϕ̂ (γ)
∣∣2 ⟨−h, γ⟩

∫
H̄

Gϕ (λ) ⟨u, λ⟩ DK

(
γλ−1

)
dλdγ

Now, ∫
H̄

Gϕ (λ) ⟨u, λ⟩ DK

(
γλ−1

)
dλ = ∑

k∈K

(
Gϕ, u

)
(k) ⟨k, γ⟩

where (
Gϕ, u

)
(k) =

∫
H̄

Gϕ (λ) ⟨u, λ⟩ (−k, λ) dλ
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Therefore,

∑
k∈K

|⟨ f , TKϕ⟩|2 = ∑
h∈S

∑
u∈S

chcu

∫
Ḡ

∣∣ϕ̂ (γ)
∣∣2 ⟨−h, γ⟩ SK

(
Gϕ, u

)
(λ) dγ

= ∑
h∈S

∑
u∈S

chcu

∫
H̄

Gϕ (γ) (−h, γ) SK
(
Gϕu

)
(γ) dγ

Now, ∣∣∣∣∣∣
∫
H̄

Gϕ (γ) (−h, γ) SK
(
Gϕu

)
(γ)− Gϕ (γ) ⟨u, γ⟩ dγ

∣∣∣∣∣∣ ≤ ∥∥Gϕ

∥∥
L2(Ĥ)

∥∥SK
(
Gϕu

)
− Gϕu

∥∥
L2(Ĥ) .

Therefore, as a consequence of Theorem 2, we get

lim
|K|→∞

∫
Ĥ

Gϕ (γ) ⟨−h, γ⟩ SK
(
Gϕu

)
(γ) dγ →

∫
Ĥ

∣∣Gϕ (γ)
∣∣2 ⟨u − h, γ⟩ dγ,

where |K| → ∞ we mean there exist natural numbers n1 < n2 < . . . and finite subsets K1 ⊆ K2 ⊆ . . .

such that |Ki| = ni → ∞ as i → ∞ and UiKi = H. Hence,

∑
k∈K

|⟨ f , TKϕ⟩|2 = ∑
h∈S

∑
u∈S

chcu

∫
H̄

∣∣Gϕ (γ)
∣∣2 ⟨u − h, γ⟩ dγ

=
∫
H̄

∣∣Gϕ (γ)
∣∣2 ∑

h∈S
∑
u∈S

chcu ⟨u − h, γ⟩ dγ

=
∫
H̄

∣∣Gϕ (γ)
∣∣2 |LS (γ)|2 dγ.

Lemma 3.4. Let ϕ ∈ L2 (G) be such that Gϕ ∈ L2 (Ĥ
)

and let V ≡ span {TKϕ : k ∈ H} be a closed subspace of

L2(G). Then the sequence {TKϕ} is a frame for V with frame bounds A and B if and only if for all trigonometric

polynomials L (γ) ≡ LS (γ) ≡ ∑
k∈S

ck ⟨−k, γ⟩ on Ĥ,

A
∫
Ĥ

|L (γ)|2 Gϕ (γ) dγ ≤
∫
Ĥ

|L (γ)|2 Gϕ (γ)
2 dγ ≤ B

∫
Ĥ

|L (γ)|2 Gϕ (γ) dγ < +∞ (7)

Proof. Suppose that {TK (ϕ)} is frame for V. For a given LS, define

f (·) := ∑
k∈S

ckTKϕ (·)

In view of Lemma 3.2 and 3.3, we obtain

∥ f ∥2
2 =

∫
Ĥ

|L (γ)|2 Gϕ (γ) dγ and (8)
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∑ |⟨ f , TKϕ⟩|2 =
∫
Ĥ

|L (γ)|2 Gϕ (γ)
2 dγ (9)

Since {TK(ϕ)} is a frame for V, there exist constants A, B > 0 such that for g ∈ V,

A ∥ g ∥2≤ ∑ |⟨g, TKϕ⟩|2 ≤ B ∥ g ∥2< ∞ (10)

Replacing g = f in (10) and using (8) and (9), we get (7).

Conversely, suppose that (7) is true for all trigonometric polynomials L = LS. By Lemma 3.2 and

Lemma 3.3 we get

A ∥ f ∥2≤ ∑ |⟨ f , TKϕ⟩|2 ≤ B ∥ f ∥2

for all f span{TKϕ} and hence the result follows from Lemma 3.1. Let ϕ ∈ L2(G) and let V =

span{TKϕ : k ∈ H} be a closed subspace of L2(G). Then the sequence {TKϕ} is a frame for V if and

only if there are positive constants A and B such that

A ≤ Gϕ (γ) ≤ B a.e. on Ĥ\N, (11)

where N =
{

γ ∈ Ĥ : Gϕ (γ) = 0
}

.

Suppose that (11) holds and that L (γ) = LS (γ) = ∑
k∈S

ck ⟨−k, γ⟩ be a trigonometric polynomial on Ĥ.

It is easy to see that

A
∫
Ĥ

|L (γ)|2 Gϕ (γ) dγ = A
∫

Ĥ\N

|L (γ)|2 Gϕ (γ) dγ

≤
∫

Ĥ\N

|L (γ)|2 Gϕ (γ)
2 dγ

=
∫

Ĥ\N

|L (γ)|2 Gϕ (γ)
2 dγ

= B
∫

Ĥ\N

|L (γ)|2 Gϕ (γ) dγ.

Hence, by Lemma 3.4, {TKϕ} forms a frame for V.

Conversely suppose that the sequence {TKϕ} is a frame for V. Then there exist positive constants A

and B such that for f ∈ V,

A ∥ f ∥2≤ ∑ |⟨ f , TKϕ⟩|2 ≤ B ∥ f ∥2 .

