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1. Introduction

In recent years there has been an increasing interest in mathematical aspects of operations defined on fuzzy sets. The

concept of fuzzy sets and fuzzy set operations was first introduced by Zadeh [1] and subsequently several authors have

discussed various aspects of theory and applications of fuzzy sets, such as topological spaces, similarity relations and fuzzy

orderings, fuzzy measures of fuzzy events and fuzzy mathematical programming. The theory of fuzzy numbers is not only

the foundation of fuzzy analysis, but it also has important applications in fuzzy optimization, fuzzy decision making etc.

[2, 3]. Many authors have found interest in the study of theory of fuzzy numbers [4, 5]. Matloka [6] introduced bounded

and convergent sequences of fuzzy numbers. In addition sequences of fuzzy numbers have been discussed by Aytar and

Pehlian [7], Basarir and Mursaleen [8] Nanda [10] and many others.

The idea of difference sequence space of fuzzy numbers was introduced by Savas [9] and further generalized by Rifat

Colak [11] and many others. Recently Talo and Basar [12] introduced and studied the space bp(F ) of sequences of p-bounded

variation of fuzzy numbers. The study of Hahn-sequence space was initiated by Chandrasekhara Rao [13] with certain

specific purpose in Banach space theory. Indeed, he got interested in finding a semi Hahn space and proved that the

intersection of all semi Hahn spaces is the Hahn space [14]. This idea motivates us to study fuzzy Hahn sequence space [18].

Talo and Basar [15] gave the idea of determining the dual of sequence space of fuzzy numbers by using the concept of

convergence of a series of fuzzy numbers [16].

The present paper is devoted to the study of Hahn sequence space of fuzzy numbers defined by modulus function.
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2. Definitions and Preliminaries

We begin with giving some required definitions and statements of theorems, propositions and lemmas. A fuzzy number is a

fuzzy set on the real axis i.e. a mapping u : R→ [0, 1] which satisfies the following four conditions.

(1). u is normal i.e. there exists an x0 ∈ R such that u(x0) = 1.

(2). u is fuzzy convex i.e. u[λx+ (1− λ)y] ≥ min{u(x), u(y)} for all x, y ∈ R and for all λ ∈ [0, 1].

(3). u is upper semi continuous

(4). The set [u]0 = {x ∈ R : u(x) > 0} is compact [1] where {x ∈ R : u(x) > 0} denotes the closure of the set {x ∈ R : u(x) >

0} in the usual topology of R.

We denote the set of all fuzzy numbers on R by E′ and called it as the space of fuzzy numbers. The λ-level set [u]λ of

u ∈ E′ is defined by

[u]λ =


{t ∈ R : u(t) ≥ λ}, (0 < λ ≤ 1)

{t ∈ R : u(t) > λ}, (λ = 0).

The set [u]λ is a closed bounded and non-empty interval for each λ ∈ [0, 1] which is defined by [u]λ = [u−(λ), u+(λ)]. R can

be embedded in E′. Since each r ∈ R can be regarded as a fuzzy number r defined by

r =


1, (x = r)

0, (x 6= r).

Let W be the set of all closed and bounded intervals A of real numbers with endpoints A and A i.e., A = [A,A ]. Define

the relation d on W by

d(A,B) = max{|A−B|, |A−B|}.

Then it can be observed that d is a metric on W and (W,d) is a complete metric space [10]. Now we can define the metric

D on E′ by means of a Hausdroff metric d as

D(u, v) = sup
λ∈[0,1]

d([u]λ, [v]λ)

(E′, D) is a complete metric space one can extend the natural order relation on the real line to intervals as follows.

A ≤ B if and only if A ≤ B and A ≤ B.

The partial order relation on E′ is defined as follows.

u ≤ v ⇔ [u]λ ≤ [v]λ ⇔ u−(λ) ≤ v−(λ) and u+(λ) ≤ v+(λ)

for all λ ∈ [0, 1]. In the sequel, we require the following definitions and lemmas.

Definition 2.1. A sequence u = (uk) of fuzzy numbers is a function u from the set N into the set E′. The fuzzy number

uk denotes the value of the function at k ∈ N and is called the kth term of the sequence. Let w(F ) denote the set of all

sequences of fuzzy numbers.
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Definition 2.2. A sequence (uk) ∈ w(F ) is called convergent with limit u ∈ E′ if and only if for every ε > 0 there exists

an n0 = n0(ε) ∈ N such that

D(uk, u) < ε for all k ≥ n0.

Definition 2.3. A sequence (uk) ∈ w(F ) is called bounded if and only if the set of all fuzzy numbers consisting of the terms

of the sequence (uk) is a bounded set.

