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Abstract: In this research paper we determine the combined effect of a transverse magnetic field and radiative heat transfer to

unsteady flow of a conducting optically thin fluid through a channel filled with saturated porous medium and non-uniform

walls temperature. The governing dimensionless equations are solved analytically and graphically. The approximate
analytical expressions for the dimensionless axial velocity and temperature are obtained using the Homotopy analysis

method. Also the analytical expressions for the shear stress function and the rate of heat transfer are also derived. The

Homotopy analysis method has proven to be the best for solving complicated non-linear differential equations in MHD
flow problems in engineering and applied sciences.
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1. Introduction

In recent years, the flow of fluids through porous media has evolved to be of great importance due to its applications in

geophysics, engineering, thermal insulation, heat storage and for the recovery of crude oil from the pores of the reservoir

rocks; in this case, Darcy’s law represents the gross effect. The study of the flow of an electrically conducting fluid named

as magnetohydrodynamics (MHD) finds many applications in engineering problems such as MHD power generators, plasma

studies, nuclear reactors, geothermal energy extraction and the boundary layer control in the field of aerodynamics [1].

Moreau [2] contains a survey of MHD studies in the technological fields. Motion of Newtonian fluids in the presence of

magnetic field has varied applications in many areas including the handling of biological fluids and flow of nuclear fuel

slurries, liquid metals and alloys, plasma, mercury amalgams, and blood ([3], [4] and [5]). Another important field of

application can be seen in electromagnetic propulsion. Basically, an electro-magnetic propulsion system consists of a power

source (such as nuclear reactor), plasma and tube through which the plasma is accelerated by electro-magnetic forces. The

study of such systems, which is closely associated with magneto-chemistry, requires a complete understanding of the equation

of state and transport properties such as diffusion, the shear stress- shear rate relationship, thermal conductivity, electrical

conductivity and radiation. Some of these properties will undoubtedly be influenced by the presence of an external magnetic

field that sets plasma in hydrodynamic motion ([6] and [7]).

Meanwhile, there has been many tremendous applications in studying about the magnetohydrodynamic (MHD) flow and

heat transfer in porous media because of the effect of magnetic fields on the performance of many systems [8]. Due to the
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increase in applications of free convective and heat transfer flows through porous medium under the influence of magnetic

field many researchers have studied about the magnetohydrodynamic free convective heat transfer flow in a porous medium.

In Raptis et al. [9] we can study about the unsteady free convective motion through a porous medium bounded by an infinite

vertical plate. Ram and Mishra [10] analyzed unsteady flow through MHD porous media. Mansutti [11] have discussed

about the steady flow of non- Newtonian fluids past a porous plate with suction or injection.

MHD unsteady free convection Walter’s memory flow with constant suction and heat sink was investigated in [12]. In [13]

the unsteady MHD memory flow with oscillatory suction, variable free stream and heat sources have been investigated. El

Hakiem [14] analyzed about the thermal radiation effects on transient, two-dimensional hydromagnetic free convection along

a vertical surface in a highly porous medium using the Roseland diffusion approximation for the radiative heat flux in the

energy equation, for the case where free- stream velocity of the fluid vibrates about mean constant value and the surface

absorbs the fluid with constant velocity. Aldoss et al. [15] have carried out a study about mixed convection flow from a

vertical plate embedded in a porous medium in the presence of a magnetic field. Chamkha [16] has considered MHD free

convectional flow from a vertical plate embedded in a thermally stratified porous medium with Hall effects.

In the present paper, we are going to discuss about the method of Homotopy analysis for studying the adverse effects of

transverse magnetic field and radiative heat transfer on unsteady flow of a conducting optically thin fluid through a channel

filled with saturated porous medium and non-uniform walls temperature.

2. Mathematical Formulation of the Problem

Under the influence of an externally applied homogeneous magnetic field and radioactive heat transfer the flow of a conducting

optically thin fluid in a channel filled with saturated porous medium is considered as shown in Fig.1.