Hence, in view of Lemma 3.3 and Lemma 3.4 for f = ∑
k∈S

ckTKϕ, we obtain

∑
h∈H

|⟨ f , Thϕ⟩|2 =
∫
Ĥ

|LS (γ)|2 Gϕ (γ)
2 dγ
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and

∥ f ∥2
2 =

∫
Ĥ

|LS (γ)|2 Gϕ (γ)
2 dγ.

Assuming Gϕ (γ) < A on E ⊆ Ĥ\N for some measurable set E of positive Lebesgue measure, we

shall obtain a contradiction. By using our assumption of Gϕ we can choose L ∈ L∞ (Ĥ
)
⊆ L2 (Ĥ

)
, not

necessarily a trigonometric polynomial such that L = 0 on Ec, L > 0 on E and

A
∫
Ĥ

|L (γ)|2 Gϕ (γ) dγ >
∫
Ĥ

|L (γ)|2 Gϕ (γ)
2 dγ.

Thus,

c =
∫
Ĥ

|L (γ)|2
(

AGϕ (γ)− Gϕ (γ)
2
)

dγ > 0 (12)

We proceed to find a trigonometric polynomial Ψ so that (12) is true for Ψ. This will provide a

contradiction to the inequality (7). Also if Gϕ ∈ L2 (Ĥ
)
\L∞ (Ĥ

)
, then (12) is still valid for L ∈ L∞ (Ĥ

)
.

So, it is not required that Gϕ must belong to L∞ (Ĥ
)

to choose desired Ψ. For any Ψ ∈ L∞ (Ĥ
)
, we

have

∫
Ĥ

|Ψ (γ)|2
(

AGϕ (γ)− Gϕ (γ)
2
)

dγ =
∫

Ĥ\E

|Ψ (γ)|2
(

AGϕ (γ)− Gϕ (γ)
2
)

dγ

+
∫
E

|Ψ (γ)− L (γ) + L (γ)|2
(

AGϕ (γ)− Gϕ (γ)
2
)

dγ (13)

Since, A − Gϕ > 0 on E and Gϕ > 0 a.e. on Ĥ\N, we have Gϕ(A − Gϕ) > 0 a.e. on E and we may

consider Gϕ(A − Gϕ) as a weight on a weighted L2-space on E. Thus, with L, Ψ ∈ L∞ (Ĥ
)
, we have

∫
E

|Ψ (γ)|2
(

AGϕ (γ)− Gϕ (γ)
2
)

dγ

 1
2

≥

∫
E

|Ψ (γ)− L (γ)|2
(

AGϕ (γ)− Gϕ (γ)
2
)

dγ

 1
2

−

∫
E

|L (γ)|2
(

AGϕ (γ)− Gϕ (γ)
2
)

dγ

 1
2

(14)

Using equation (13) and (14) we get,

∫
Ĥ

|Ψ (γ)|2
(

AGϕ (γ)− Gϕ (γ)
2
)

dγ ≥
∫

Ĥ\E

|Ψ (γ)|2
(

AGϕ (γ)− Gϕ (γ)
2
)

dγ

+


∫

E

|Ψ (γ)− L (γ)|2
(

AGϕ (γ)− Gϕ (γ)
2
)

dγ

 1
2

−

∫
E

|L (γ)|2
(

AGϕ (γ)− Gϕ (γ)
2
)

dγ

 1
2


2
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≥ c − 2c
1
2

∫
E

|Ψ (γ)− L (γ)|2
(

AGϕ (γ)− Gϕ (γ)
2
)

dγ

 1
2

+
∫
Ĥ

|Ψ (γ)− L (γ)|2
(

AGϕ (γ)− Gϕ (γ)
2
)

dγ (15)

Assuming Gϕ ∈ L∞ (Ĥ
)

and using a simple estimate we get,

∣∣∣∣∣∣∣2c
1
2

∫
E

|Ψ (γ)− L (γ)|2
(

AGϕ (γ)− Gϕ (γ)
2
)

dγ

 1
2

−
∫
Ĥ

|Ψ (γ)− L (γ)|2
(

AGϕ (γ)− Gϕ (γ)
2
)

dγ

∣∣∣∣∣∣
≤ K

(
∥Ψ − L∥L2(Ĥ) + ∥Ψ − L∥2

L2(Ĥ)

)
, (16)

where, K = max
(

2c
1
2
∥∥Gϕ

(
A − Gϕ

)∥∥ 1
2

L∞(Ĥ)
,
∥∥Gϕ

(
A − Gϕ

)∥∥
L∞(Ĥ)

)
. Since, the trigonometric

polynomials are dense in L2 (Ĥ
)

we can choose a trigonometric polynomial Ψ such that

∥Ψ − L∥L2(Ĥ) ≤ L, where L = min
(
1, c

4K

)
. Thus,

K
(
∥Ψ − L∥L2(Ĥ) + ∥Ψ − L∥2

L2(Ĥ)

)
≤ c

2
(17)

Therefore we can conclude from (15), (16) and (17) that

∫
Ĥ

|Ψ (γ)|2
(

AGϕ (γ)− Gϕ (γ)
2
)

dγ ≥ c
2

.

Similarly, if Gϕ ∈ L2 (Ĥ
)
, we can choose a trigonometric polynomial Ψ such that

∣∣∣∣∣∣∣2c
1
2

∫
E

|Ψ (γ)− L (γ)|2
(

AGϕ (γ)− Gϕ (γ)
2
)

dγ

 1
2

−
∫
Ĥ

|Ψ (γ)− L (γ)|2
(

AGϕ (γ)− Gϕ (γ)
2
)

dγ

∣∣∣∣∣∣
<

c
2

.
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