Definition 2.4. Let (uk) ∈ w(F ). Then the expression
∑
uk is called a series of fuzzy numbers. Denote Sn =

n∑
k=0

uk for

all n ∈ N , if the sequences (Sn) converges to a fuzzy number u then we say that the series
∑
uk of fuzzy numbers converges

to u. We say otherwise the series of fuzzy numbers diverges.

The notion of modulus function was introduced by Nakano [19] as follows.

Definition 2.5. A function f from [0,∞) into [0,∞) is called a modulus function if

(1). f(x) = 0 if and only if x = 0.

(2). f(x+ y) ≤ f(x) + f(y) for all x, y ≥ 0.

(3). f is increasing.

(4). f is continuous from right at 0.

Hence f is continuous on the interval [0,∞).

The Hahn sequence space is the space of all sequences x = (xk) such that
∞∑
k=1

k|xk − xk−1| converges and lim
k→∞

xk = 0.

3. Main results

Recently Balasubramanian and Pandiarani defined h(F ), the Hahn sequence space of fuzzy numbers. Let A denote the

matrix A = (ank) defined by

ank =


n(−1)n−k, n− 1 ≤ k ≤ n

0, 1 ≤ k ≤ n− 1 or k > n

(1)

Define the sequence y = (yk) which will be frequently used as the A-transform of a sequence x = (xk),

i.e., yk = (Ax)k = k(xk − xk−1), k ≥ 1. (2)

The space h(F ) is defined as the set of all sequences such that the A-transforms of them are in `(F ) that is

h(F ) =
{
u = (uk) ∈ w(F ) :

∑
k

D[(Au)k, 0 ] <∞ and lim
k→∞

D[uk, 0 ] = 0
}

and h∞(F ) =
{
u = (uk) ∈ w(F ) : sup

k
D[(Au)k, 0 ] <∞

}
.

In this paper we introduce the spaces hp(F ),h(F, f),h∞(F, f) and hp(F, f, s).

hp(F ) =
{
u = (uk) ∈ w(F ) :

∑
k

D[(Au)k, 0 ]p <∞ and lim
k→∞

D[uk, 0 ] = 0
}
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It is not hard to see that hp(F ) is a complete metric space with the Hausdroff metric dp defined by

dp(u, v) =

{∑
k

(D [(Au)k, (Av)k])p
} 1

p

Let f be a modulus function.We define the spaces h(F, f),h∞(F, f) and hp(F, f, s) as follows.

h(F, f) =
{
u = (uk) ∈ w(F ) :

∑
k

f
(
D[(Au)k, 0 ]

)
<∞ and lim

k→∞
D[uk, 0 ] = 0

}
h∞(F, f) =

{
u = (uk) ∈ w(F ) : sup

k
f
(
D[(Au)k, 0 ]

)
<∞

}
.

and hp(F, f, s) =
{
u = (uk) ∈ w(F ) :

∑
k

{
f
(
D[(Au)k, 0 ]

)}p
ks

<∞
}

Theorem 3.1. The sets h(F, f), h∞(F, f) and hp(F, f, s) are closed under the coordinatewise addition and scalar multipli-

cation.

Theorem 3.2. The spaces h(F, f) , h∞(F, f) and hp(F, f, s) are complete metric spaces with respect to the metrics d, d∞

and dp defined by

d(u, v) =
∑
k

f (D[(Au)k, (Av)k])

and d∞(u, v) = sup
k∈N

f (D[(Au)k, (Av)k])

and dp(u, v) =

{∑
k

{
f
(
D[(Au)k, 0 ]

)}p
ks

}1/p

respectively, where u = (uk) and v = (vk) are the elements of the spaces h(F, f) ,h∞(F, f) and hp(F, f, s) .

Proof. Since the proof is analogus for the spaces h∞(F, f) and hp(F, f, s), we consider only the space h(F, f). one can

easily establish that d defines a metric on h(F, f) so it remains to prove the completeness of the space h(F, f). Let {ui} be

any Cauchy sequence in the space h(F, f), where ui = {u(i)
0 , u

(i)
1 , u

(i)
2 . . .}. Then for a given ε > 0 there exists a positive

integer n0(ε) such that

d(ui, uj) =
∑
n

f
(
D[(Au)in, (Au)jn]

)
< ε (3)

for every i, j ≥ n0(ε). We obtain for each fixed n ∈ N from (3) that

lim
i,j→∞

f
(
D[(Au)in, (Au)jn]

)
= 0. (4)

Since f is continuous we have from (4) that

f

(
lim

i,j→∞
D[(Au)in, (Au)jn]

)
= 0 (5)

Therefore, since f is a modulus function one can derive by (5) that

lim
i,j→∞

D[(Au)in, (Au)jn] = 0 (6)

This means that (Au)in is a cauchy sequence in E′ for every fixed n ∈ N. Since E′ is complete, (Au)in → (Au)nas i→∞.

