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1. Introduction

This work is an extension of the previous study [9]. We introduce chirp’s functional spaces using Sobolev spaces. We

observe that a chirp is an asymptotic signal which is of the form s (t) = A (t) eiλΦ(t), where A and Φ are two smooth

functions and λ � 1 (actually Φ′ (t) → ∞ when t → t0). The function ei. is fundamental in the last definition. It is an

indefinitely oscillating function in the L∞-sense. It will be replaced by what we call an indefinitely oscillating function.

Meyer and Xu have worked on chirps using Lp indefinitely oscillating functions defined on Rn (see [10]). Our contribution

consists to study the behavior of the Fourier transform of indefinitely oscillating functions in Hs on R around 0.

The motivation for studying indefinitely oscillating functions is given by chirps. The first example here considered is the

cry of a bat. The signal is given by the formula: F (x) = e
−i
x − 1 which is a function of the real variable x. Its Fourier

transform is given on the real axis by F̂ (ξ) = J1

(
ξ

1
2

) 1
2
/ξ if ξ > 0 and F̂ (ξ) = 0 otherwise, where J1 is the Bessel function

of index one. F̂ has a discontinuity at the origin, which is obviously shown by the fact that e
−i
x − 1 ∼ −i

x
at infinity. A

second example is the emission of chirps when vibrating lorries are used to localize petroleum fields. It concerns signals

with a large range of frequencies but with a short life. The detection is possible for a large range of objects, avoiding the

interferences, thanks to short duration of these signals. The last example is given by gravitational waves. The existence

of such waves follows from the theory of general relativity. The scientific world has already got indirect evidences of their

existence. But the gravitational waves have never been measured by experiences. Several sources are susceptible to product

these gravitational waves: coalescence of a binary star giving birth to a chirp, collapse of neutrons star and collapse of black

holes. (cf. [13]).

In this work, we will consider the case where the functions defined on the whole real axis. Throughout the paper, we will

systematically study the case of Sobolev spaces, that is E = Hs (R).
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Indefinitely Oscillating Functions-Part I

2. Indefinitely Oscillating Function Theory on the Real Axis

The general definition of an indefinitely oscillating function is the following.

Definition 2.1. Let E a functional Banach space, with S (R) ⊂ E ⊂ S′ (R), where S (R) is the Schwartz space, assuming

that the two embeddings are continuous. A function f ∈ E is indefinitely oscillating (in the E-sense) if, for every m ∈ N,

there exists fm ∈ E such that f =
(
dfm
dx

)m
.

Example 2.2. Assume that E = L2 (R) and let us explain the nature of the difficulties which occur. The above situation can

be studied using Fourier’s transform. The preceding definition implies f̂ (ξ) = (iξ)m f̂m (ξ). Then f ∈ L2 (R) is indefinitely

oscillating in the L2 (R)-sense if and only if
∫ ε
−ε

∣∣∣f̂ (ξ)
∣∣∣2 dξ = O (εm) for every m ∈ N.

2.1. Characterization Using Fourier’s Transform

2.1.1. The L2 (R) or Hs (R) cases

Studying the behavior of the Fourier transform of the function around zero is another way to characterize indefinitely

oscillating functions in the Hs (R)-sense.

Lemma 2.3. One has the following characterizations of an indefinitely oscillating function in the Hs (R)-sense.

(1). f is an indefinitely oscillating function in the Hs (R)-sense if and only if f belongs to Hs (R) and one has for every

m ∈ N ∫ 1

−1

∣∣∣f̂ (ξ)
∣∣∣2

|ξ|2m
dξ <∞,

where f̂ denotes the Fourier transform of f .

(2). f is an indefinitely oscillating function in Hs (R) if and only if f belongs to Hs (R) and for every integer m and every

|ξ| ≤ 1, one has
∫ ξ
−ξ

∣∣∣f̂ (t)
∣∣∣2 dt = O (|ξ|m).