It is assumed that the fluid has a small electrical conductivity and thus the electromagnetic force produced is also very

small. Consider a Cartesian coordinate system (x, y) where x lies along the centre of the channel, y is the distance measured

in the normal section. Now using the Boussinesq incompressible fluid model, the governing equations of the fluid motion is
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obtained as:

∂u

∂t
= −1

ρ

∂P

∂x
+ v

∂2u

∂y2
− v

K
u− σeB

2
0

ρ
u+ gβ(T − T0), (1)

∂T

∂t
=

k

ρcp

∂2T

∂y2
− 1

ρcp

∂q

∂y
(2)

with the corresponding boundary conditions are as follows

u = 0, T = Tw, on y = 1 (3)

u = 0, T = T0, on y = 0 (4)

where u denotes the axial velocity, t denotes time, T is the fluid temperature, P is the pressure, g the gravitational force, q

the radiative heat flux, β the coefficient of volume expansion due to temperature, cp the specific heat at constant pressure,

k the thermal conductivity, K the porous medium permeability coefficient, B0 = (µeH0) the electromagnetic induction, µe

the magnetic permeability, H0 the intensity of magnetic field, σe the conductivity of the fluid, ρ the fluid density and v is

the kinematic viscosity coefficient. It is assumed that both walls temperatureT0, Tw are high enough to induce radiative

heat transfer. It is assumed that the fluid is optically thin with a relatively low density and the radiative heat flux following

Cogley et al is given as follows:

∂q

∂y
= 4α2 (T0 − Tw) (5)

where α is the mean radiation absorption coefficient. We introduce the following dimensionless variables and parameters:

Re = Ua
v
, x̄ = x

a
, ȳ = y

a
, ū = u

U
, θ = T−T0

Tw−T0
, H2 =

a2σeB
2
0

ρv
, t̄ = tU

a
,

P̄ = aP
ρvU

, Da = K
a2
, Gr = gβ(Tw−T0)a

2

vU
, P e =

Uaρcp
k

, N2 = 4α2a2

k

(6)

Where U denotes the flow mean velocity. The dimensionless governing equations together with the appropriate boundary

conditions can be written as follows:

Re
∂u

∂t
= −∂P

∂x
+
∂2u

∂y2
−
(
s2 +H2)u+Grθ (7)

Pe
∂θ

∂t
=
∂2θ

∂y2
+N2θ (8)

u = 0 , θ = 1 , on y = 1, (9)

u = 0 , θ = 0 , on y = 0 (10)

where Gr , H , N , Pe , Re , Da , s =
(

1
Da

)
are Grashoff number, Hartmann number, Radiation parameter, Peclet number,

Reynolds number, Darcy number and porous medium shape factor parameter respectively.

Here we first treat the energy equation separately from the momentum equation so that the Equations (7)-(10) can be

written as follows:

0 = λ+
d2u

dy2
−
(
s2 +H2) u+Gr θ (11)

0 =
d2θ

dy2
+N2θ (12)

With the following boundary conditions

u = 0 , θ = 1 , on y = 1, (13)

u = 0 , θ = 0 , on y = 0 (14)
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3. Analytical Expression for the non-linear Differential Equations (11)
- (14) using Homotopy Analysis Method

This paper deals with a basic strong analytic tool for nonlinear problems, namely the Homotopy analysis method (HAM)

which was generated by Liao [18], is employed to solve the nonlinear differential eqns. (11) - (14). The Homotopy analysis

method is based on a basic concept in topology, i.e. Homotopy by Hilton [19] which is widely applied in numerical techniques

as in [20–23]. Unlike perturbation techniques like [24], the Homotopy analysis method is independent of the small/large

parameters. Unlike all other reported perturbation and non-perturbation techniques such as the artificial small parameter

method [25], the δ-expansion method [26] and Adomian’s decomposition method [27], the Homotopy analysis method provides

us a simple way to adjust and control the convergence region and rate of approximation series. The Homotopy analysis

method has been successfully applied to many nonlinear problems such as heat transfer [28], viscous flows [29], nonlinear

oscillations [30], Thomas-Fermi’s atom model [31], nonlinear water waves [32], etc. Such varied successful applications of the

Homotopy analysis method confirm its validity for nonlinear problems in science and engineering. The Homotopy analysis

method is a good technique when compared to other perturbation methods. The existence of the auxiliary parameter h in

the Homotopy analysis method provides us with a simple way to adjust and control the convergence region of the solution

series.