Using these infinitely many limits we define the sequence {(Au)1, (Au)2, . . .}. We have from (6), for each m ∈ N and for

i, j ≥ n0(ε) that

d(u, v) =

m∑
k=0

f (D[(Au)k, (Av)k]) ≤ d(ui, uj) < ε. (7)
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Take any i ≥ n0(ε) and taking limit as j →∞ first and next m→∞ in (3) we obtain

d(ui, u) < ε. (8)

Finally we proceed to prove u ∈ h(F, f). Since {ui} is a sequence in h(F, f), we have for each i ∈ N, there exist n1(ε) such

that ∑
k

f
(
D[(Au)ik, 0 ]

)
≤ ε and lim

k→∞
f
(
D[(Au)ik, 0 ]

)
= 0.

For every n ≥ n1(ε) and for each fixed i ∈ N,

f
(
D[(Au)k, 0]

)
≤ f

(
D[(Au)k, (Au)ik]

)
+ f

(
D[(Au)ik, (Au)jk]

)
+ f

(
D[(Au)jk, 0]

)
(9)

holds for all i, j ∈ N and for fixed i ≥ n0(ε). Hence

∑
k

f
(
D[(Au)k, 0 ]

)
< ε.

Also from (5) lim
k→∞

f
(
D[(Au)k, 0 ]

)
= 0. Hence u ∈ h(F, f). Since {ui} is an arbitrary Cauchy sequence, the space h(F ) is

complete.

Theorem 3.3. If f1andf2 are two modulus functions then the following inclusion relations hold.

(a). h(F, f1) ∩ h(F, f2) ⊆ h(F, f1 + f2).

(b). h(F, f1) ⊆ h(F, f1 ◦ f2).

(c). If f1(t) ≤ f2(t) for all t ∈ [0,∞) then h(F, f1) ⊆ h(F, f2).

Proof.

(a). Let u = (uk) ∈ h(F, f1) ∩ h(F, f2). Since

(f1 + f2)
{
D[(Au)k, 0 ]

}
= (f1)

{
D[(Au)k, 0 ]

}
+ (f2)

{
D[(Au)k, 0 ]

}
and (f1 + f2)

{
D[uk, 0 ]

}
= (f1)

{
D[uk, 0 ]

}
+ (f2)

{
D[uk, 0 ]

}
one can see that u ∈ h(F, f1 + f2).

(b). Let u = (uk) ∈ h(F, f1). since f2 is continuous there exist a ρ > 0 such that f2(ρ) = ε for all ε > 0. Since

u = (uk) ∈ h(F, f1), there exist an n0 ∈ N such that

(f1)
{
D[(Au)k, 0 ]

}
< ρ

and (f1)
{
D[uk, 0 ]

}
< ρ

for all k ≥ n0. Therefore one can derive by applying f2 that

f2
(
(f1)

{
D[(Au)k, 0 ]

})
< f2(ρ) = ε

and f2
(
(f1)

{
D[(Au)k, 0 ]

})
< f2(ρ) = ε

Since this is true for all k ∈ N, we have u ∈ h(F, f1 ◦ f2).
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(c). Since f1(t) ≤ f2(t) for all t ∈ [0,∞), we have

(f1)
{
D[(Au)k, 0 ]

}
≤ (f2)

{
D[(Au)k, 0 ]

}
and (f1)

{
D[uk, 0 ]

}
≤ (f2)

{
D[uk, 0 ]

}
This leads to the fact that u ∈ h(F, f1) implies u ∈ h(F, f2).

Lemma 3.4. Let f1 and f2 be two modulus functions and 0 ≤ δ ≤ 1. If f1(t) > δ then (f1 ◦ f2) (t) ≤ 2f2(1)
δ

f1(t) holds for

all t ∈ [0,∞).

Theorem 3.5. If f1 and f2 be two modulus functions, then the following inclusion relations hold.

(a). hp(F, f1, s) ∩ h(F, f2, s) ⊆ hp(F, f1 + f2, s)

(b). If s > 1, hp(F, f1, s) ⊆ hp(F, f1 ◦ f2, s)

(c). If lim supt→∞

[
f1(t)
f2(t)

]
<∞, hp(F, f2, s) ⊆ hp(F, f1, s)

(d). If s1 ≤ s2,hp(F, f1, s1) ⊆ hp(F, f1, s2).