Proof. (1). Using the above definition of an indefinitely oscillating function 2.1, we observe that, for every m ∈ N, there

exists fm ∈ Hs (R) such that f = dmfm
dxm

. Applying Fourier’s transform, one has f̂ (ξ) = f̂m (ξ) (iξ)m. A necessary and

sufficient condition that f is an indefinitely oscillating function in the Hs (R)-sense is that for every m ∈ N one has the

above indicated property.

(2). Assume that f is an indefinitely oscillating function in Hs (R). We observe that

∫ ξ

−ξ

∣∣∣f̂ (t)
∣∣∣2 dt =

∫ ξ

−ξ

∣∣∣f̂ (t)
∣∣∣2

|t|2m
|t|2m dt ≤ |ξ|2m

∫ ξ

−ξ

∣∣∣f̂ (t)
∣∣∣2

|t|2m
dt.

Let us prove the reverse way. A dyadic decomposition gives

∫ 2−j+1

2−j

∣∣∣f̂ (ξ)
∣∣∣2

|ξ|2m
dξ ≤ 22jm

∫ 2−j+1

2−j

∣∣∣f̂ (ξ)
∣∣∣2 dξ ≤ C2j(2m−q).

This is a normally convergent series for q > 2m.

Remark 2.4. The condition indicated in Lemma 2.3 does not depend on s. Hence, the characterizations of indefinitely

oscillating functions either in Ls (R) or in Hs (R) are the same.
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2.2. Characterization Using Littlewood-Paley Analysis

2.2.1. The L2 (R)-case

Theorem 2.5. The three following properties are equivalent:

(1). f belongs to L2 (R) and ‖∆j (f)‖2 ≤ CN2jN for j ≤ −1

(2). f belongs to L2 (R) and for every n ∈ N f = dmfm
dxm

where fm ∈ L2 (R).

(3). For every m ∈ N f = dmfm
dxm

with fm ∈ Hm (R).

Proof. (1) implies (2) The Littlewood-Paley decomposition gives f =
∑
j

∆j (f). Let fm be a m-th primitive defined by

f = dmfm
dxm

. If f and fm belong to L2 (R) and f = dmfm
dxm

, one has f̂ (ξ) = (iξ)m f̂m (ξ), with f̂ (ξ) =
∑
j

∆̂j (f) (ξ). f̂ and

f̂m belong to L2 (R). Then f̂m is defined almost everywhere by f̂m (ξ) = f̂(ξ)
(iξ)m

, and ∆̂j (f) (ξ) = f̂ ∗ ψj (ξ) = f̂ (ξ) ψ̂
(
ξ
2j

)
.

∆̂j (f) is supported by α2j ≤ |ξ| ≤ β2j with 0 < α < β. One has f̂m (ξ) =
∑
j

∆̂j(f)(ξ)

(iξ)m
and

∥∥∥∥ ∆̂(jf)(ξ)

(iξ)m

∥∥∥∥
2

≤ Cm2−jm ‖∆jf‖2.

(2) implies (1) Let m be a positive integer, f belong to L2 (R). For every m ∈ N one has f = dmfm
dxm

where fm and f belong

to L2 (R). Then one has f̂ (ξ) ψ̂
(
2−jξ

)
= (iξ)m f̂m (ξ) ψ̂

(
2−jξ

)
. We deduce that

‖∆jf‖2 =
∥∥∥∆̂j (f)

∥∥∥
2

=
∥∥∥(i.)m f̂mψ̂

(
2−j .

)∥∥∥
2
≤ Cm2jm

∥∥∥f̂mψ̂ (2−j .
)∥∥∥

2
.

For j ≤ −1 one has ‖∆jf‖2 ≤ Cm2jm and for j ≥ 0

‖∆jf‖2 ≤ Cm2jm
∥∥∥f̂mψ̂ (2−j .

)∥∥∥
2
≤ εj,m,

with
+∞∑

0

ε2j,m<∞, as f belongs to L2 (R).

2.2.2. The Hs (R)-case

Theorem 2.6. The two following properties are equivalent:

(1). For every n, there exists fn ∈ Hs (R) such that f = dnfn
dxn

in a distributional sense.