In this paper we have used the Homotopy analysis method for the non-linear boundary value problem which is expressed in

the Equations (11) and (12) with the boundary conditions (13) and (14). And we have obtained the approximate analytical

expression for the dimensionless axial velocity u (y) and dimensionless Temperature θ (y) (see Appendix B) as follows:

u(y) = A exp
(
−
√
s2 +H2 y

)
+B exp

(√
s2 +H2 y

)
+ λ

s2+H2

−h
(
C1 exp

(
−
√
s2 +H2 y

)
+ C2 exp

(√
s2 +H2 y

)
+ G sin(N y)

sin(N)(N2+s2+H2)

) (15)

where
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λ
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−
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))
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(
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− exp
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(
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(
−
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− exp
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θ(y) =
sin(N y)

sin (N)
(20)

The analytical expression for the shear stress function is given by

(
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)
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The rate of heat transfer across the channel’s wall is given by

(
dθ

dy

)
y=0

=
N

sin (N)
(22)

4. Results and Discussion

The analytical expression for the non-linear MHD oscillatory flow in a channel filled with porous medium has been obtained

using Homotopy analysis method. Figure 1 show the geometry of the problem which can be seen in section 2. In HAM the

selection of suitable values of h is very crucial to make our solution accurate. After choosing the appropriate values of the

auxiliary parameter h we have plotted the velocity profiles for various values of the radiation parameter and also for various

values of the Hartmann number i.e. the magnetic field intensity which are depicted in Figure 2 and Figure 3. We have made

use of the following parameters,s = 1 , H = 1 , λ = 1 , G = 1 , N = 1 as fixed parameters wherever necessary.

From the plotted velocity profiles Figure 2 and Figure 3 it can be noticed that the fluid velocity profile curves are parabolic

with maximum magnitude along the centerline channel and minimum at the walls. The influence of radiation parameter

and the Hartman number on the velocity profiles are studied as, the magnitude of fluid velocity increases with an increase

in radiation parameter and decreases with an increase in Hartmann number i.e. magnetic field intensity. Likewise we have

also studied the varied influence of the Grashoff number G, constant λ and the porous medium shape factor s on the fluid

axial velocityu (y). Figure 4 and Figure 5 depicts that the fluid axial velocity increases with an increase in the Grashoff

numberG and the constant λ. Figure 6 reveals the decreasing nature of the fluid velocity with increasing porous medium

shape factor values s.

In Figure 7, we have plotted the temperature profile, from which we can infer that a general increase in the fluid temperature

occurs with an increase in radiation parameter through the absorption of heat. Figure 8 shows the distribution of wall shear

stress. The effect of increasing values of the magnetic field intensity H is to decrease the magnitude of the wall shear stress

while an increase in the radiation parameter through heat absorption causes a further increase in the magnitude of wall

shear stress.

Fig.2 Dimensionless axial velocity u (y) versus the dimensionless transverse distancey. The curves are plotted for various

values of the radiation parameter N with some fixed values ofs , H , λ andG in the Equation (15).
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Fig.3 Dimensionless axial velocity u (y) versus the dimensionless transverse distance y. The curves are plotted for various

values of the radiation parameter H with some fixed values fors , N , λ andG in the Equation (15).

Fig.4. Dimensionless axial velocity u (y) versus the dimensionless transverse distance y. The curves are plotted for various

values of the Grashoff number G with some fixed values for s , H , λ andN in the Equation (15).

Fig.5. Dimensionless axial velocity u (y) versus the dimensionless transverse distance y. The curves are plotted for various

values of the constant λwith some fixed values for s , H , G andN in the Equation (15).
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Fig.6. Dimensionless axial velocity u (y) versus the dimensionless transverse distance y. The curves are plotted for various

values of the porous medium shape factor s with some fixed values for H , G, λ andN in the Equation (15).

Fig.7. Dimensionless temperature θ (y) versus the dimensionless transverse distance y. The curves are plotted for various

values of the radiation parameter N for the Equation (20)

Fig.8. Shear stresses versus the Hartmann number i.e. the magnetic field intensity for various values of the radiation

parameter are plotted using Equation (21).
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5. Conclusion

This research paper investigates the combined effects of transverse magnetic field and radiative heat transfer to MHD

oscillatory flow in a channel filled with porous medium. Using Homotopy analysis method we have obtained the analytical

solutions for the dimensionless non-linear problem. The velocity and temperature profiles are obtained analytically depicting

the adverse effects of radiation parameter, Hartmann number, constantλ, porous medium shape factor and the Grashoff

number.