Proof.

(a). Since
{

(f1 + f2)
{
D[(Au)k, 0 ]

}}p ≤ 2p−1
{

(f1)
{
D[(Au)k, 0 ]

}}p
+
{

(f2)
{
D[(Au)k, 0 ]

}}p
. This yields us by taking

summation over k ∈ N that u ∈ hp(F, f1 + f2, s)

(b). Since f2 is continuous from the right at 0, there exist δ with 0 < δ < 1 such that f2(t) < ε for all ε > 0 whenever

0 ≤ t ≤ δ. Define the sets N1 and N2 by

N1 =
{
k ∈ N : f1

{
D[(Au)k, 0 ]

}
≤ δ
}
, N2 =

{
k ∈ N : f1

{
D[(Au)k, 0 ]

}
> δ
}

Then we obtain from Lemma 3.4 for

{
f1
{
D[(Au)k, 0 ]

}
> δ
}

that (f2 ◦ f1)
{[
D(Au)k, 0

]}
≤ 2f2(1)

δ
f1
{
D
[
(Au)k, 0

]}
Therefore we derive for u = (uk) ∈ hp(F, f1, s) with δ > 1 that

∑
k

{
(f2 ◦ f1)

[
D
(
(Au)k, 0

)]}p
ks

=
∑
k∈N1

{
(f2 ◦ f1)

[
D
(
(Au)k, 0

)]}p
ks

+
∑
k∈N2

{
(f2 ◦ f1)

[
D
(
(Au)k, 0

)]}p
ks

≤
∑
k∈N1

εp

ks
+
∑
k∈N2

{
2f2(1)
δ

f1
{
D
[
(Au)k, 0

]}p}
ks

= εp
∑
k∈N1

1

ks
+

[
2f2(1)

δ

]p ∑
k∈N2

f1
{
D
[
(Au)k, 0

]}p
ks

<∞.

Hence u = (uk) ∈ hp(F, f2 ◦ f1, s).

(c). Suppose that lim supt→∞

[
f1(t)
f2(t)

]
< ∞. Then there is a number M > 0 such that

[
f1(t)
f2(t)

]
≤ M for all t ∈ [0,∞). Since

D
[
(Au)k, 0

]
≥ 0 for all k ∈ N and for all u = (uk) ∈ hp(F, f2, s) we have f1

{
D
[
(Au)k, 0

]}
≤ Mf2

{
D
[
(Au)k, 0

]}
which leads us

∑
k

{
(f1)

[
D
(
(Au)k, 0

)]}p
ks

≤
∑
k

{
(Mf2)

[
D
(
(Au)k, 0

)]}p
ks

= Mp
∑
k

{
(f2)

[
D
(
(Au)k, 0

)]}p
ks

<∞

Thus u = (uk) ∈ hp(F, f2, s).
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(d). Let s1 ≤ s2. Since 0 < k−1 ≤ 1 for all k ∈ N, it is immediate that k−s2 ≤ k−s1 . Then one can seethat

∑
k

{
(f)
[
D
(
(Au)k, 0

)]}p
ks2

≤
∑
k

{
(f)
[
D
(
(Au)k, 0

)]}p
ks1

<∞

holds, for all u = (uk) ∈ hp(F, f, s).

Corollary 3.6. Define the spaces hp(F, s)and hp(F, f) by

hp(F, s) =

{
u = (uk) ∈ w(F ) :

∑
k

1

ks
[
D
[
(Au)k, 0

]]p
<∞

}
, s ≥ 0.

hp(F, f) =

{
u = (uk) ∈ w(F ) :

∑
k

{
f
[
D
[
(Au)k, 0

]]}p
<∞

}

Then we have

(a). If s > 1, then hp(F, s) ⊆ hp(F, f, s).

(b). hp(F, f) ⊆ hp(F, f, s).

Proof.

(a). follows from Theorem 3.5 (b) with f1(t) = t and f2 = f .

(b). follows from taking s1 = 0,s2 = s and f1 = f from Theorem 3.5 (d).

Theorem 3.7. Let s > 1. Then the following relation hold h∞(F ) ⊆ hp(F, f, s)

Proof. Let u = (uk) ∈ h∞(F ).Then there is a number M > 0 such that D[(Au)k, 0] ≤ M for all k ∈ N. Since f is

continuous and increasing, there is a number N > 0 such that f
{
D[(Au)k, 0]

}
≤ f(M) ≤ N . Therefore we get for s > 1

that ∑
k

{
f
{
D
[
(Auk, 0

]}}p
ks

≤ Np
∑
k

1

ks
<∞.

Hence u = (uk) ∈ hp(F, f, s).
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