(2). f ∈ Hs (R) and ‖∆jf‖2 ≤ CN2jN for every N and for every j ≤ −1.

We say that f is indefinitely oscillating in the Hs (R)-sense. We remark that fn ∈ Hs+n (R).

Proof. Let us first observe that if f̂ has its support in [α, β] with 0 < α < β then ‖f‖2 ' ‖f‖Hs for every s in R.

(1) implies (2) Take f ∈ Hs (R). For every n, there exists fn ∈ Hs (R) such that f = dnfn
dxn

. Using Fourier’s transform

one has f̂ (ξ) = (iξ)n f̂n (ξ), hence fn ∈ Hs (R) which is equivalently written as
∫
R

(
1 + ξ2

)s |f̂(ξ)|2
ξ2n

dξ < ∞. Hence we

have
∫ 1

−1

∣∣∣f̂ (ξ)
∣∣∣2 dξ

ξ2n
< ∞. Using Littlewood-Paley decomposition we can write f =

−1∑
−∞

∆jf + S0 (f). Applying Fourier’s

transform we have f̂ (ξ) =
+∞∑
−∞

∆̂jf (ξ). As ∆̂jf is supported by the dyadic corona α2j ≤ |ξ| ≤ β2j with 0 < α < β. Hence

the inequality
∫ 1

−1

∣∣∣f̂ (ξ)
∣∣∣2 dξ

ξ2n
< ∞ becomes

∫ 1

−1

∣∣∣∣+∞∑
−∞

∆̂jf (ξ)

∣∣∣∣2 dξ
ξ2n

< ∞. Thanks to the quasi-orthogonality of the terms,

we have
+∞∑
−∞

∫ 1

−1

∣∣∣∆̂jf (ξ)
∣∣∣2 dξ

ξ2n
<∞. In the same way we have

∫ β2j

α2j

∣∣∣∆̂jf (ξ)
∣∣∣2 dξ

ξ2n
<∞⇒

∥∥∥∆̂jf
∥∥∥

2
≤ Cn2jn,
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for all n and for all j ≤ −1.

(2) implies (1) Let fn be such that f = dnfn
dxn

. Using Fourier’s transform we have f̂ (ξ) = (iξ)n f̂n (ξ). As f ∈ Hs (R), we

have
∫
R

(
1 + ξ2

)s ∣∣∣f̂ (ξ)
∣∣∣2 dξ <∞, or

∫
R

(
1 + ξ2

)s |ξ|2n ∣∣∣f̂n (ξ)
∣∣∣2 dξ <∞, which implies

∫
V (∞)

(
ξ2
)n+s

∣∣∣f̂n (ξ)
∣∣∣2 dξ <∞. Now

let us verify that
∫ 1

−1

∣∣∣f̂n (ξ)
∣∣∣2 dξ <∞ which proves that fn ∈ Hs+n (R). The Littlewood-Paley decomposition of fn is given

by fn =
+∞∑
−∞

∆jfn. Using Fourier’s transform, we have

f̂n (ξ) =

−1∑
−∞

∆̂j fn (ξ) +

+∞∑
0

∆̂j fn (ξ) .

We now prove that the two terms of the right hand-side belong to L2 (−1, 1). As the supports of the different terms are two

by two disjoints, we have ∫ 1

−1

∣∣∣∣∣
−1∑
−∞

∆̂j fn (ξ)

∣∣∣∣∣
2

dξ ≤ 2

∫ 1

−1

−1∑
−∞

∣∣∣∆̂j fn (ξ)
∣∣∣2 dξ.

Then we have ∫ 1

−1

∣∣∣∣∣
−1∑
−∞

∆̂j fn (ξ)

∣∣∣∣∣
2

dξ ≤ 2

−1∑
−∞

∫ β2j

α2j

∣∣∣∆̂j f (ξ)
∣∣∣2

ξ2n
dξ ≤ C(n,N)

−1∑
−∞

22j(N−n).