From the plotted velocity profiles thus obtained we learnt that the fluid velocity is directly proportional to the Radiation

parameter N , constant λ and the Grashoff number G whereas it is inversely proportional to the Magnetic field intensity

i.e. Hartmann numberH and also to the porous medium shape factor s. Also from our results formed we also infer that

the temperature increases with increasing radiation parameter. However, the fluid velocity also increases with increasing

radiation parameter but decreases with increasing Hartmann number. Also we have computed the wall shear stress and

rate of heat transfer at the channel walls. Generally, our result from the plot of shear stress function shows that increasing

magnetic field intensity reduces wall shear stress while increasing radiation parameter through heat absorption causes an

increase in the magnitude of wall shear stress.
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Appendix: A

Basic Concept of the Homotopy Analysis Method [18–42]

Consider the following differential equation:

N [u(t)] = 0 (A.1)

Where N is a nonlinear operator, t denotes an independent variable, u(t) is an unknown function. For simplicity, we

ignore all boundary or initial conditions, which can be treated in the similar way. By means of generalizing the conventional

Homotopy method, Liao [33] constructed the so-called zero-order deformation equation as:

(1− p)L[ϕ(t; p)− u0(t)] = phH(t)N [ϕ(t; p)] (A.2)

where p ∈ [0, 1] is the embedding parameter, h 6= 0 is a nonzero auxiliary parameter, H (t) 6= 0 is an auxiliary function, L

an auxiliary linear operator, u0 (t) is an initial guess of u(t), ϕ(t : p) is an unknown function. It is important to note that

one has great freedom to choose auxiliary unknowns in HAM. Obviously, when p = 0 and p = 1, it holds:

ϕ(t; 0) = u0(t) textand ϕ(t; 1) = u(t) (A.3)

respectively. Thus, as p increases from 0 to 1, the solution ϕ(t; p) varies from the initial guess u0(t) to the solution u (t).

Expanding ϕ(t; p) in Taylor series with respect to p, we have:

ϕ(t; p) = u0(t) +

+∞∑
m=1

um(t)pm (A.4)
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where

um(t) =
1

m!

∂mϕ(t; p)

∂pm
|p=0 (A.5)

If the auxiliary linear operator, the initial guess, the auxiliary parameter h, and the auxiliary function are so properly chosen,

the series (A.4) converges at p =1 then we have:

u(t) = u0(t) +

+∞∑
m=1

um(t). (A.6)

Differentiating (A.2) for m times with respect to the embedding parameter p, and then setting p = 0 and finally dividing

them by m!, we will have the so-called m th-order deformation equation as:

L[um − χmum−1] = hH(t)<m(
→
u

m−1
) (A.7)

where

<m(
→
u

m−1
) =

1

(m− 1)!

∂m−1N [ϕ(t; p)]

∂pm−1
(A.8)

and

χm =

 0, m ≤ 1,

1, m > 1.
(A.9)

Applying L−1 on both side of equation (A7), we get

um(t) = χmum−1(t) + hL−1[H(t)<m(
→

um−1)] (A10)

In this way, it is easily to obtain um for m ≥ 1, at M th order, we have

u(t) =

M∑
m=0

um(t) (A.11)

When M → +∞, we get an accurate approximation of the original equation (A.1). For the convergence of the above method

we refer the reader to Liao [34]. If equation (A.1) admits unique solution, then this method will produce the unique solution.

Appendix: B

Solution of the Non-linear Differential Equations (11) - (14) using the Homotopy Analysis Method

This appendix contains the derivation of the analytical expressions Equations (15) and (20) for u (y) and θ (y)using the

Homotopy analysis method. The Equations (11) - (14) are as follows,

0 = λ+
d2u

dy2
−
(
s2 +H2) u+Gr θ (B.1)

0 =
d2θ

dy2
+N2θ (B.2)

With the following boundary conditions

u = 0 , θ = 1 , on y = 1, (B.3)

u = 0 , θ = 0 , on y = 0 (B.4)
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Solving the Equations (B.2), (B.3) and (B.4) we obtain the exact solution for θ (y) as

θ (y) =
sin (N y)

sin (N)
(B.5)

We construct the Homotopy for the Equation (B.1) as follows,

(1− p)
(
d2u

dy2
−
(
s2 +H2)u+ λ

)
= hp

(
d2u

dy2
−
(
s2 +H2)u+ λ+Gθ

)
(B.6)

The approximate solution for the Equation (B.6) is given by,

u = u0 + pu1 + p2u2 + . . . (B.7)

By substituting the Equation (B.7) into the Equation (B.6) we get,

(1− p)
(
d2(u0+pu1+p

2u2+.......)
dy2

−
(
s2 +H2

) (
u0 + pu1 + p2u2 + .......

)
+ λ

)
= hp

(
d2(u0+pu1+p

2u2+.......)
dy2

−
(
s2 +H2

) (
u0 + pu1 + p2u2 + .......

)
+ λ+Gθ

) (B.8)

Now equating the coefficients of p0 and p1 we get the following equations:

p0 :
d2u0

dy2
−
(
s2 +H2) u0 + λ (B.9)

p1 :
d2u1

dy2
−
(
s2 +H2) u1 −

d2u0

dy2
+
(
s2 +H2) u0 − λ− h

(
d2u0

dy2
−
(
s2 +H2) u0 + λ+Gθ

)
(B.10)

The initial approximations are as follows:

u0(0) = 0 , u0 (1) = 0 (B.11)

u1(0) = 0 , u1 (1) = 0 (B.12)

Solving (B.9) and (B.11) we obtain the initial solution u0as,

u0 = A exp
(
−
√
s2 +H2 y

)
+B exp

(√
s2 +H2 y

)
+

λ

s2 +H2
(B.13)

where

A = − λ

s2 +H2
−

λ
(
1− exp

(
−
√
s2 +H2

))
(s2 +H2)

(
exp

(
−
√
s2 +H2

)
− exp

(√
s2 +H2

)) (B.14)

B =
λ
(
1− exp

(
−
√
s2 +H2

))
(s2 +H2)

(
exp

(
−
√
s2 +H2

)
− exp

(√
s2 +H2

)) (B.15)

Now on solving (B.10) and (B.12) we get

u1 = −h
(
C1 exp

(
−
√
s2 +H2 y

)
+ C2 exp

(√
s2 +H2 y

)
+

G sin(N y)

sin(N)(N2 + s2 +H2)

)
(B.16)

where

C1 = − G

(N2 + s2 +H2)
(
exp

(
−
√
s2 +H2

)
− exp

(√
s2 +H2

)) (B.17)

C2 =
G

(N2 + s2 +H2)
(
exp

(
−
√
s2 +H2

)
− exp

(√
s2 +H2

)) (B.18)

According to Homotopy analysis method we have

u = lim
p→1

u (y) = u0 + u1 (B.19)

Using the Equations (B.13) and (B.16) in Equation (B.19) we get the solution as given in the text Equation (15).
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Appendix C:

Nomenclature

Symbols Meaning

B0 Electromagnetic induction

cp Specific heat at constant pressure

Da Darcy number

g Gravitational force

H0 Intensity of magnetic field

k Thermal conductivity

K The porous medium permeability

P Pressure

q Radiative heat flux

t Time variable

T Fluid temperature

T0 Temperature at y = 0

Tw Temperature at y = a

β Coefficient of volume expansion due to tempera-

ture

ω Frequency of the oscillation

µe Magnetic permeability

v Kinematic viscosity coefficient

ρ Fluid density

σe Conductivity of the fluid

G Grashoff number

H Hartmann number

N Radiation parameter

s Porous medium shape factor

u The axial velocity

x Axial distance

y Transverse distance

λ A constant

θ Dimensionless temperature

187


	Introduction
	Mathematical Formulation of the Problem
	Analytical Expression for the non-linear Differential Equations (11) - (14) using Homotopy Analysis Method
	Results and Discussion
	Conclusion
	Acknowledgement
	References