For an appropriate choice of N , this series is normally convergent. Concerning the other term we have, again because the

supports are disjoints

∫ 1

−1

∣∣∣∣∣
+∞∑

0

∆̂j fn (ξ)

∣∣∣∣∣
2

dξ ≤ 2

∫ 1

−1

+∞∑
0

∣∣∣∆̂j fn (ξ)
∣∣∣2 dξ ≤ 2

∫ 1

−1

+∞∑
0

∣∣∣∆̂j f (ξ)
∣∣∣2

ξ2n
dξ.

But
∥∥∥∆̂j (f) (ξ)

∥∥∥
2
≤ εj for j ≥ 0 with

+∞∑
0

ε2j <∞ which implies

∫ 1

−1

∣∣∣∣∣
+∞∑

0

∆̂j fn (ξ)

∣∣∣∣∣
2

dξ ≤ 2

+∞∑
0

∫ β2j

α2j

∣∣∣∆̂j f (ξ)
∣∣∣2

ξ2n
dξ ≤ 2

+∞∑
0

Cnε
2
j2
−2jn.

2.3. Generalization to an Arbitrary Banach Space

Let E be a functional Banach space with S (R) ⊂ E ⊂ S′ (R). We assume that the norm of E is invariant by translation

and that E satisfies the following property: for every sequence (fj)j such that fj ∈ E, ‖fj‖E ≤ C and (fj)j converges to f

in σ (S′, S)-sense, then f ∈ E and ‖f‖E ≤ C. We observe that one has ‖f‖E ≤ lim supj→∞ ‖fj‖E when (fj)j converges to

f in the distributional sense.

Definition 2.7. A function f ∈ E is indefinitely oscillating relatively to E if, for every m ≥ 1, there exists fm ∈ E such

that f =
(
dfm
dx

)m
.

One has the following property.

Theorem 2.8. The three following properties are equivalent:

(1). f is indefinitely oscillating in the E-sense.

(2). ‖∆j (f)‖E ≤ Cm2jm for all m ≥ 0 and all j ≤ 0 and f =
+∞∑
−∞

∆j (f) in σ (S′ (R) , S (R))-sense.
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(3). ‖Sj (f)‖E ≤ C
′
m2jm for all m ≥ 0 and all j ≤ 0.

Proof. Let us first observe that for every ω ∈ L1 (R) and f ∈ E, f ∗ ω ∈ E and ‖f ∗ ω‖E ≤ ‖ω‖1 ‖f‖E .

(2) implies (1) Let ψ̃ be a function of the Schwartz class S (R) whose Fourier transform is equal to 1 over

1
4
≤ |ξ| ≤ 4 and 0 if |ξ| ≥ 1

10
and |ξ| ≥ 10. The Fourier transform of ψ is taken by 1

3
≤ |ξ| ≤ 3. One then

writes ∆j (f) = ∆̃j (∆jf) =
(
d
dx

)m
2−jm∆̃j(m), or by Fourier transform ψ̃

(
2−jξ

)
=
(
iξ2−j

)m
ψ̃(m)

(
2−jξ

)
, which

means ψ̃ (ξ) = (iξ)m ψ̃m (ξ). It is then evident that ψ̃m ∈ S (R). One applies Lemma 7 and get ∆j (f) = 2 jm
(
d
dx

)m
fj,m,

where ‖fj,m‖E ≤ CN2jN for all integer N . Then
0∑
−∞

2 jmfj,m converges in the E-norm. Let σq (f) =
∑
j≥−q

∆jf . One has

σq (f) → f (in the distributional sense) when q → +∞, σq (f) =
(
d
dx

)m
σq,m (f) and σq,m (f) → Im (f) when q → +∞.

Then
(
dIm(f)
dx

)m
= f .

(1) implies (3) Hence f =
(
d
dx

)m
fm and fm ∈ E. Then Sj (f) =

(
dSj(fm)

dx

)m
and

(
dSj

dx

)m
= 2jmS

(m)
j . S

(m)
j is the

convolution with 2jϕ(m)
(
2jx
)

where ϕ(m) =
(
dϕ
dx

)m
. We then apply Lemma ?.

(3) implies (2) This implication is evident since ∆j = Sj+1 − Sj .
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